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ABSTRACT

We present a scalable logo recognition technique based on
feature bundling. Individual local features are aggregated
with features from their spatial neighborhood into bundles.
These bundles carry more information about the image con-
tent than single visual words. The recognition of logos in
novel images is then performed by querying a database of ref-
erence images. We further propose a novel WGC-constrained
RANSAC and a technique that boosts recall for object re-
trieval by synthesizing images from original query or refer-
ence images. We demonstrate the benefits of these tech-
niques for both small object retrieval and logo recognition.
Our logo recognition system clearly outperforms the current
state-of-the-art with a recall of 83% at a precision of 99%.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; 1.5.4 [Pattern Recognition]:
Computer Vision

General Terms

Algorithms, Experimentation

1. INTRODUCTION

In computer vision, the bag-of-visual words approach has
been very popular in the last decade. It describes an image
by multiple local features; their high-dimensional descriptor
vectors are clustered and quantized into individual integer
numbers - called visual words. An image is then modeled
as an unordered collection of word occurrences, commonly
known as bag-of-words. This description provides an enor-
mous data reduction compared to the original descriptors.
Its benefits are a fixed-size image description, robustness to
occlusion and viewpoint changes, and eventually simplicity,
i.e. a small computational complexity.

It has been observed that the retrieval performance of
bag-of-words based methods improves much more by reduc-
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Figure 1: Bundle Min-Hashing: The neighborhood
around a local feature, the central feature (red), is
described by a feature bundle. Features that are too
far away or on scales too different from that of the
central feature are ignored during the bundling (yel-
low). The features included in such a bundle (blue)
are represented as a set of visual word occurrences
and indexed by min-hashing (see Section 3.2).

bundling

ing the number of mismatching visual words than by re-
ducing quantization artifacts. Inspired by this observation
we exploit a feature bundling technique that builds on vi-
sual words, but aggregates spatial neighboring visual words
into feature bundles. An efficient search technique for such
bundles based on min-hashing allows for similarity search
without requiring exact matches.

Compared to individual visual words such bundles carry
more information, i.e. fewer false positives are retrieved.
Thus the returned result set is much smaller and cleaner.
Our logo recognition framework exploits a bundle represen-
tation that retrieves approximately 100 times fewer images
than bag-of-words while having equal recall performance.
The core components of our logo recognition system are:

e We adopt the retrieval technique of [15] based on fea-
ture bundles to the problem of logo recognition and
show that such a system significantly outperforms the
current state-of-the-art.

e A [P-WGC-RANSAC variant for fast (real-time) spa-
tial re-ranking is proposed that yields superior results



compared to existing approaches by exploiting a weak-
geometric constraint to speed up the computation

e We demonstrate that recall of a system targeting high
precision for small object retrieval can be increased
by exploiting synthetically generated images both for
query expansion as well as database augmentation.

2. RELATED WORK

We present related work suited to image and object re-
trieval. As our approach is based on min-hashing, we also
briefly highlight the related work relevant in the context of
min-hashing.

Visual Words and Bundling. An early approach to feature
bundling was used as a simple post-retrieval verification step
where the number of matching neighboring features was ex-
ploited to discriminate true feature matches from random
matches [17]. Later it was proposed to bundle multiple SIF'T
features that lie in the same MSER region into a single de-
scription [18]. The authors then defined a weak geometric
similarity criterion. However, this work used single visual
words for lookups in the inverted index, the bundles and the
weak geometric similarity are used for post-retrieval veri-
fication only. In [3] the most informative projections that
map the visual words from the 2-D space into feature his-
tograms (termed “spatial bag-of-words”) are learned. An
approach, which is similar yet more unbiased to certain im-
age layouts, splits the original feature histograms by random
projections into multiple smaller “mini bag-of-features” [8].
Separate lookups and an aggregating scoring are used to find
the most similar images in an image database. Another ap-
proach bundles triples of visual words including their spatial
layout into visual signatures that are then subsequently in-
dexed by a cascaded index making testing of images for the
presence of pairs and triples possible and efficient [16].

Min-hashing (mH). Min-Hashing is a locality-sensitive

hashing technique that is suitable for approximate similar-
ity search of sparse sets. Originally developed for detec-
tion of duplicate text documents, it was adopted for near-
duplicate image detection and extended to the approxima-
tion of weighted set overlap as well as histogram intersec-
tion [5]. Here, an image is modeled as a sparse set of visual
word occurrences. Min-hashing then allows to perform a
nearest-neighbor search among all such sparse sets within an
image database. This approach is described in Section 3.1.

Geometric min-hashing (GmH). A conceptually similar
approach to ours is geometric min-hashing [4]. However,
its statistical preconditions for the hashing of sparse sets
are totally different to our setting. There are two major
differences: (1) GmH samples several central features by
min-hash functions from all over the image. Thus, neither
all nor even most features are guaranteed to be included in
the image description. (2) Given a central feature (randomly
drawn by a hash function) the local neighborhood of such
feature is described by a single sketch. This makes GmH
very memory efficient, but not suitable for generic image
retrieval because of low recall. Consequently, the authors
use it to quickly retrieve images from a large database in
order to build initial clusters of highly similar images [4].
These clusters are then used as “seeds”; each of the contained
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image is used as query for a traditional image search to find
more cluster members that could not be retrieved by GmH.

Fartition min-hashing (PmH). In [10] a scheme is intro-
duced that divides the image into partitions. Unlike for
normal min-hashing, min-hashes and sketches are computed
for each partition independently. The search then proceeds
by determining the sketch collisions for each of the parti-
tions. This scheme is conceptually similar to a sliding win-
dow search as partitions may overlap and are processed step
by step. The authors show that PmH is significantly faster
than mH and has identical collision probabilities for sketches
as mH in the worst case, but theoretically better recall and
precision if the duplicate image region only covers a small
area. However, in [15] we observed that PmH performs
worse than mH on the logo dataset.

3. BUNDLE MIN-HASHING

We build our bundling technique on min-hashing mainly
for two reasons: (1) Feature bundles can be naturally rep-
resented as sparse sets and (2) min-hashing does not imply
a strict ordering or a hard matching criterion. This require-
ment is not met by local feature bundles. Due to image
noise, viewpoint and lighting changes, the individual local
features, their detection, and their quantization are unsta-
ble and vary across images. Even among two very similar
images, it is extremely unlikely that they share identical
bundles. We therefore utilize the min-hashing scheme as a
robust description of local feature bundles because it allows
to search for similar (not identical) bundles.

The proposed bundling technique is an efficient search
method for similar images with higher memory requirements
than pure near-duplicate search methods, but similar to that
of bag-of-words. Its performance is close to bag-of-words,
but at a much lower response ratio, i.e. higher precision.

3.1 Min-hashing (mH)

Min-Hashing is a locality-sensitive hashing technique that
allows for approximate similarity search of sparse sets. It
models an image as a sparse set of visual word occurrences.
As the average number of visual words per image is much
smaller than the vocabulary size for large vocabularies, the
resulting feature histograms are sparse and are converted to
binary histograms (i.e. sets representing whether a visual
word is present at least once).

If one were able to do a linear search over all sets in a data-
base, he might define a threshold on the overlap ovr(I1, I2)
between two such sets I; and I;. This is equivalent to a
threshold on the Jaccard similarity and determines whether
these two sets are considered “identical” or matching. How-
ever, as the linear search over a database is infeasible in
practice the min-hashing scheme provides an efficient way
to index these sets based on this overlap criterion.

Given a set of | visual words of an image I = {vo, ..., vi—1},
the min-hash function is defined as

mh(I) = argmin h(v;) (1)

v, €1
where h is a hash function that maps each visual word v;
deterministically to a random value from a uniform distribu-
tion. Thus, the min-hash mh itself is a visual word, namely
that word that yields the minimum hash value (hence the
name min-hash). The probability that a min-hash function



mh will have the same value for two different sets [; and I
is equal to the set overlap:

|1, N I

|I 1 U I 2| (2)

Note that an individual min-hash value not only repre-
sents a randomly drawn word that is part of the set, but each
min-hash also implicitly “describes” the words that are not
present and would have generated a smaller hash - because
otherwise it would have been a different min-hash value.

The approximate search for similar sets is then performed
by finding sets that share min-hashes. As single min-hashes
alone yield true matches as well as many false positives or
random collisions, multiple min-hashes are grouped into k-
tuples, called sketches. This aggregation increases precision
drastically. To improve recall, this process is repeated n
times and independently drawn min-hashes are grouped into
n tuples of length k. The probability that two different sets
have at least one of these n sketches in common is then given
by

P(mh([l) = mh(Iz)) = O’L)T(Il,lz) =

P(collision) = 1 — (1 — ovr(Iy, I2)*)™ (3)
This probability depends on the set overlap. In practice the
overlap between non-near-duplicate images that still show
the same object is small. In fact, the average overlap for a
large number of partial near-duplicate images was reported
to be 0.019 in [10]. This clearly shows that for applications
which target the retrieval of partial-near-duplicates e.g. vi-
sually similar objects rather than full-near-duplicates, the
most important part of that probability function is the be-
havior close to 0.

The indexing of sets and the approximate search are per-
formed as follows: To index sets their corresponding sketches
are inserted into hash-tables (by hashing the sketches itself
into hash keys), which turn the (exact) search for a part of
the set (the sketch) into simple lookups. To retrieve the sets
similar to a query set, one simply computes the correspond-
ing sketches and searches for the sets in the database that
have one or more sketches in common with the query. A
lookup of each query sketch determines whether this sketch
is present in the hash table, which we denote as "collision”
in the following. The lookups can be done efficiently in con-
stant time as hash table offer access in amortized O(1). If
there is a query sketch of size k that collides with a sketch
in the hash table, then the similarity of their originating
sets is surely > 0, because at least k of the min-hash func-
tions agreed. To avoid collisions resulting from unrelated
min-hash functions, the sketches are put into separate hash
tables: the k-th sketch is inserted into the k-th hash table.

3.2 Bundle Min-Hashing

The idea of our bundling technique is simple: We describe
the neighborhoods around local features by bundles which
simply aggregate the visual word labels of the correspond-
ing visual features. The bundling starts by selecting central
features, i.e. all features in an image with a sufficient num-
ber of local features in their neighborhood. Analogous to
the feature histogram of a full image, the small neighbor-
hood surrounding each central feature represents a “micro-
bag-of-words”. Such a bag-of-words vector will be extremely
sparse because only a fraction of all features in the image is
present in that particular neighborhood. Since the features
of a bundle are spatially close to each other, they are likely
to describe the same object or a region of interest.
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Figure 2: Collision probabilities given the set over-
lap between bundles. Left: Single min-hash (as used
by Bundle Min-Hashing). Right: Sketches of size 2.

More specifically, given a feature x; its corresponding fea-
ture bundle b(x;) is defined as the set of spatially close fea-
tures for a given feature x;:

b(xi) = {x;]x; € N(x;)} (4)

where N(x;) is the neighborhood of feature x; which is
described at the end of this section. We further assume that
for all features x; in an image the descriptor vectors have
been quantized to the corresponding visual words v; = g(x;).

The bundle b(x;) is then represented by the corresponding
set of visual words of all features included in that bundle:

Wi(b(xi)) = { a(x;) | x; € b(x:)} &)

The resulting set W; is then subsequently indexed by reg-
ular min-hashing

In extensive experiments we observed the following: First,
sketches of size 2 perform best compared to sketches of size 3.
Second, we found that the performance increases drastically
if the first sketch element is not determined by min-hashing
but rather set to the visual word of the central feature itself.
That is, for each bundle the n-th sketch is given as 2-tuple

(vi, mhn(Wi(b(x:))) ) (6)

where v; denotes the visual word label of the central feature
and mh, denotes the min-hash returned by the n-th min-
hash function from the set of all visual words W; present in
bundle b(xi). The full process is illustrated in Figure 1.

The major advantage can be seen when comparing the col-
lision probabilities of a single min-hash and sketches of size
2 (see Figure 2). With our approach two bundles (the cen-
tral feature plus a single min-hash) with an overlap of only
0.2 have a 50% chance that one of 4 sketches collide. This
means, while there are multiple feature bundles that need to
be described, each with several sketches, only very few sket-
ches are needed per bundle to achieve a high probability to
retrieve similar sets. This keeps the memory requirements
for the indexing low. Further redundancy is added as images
contain multiple bundles that may overlap. If some bundles
do not match (collide) across images, there is the chance
that other bundles in the same images collide.

Bundling Strategy. The bundling strategy N(x;) we use is
based on the intuition that features which are spatially close
to each other are likely to describe the same object. That
is, given a central feature we bundle it with its direct spa-
tial neighbors. We require that at least two other features
are present in its neighborhood and that these must be on a
similar scale. This is in line with the observation that true



feature correspondences are often at the same scale [6]. It
also rules out features without good neighbors and decreases
the number of bundles even below the number of local fea-
tures in an image. Thus, each feature that is closer to a
given central feature x; than a given cut-off radius rmqz is
included in the respective bundle b(x;): The radius Tmae is
chosen relative to the scale (patch size) of the central fea-
ture s;. The minimum and maximum scales Smin and Smaz
control the scale band considered for determining the neigh-
bors relative to the scale of the central feature. Figure 1
shows the bundling criterion for smin = 0.5, Smaez = 2.0 and
Tmae = 1.0 (red circle = radius of the central feature itself).

Implementation. The features within a certain distance to
a central feature are efficiently determined by orthogonal
range search techniques like kd-trees or range trees which
allow sub-linear search once all coordinates are indexed.
Also, we use randomizing hash functions instead of pre-
computed permutation tables to compute the hashes. These
hash functions return a uniformly drawn random value de-
terministically determined by the given visual word and a
seed that is kept fixed. This implementation is both substan-
tially more memory efficient and faster than lookup tables.

Adjustable Search. The representation of bundles by mul-
tiple sketches has an advantageous side-effect: it facilitates
a search tunable from high precision to high recall without
post-retrieval steps or redundant indexing. Once bundles
have been indexed with k sketches per bundle, the strictness
of the search may be changed by varying the number of sket-
ches at query time from 1...k. As the sketch collision prob-
ability is proportional to the set overlap, sets (=bundles)
that have a high overlap with the query will be retrieved
earlier than bundles with smaller overlap. Thus, by varying
the number of query sketches one can adjust the strictness
of the search (see Table 1: mean precision mP and mean re-
call mR change with varying #sketches). As the i-th sketch
was inserted into the i-th hash table, querying sketches from
1...7 will yield only bundles were the corresponding sketches
and hash functions in tables 1...i agreed at least once.

3.3 Ranking and Filtering

Once the images which share similar bundles with the
query are determined, they may be ranked by their similarity
to the query. One possibility is to compute a similarity based
on the number of matching bundles between these images.

However, a ranking based on the cosine similarity between
the full bag-of-words histogram of the query image and the
retrieved images performs significantly better than a ranking
based on the sketch collision counts, as it is difficult to derive
a good measure for image similarity based on a few collisions
only. Thus, in our experiments we rank all retrieval results
by the cosine similarity between the bag-of-words histograms
describing the full images.

In other words, the retrieval by feature bundles is effec-
tively a filtering step: The bundles are used to quickly fetch
a small set of images that are very likely relevant. These im-
ages are then ranked by the cosine similarity between bag-
of-words histograms [17] obtained with a vocabulary of 1M
words (see Section 3.4.3). We also address the problem of
visual word burstiness by taking the square root of each tf-
idf histogram entry as proposed in [7]. This is important for
logo recognition as logos often consist of text and text-like
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elements which are known to be prone to yield repeated vi-
sual words (“visual words bursts”). The small response ratio
of the retrieval with bundles is a major benefit: Small result
sets of high precision can be processed quickly even with
sophisticated re-ranking methods.

3.4 Experiments

3.4.1 Dataset

The dataset we chose to evaluate our logo retrieval ap-
proach is FlickrLogos-32. It consists of 32 classes of brand
logos [16]. Compared to other well-known datasets suited
for image retrieval, e.g. Oxford buildings, images of a simi-
lar class in FlickrLogos-32 share much smaller visually sim-
ilar regions. For instance, the average object size of the 55
query images (annotated in the ground truth) of the Oxford
dataset is 38% of the total area of the image (median: 28%)
while the average object size in the test set of the FlickrLogos
dataset is only 9% (median: 5%) of the whole image. As the
retrieval of the Oxford buildings is sometimes coined “object
retrieval”, the retrieval task on the FlickrLogos dataset can
be considered as “small object retrieval”.

The dataset is split into three disjunct subsets. For each
logo class, we have 10 train images, 30 validation images, and
30 test images - each containing at least one instance of the
respective logo. For both validation and test set the dataset
also provides a set of 3000 negative (logo-free) images.

This logo dataset is interesting for the evaluation of small
object retrieval and classification since it features logos that
can be considered as rigid 2-D objects with an approximately
planar surface. The difficulty arises from the great variance
of object sizes, from tiny logos in the background to image-
filling views. Other challenges are perspective tilt and for
classification eventually the task of multi-class recognition.

Our evaluation protocol is as follows: All images in the
training and validation set, including those that do not con-
tain any logo are indexed by the respective method (In total:
4280 images). The 960 images in the test set which do show
a logo (given by the ground truth) are then used as queries to
determine the most similar images from the training and val-
idation set. The respective retrieval results are then ranked
by the cosine similarity (see Section 3.3).

3.4.2 Visual Features

For all of our experiments we used SIF'I" descriptors com-
puted from interest points found by the Difference-of-Gaus
sian detector. To quantize the descriptor vectors to visual
words we use approximate k-means which employs the same
k-means iterations as standard k-means but replaces the ex-
act distance computations by approximated ones. We use
a forest of 8 randomized kd-trees to index the visual word
centers [12]. This kd-forest then allows to perform approxi-
mate nearest neighbor search to find the nearest cluster for
a descriptor vector both during clustering as well as when
quantizing descriptor vectors to single visual words. The
vocabulary and IDF weights have been computed with data
from the training and validation set of FlickrLogos-32 only.

3.4.3 Evaluation

As a retrieval system should have both high precision and
high recall, we measure the retrieval performance by mean
average precision (mAP) which describes the area under the
precision-recall curve. A system will only gain high mAP
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Figure 3: Retrieval score (mAP) for several bag-of-
words variants on the FlickrLogos-32 dataset.

scores if both precision and recall are high. Here, the AP
is computed as AP = Zi\le %(PZ + Pi—1) - (R; — Ri—1) with
Ry = 0, Py = 1 where P;, R; denote precision/recall at the
i-th position in the retrieved list.

The response ratio (RR) measures the retrieval efficiency.
It describes the number of retrieved images in relation to
the database size. The higher the response ratio the more
images are in the result list, which is usually post-processed
or verified by computationally expensive methods. A low
response ratio will thus increase the overall efficiency of the
search.

The precision among the top-ranked images is measured
by the average top 4 score (Top4) defined as average number
of correctly retrieved images among the top 4 results.

Bag-of-words. As baseline on this particular dataset we
show the performance of approaches based purely on the co-
sine similarity between bag-of-words. Thus, we evaluate the
retrieval performance of a plain bag-of-words search with
varying vocabularies and varying patch sizes of the descrip-
tors. We are especially interested in the impact of extremely
large visual vocabularies on the performance. Thus, we vary
the vocabularies from 10,000 (10K) to 4,000,000 (4M) words.

The results are shown in Figure 3. In [15] we have al-
ready shown that IDF-weighting is always beneficial in the
bag-of-words framework, even for large vocabularies greater
than 1 million words. Thus tf-idf weighting was used in
all cases. As found in prior works, large vocabulary show
significantly better performance. The peak is consistently
at 500K/1M words. The patch size that is described by
a SIFT descriptor depends on the scale but is also con-
trolled by a magnification factor m. We further test how
this magnifier changes the performance. The best perfor-
mance is obtained with descriptors computed with a mag-
nifier of m = 3 as in Lowe’s work. In addition we com-
pare the performance of bag-of-words based on standard
SIFT with that of the relatively new RootSIFT variant [2].
Clearly, the bag-of-words based on RootSIFT outperforms
the SIF'T-based bag-of-words. Finally, the burstiness mea-
sure proposed in [7] where the square root is taken for each
element of the tf-idf weighted histogram further improves the
retrieval performance (denoted as “tf-idf-sqrt”in Figure 3) as
it down-weights repeating and thus less informative visual
words (“bursts”).

For further experiments we therefore use visual words
computed from RootSIFT descriptors and re-rank the re-
sults retrieved by feature bundles by the cosine similarity
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between bag-of-words histograms with square-rooted tf-idf
weights. For re-ranking the best-performing vocabulary of
1M words is used, disregarding which vocabulary was used
when building the feature bundles.

Feature Bundles. In order to find the best bundle configu-
rations we have performed extensive evaluations on the pa-
rameters of the bundle configuration. Due to limited space,
we cannot show a detailed evaluation for each of these pa-
rameters. Instead, we report the best-performing bundle
configuration (with respect to mAP) in Table 1. Similar to
bag-of-words the bundles profit from large vocabularies, but
the peak is at 200K-500K words. More importantly, the
bundles are on par with bag-of-words, but have an order of
magnitude lower response ratio (RR) as shown in Table 1.

Note that we re-rank the result lists determined by bundle
min-hashing by the cosine similarity as given by the bag-of-
words model. As the bundling is by definition only able
to find correspondences between images that share visual
words, the result set of the retrieval by feature bundles is
a subset of the result set obtained with bag-of-words re-
trieval. This clearly demonstrates the discriminative power
of feature bundles for efficient filtering before more expen-
sive post-retrieval steps are applied to the result set.

4. FAST RE-RANKING: 1P-WGC-RANSAC

In order to ensure that the top retrieved images correctly
show the query object we employ a spatial verification step
on the list of retrieved images. The gold standard for this
purpose is RANSAC. Our approach is based on a variant
that uses single feature correspondences to estimate a trans-
formation between two images [13]. The associated scale
and dominant orientation of the two local features of each
correspondence is used to estimate a similarity transform
(4 degrees-of-freedom with translation, rotation and uni-
form scaling). The major benefit is that a single corre-
spondence generates a hypothesis. Evaluating all these cor-
respondences makes this procedure deterministic, fast and
robust to small inlier ratios. The top 10 hypothesis with
the highest score (determined by the symmetric transfer
error and truncated quadratic cost function as in [9]) are
kept for further refinement. If the top hypothesis have more
than 15 inliers these are then refined by a local optimization
(LO) step that estimates a fully projective transformation
between images via least-median-of-squares.

While RANSAC is in general considered as slow and costly
this is not entirely true. In fact we found that most of the
time was spent for the projective re-estimation. Moreover,
while this refinement improves the visual quality of the es-
timated transformation it has little effect on the induced
ranking. Thus, we propose a new variant 1P-WGC-RANSAC
without subsequent LO step that is faster than a non-wac-
constrained RANSAC and much faster than a variant estimat-
ing a fully projective transformation between images.

For 1P-wGC-RANSAC, a weak geometric consistency con-
straint (WGC) is imposed. Only correspondences from fea-
tures with orientations and scales that are consistent with
the estimated transformation may be scored as inliers. We
found that this constraint has little impact on the quality
of the re-ranking. However, it acts as filtering that can
be employed before the inliers are determined. If a fea-
ture correspondence violates the WGC constraint it is di-
rectly treated as outlier. Thus, the error function within



##sketches | Smin | Smazx | Tmaz Voc. mAP | AvgTop4 mP mR RR Z#bundles rel. storage
bag-of-words, tf-idf-sqrt weighting | 200K || 0.510 2.88 0.010 | 0.952 | 0.912 | 2468.1 words 1.0
bag-of-words, tf-idf-sqrt weighting | 500K || 0.545 3.06 0.011 | 0.932 | 0.845 | 2468.1 words 1.0
bag-of-words, tf-idf-sqrt weighting 1M || 0.545 3.16 0.012 | 0.911 | 0.763 | 2468.1 words 1.0

4 0.5 | 2.0 1.0 200K || 0.554 3.14 0.317 | 0.639 | 0.025 1640.9 2.66

3 0.5 | 2.0 1.0 200K || 0.545 3.13 0.338 | 0.623 | 0.022 1640.9 1.99

2 0.5 | 2.0 1.0 200K || 0.527 3.09 0.367 | 0.592 | 0.018 1640.9 1.33

1 0.5 | 2.0 1.0 200K || 0.479 3.04 0.423 | 0.520 | 0.012 1640.9 0.66

Table 1: Comparison of bag-of-words retrieval with Bundle Min-Hashing: The upper part shows three differ-
ent bag-of-words retrieval runs with corresponding scores. The lower part contains the bundle configuration
that resulted in the highest mAP for 1, 2, 3 and 4 sketches per bundle. The columns Smin, Smazrs Tmaez and
Voc. denote the bundling parameters (as described in Section 3.2) and the vocabulary size. The scores follow
in the order of mean Average Precision, average top 4 score, mean precision, mean recall and response ratio.
The column g#bundles denotes the average number of bundles stored in the hash table per image. The last
column shows the number of hash table entries (sketches) relative to the number of visual words per image.

the RANSAC framework is speeded up as there is no need to Method Voc | mAP | Time
compute the perspective mapping for these false correspon- Philbin et al.[13], bow 100K | 0.535 | —
dences. Here, we use the following constraint: scale change Philbin et al.[13], bow+SP 100K | 0.597 | —
must be in [0.5,2.0] and angles must differ less than 30°. bow, tf-idf, SIFT 100K | 0.571 —
We compare our approach to that of Philbin et al. [13] and 1P-RANSAC, incl. LO 100K | 0.678 | 160s
Arandjelovic et al. [2] on the Oxford5K dataset [13] following IP-RANSAC, no LO 100K | 0.680 | 72s
the common test protocol: The top 1000 retrieval results 1P-WGC-RANSAC, incl. LO 100K | 0.693 | 115s
per query are re-ranked with an early stop if 20 images in a 1P-WGC-RANSAC, 1o LO 100K | 0.692 | 53s
row could not be verified successfully. Images are scored by Philbin et al.[13], bow 1M |0.618| -
the sum of the IDF weights of all inlier words and verified Philbin et al.[13], bow+SP IM | 0.645| —
images are placed above unverified images in the result list. Arandjelovic et al.[2] SIFT, bow 1M | 0.636 | —
The results are shown in Table 2. IHere, “SP” and “RANSAC” Arandjelovic et al.[2] SIFT, bow+SP | 1M |0.672| —
denote that spatial re-ranking was performed. bow, tf-idf, SIFT 1M |0.647 | —
One can see that our implementation (using DoG-SIFT) 1P-RANSAGC, incl. LO 1M |[0.712 | 54s
yields slightly higher (1M words) or even significantly higher 1P-RANSAC, no LO 1M [0.711 | 15s
scores (100K words) than that of Philbin et al. [13] (using 1P-WGC-RANSAC, incl. LO 1M | 0.704 | 50s
Hessian-affine SIFT). Quite surprisingly, the performance af- 1P-WGC-RANSAC, no LO 1M [0.703 | 12s
ter re-ranking with the smaller vocabulary of 100K words is Arandjelovic et al.[2] RootSIFT, bow M 1 0.683 —
close to the one with 1M words. This demonstrates that the Arandjelovic et al.[2] RootSIFT, bow+SP | 1M | 0.720 | —
proposed scheme is able to deal with a small vocabulary, its bow, ti-idf, RootSIET ™ 10675 —
lessldi§criminavtive clorrespondences and small inlier ratios. 1P-RANSAC, incl. LO 1M | o728 ] 92s
Similar on the FlickrLogos-32 dataset (see Table 3): The 1P-RANSAC, no LO M | 0729 17s
spatial verification of the top 200 images further improves 1P-WGC-RANSAC, incl. LO M 07231 55s
the result as well. For both datasets the projective re- 1P-WGC-RANSAC, 110 LO % IM o723 | 13s

estimation does not improve the performance. It further
refines the homography but is not able to discard additional
false positives. Most likely a simple 4-dof geometric con-
straint for re-ranking is sufficient to filter out false positives.

fTTtlllis ul?ﬁder}inesl thﬁt re}—lranking cilges not require to estimate Method Voc. mAP Time
Wy allihe/projective Romograp iies. . bow, ti-idf-sqrt 100K | 0.448 -

To measure the time we performed all experiments on 1P-RANSAC. incl. 1O 100K 0.513 053¢
the same machine using 1 thread for execution of our C++ 1P-RAN§ACH noIL.,O 100K 0';)1:3 3{875
program and measured the wall time as median over 10 runs. 1P-WGC—RA’NSAC incl. Lo 100K 0’ 510 7318
In summary the WGC-constrained 1-point RANSAC without 1P—WGC-RANSAC’ o 1;0 100K 0' 510 325
LO is about 30% faster than without the WGC constraint, — : -

. . . bow, tf-idf-sqrt 1M 0.545 —

has slightly better performance for small vocabularies and . )
. . 1P-RANSAC, incl. LO 1M 0.565 510s
is much faster than with LO refinement. Its throughput IP-RANSAC Lo IM 0.565 153
is extremely high (e.g. see % in Table 2: reranked 5813 B » o LO ’ 5
. . . . 1P-WGC-RANSAC, incl. LO 1M 0.568 447s
images A~ 440 images/s &~ 2.3 ms per image, single-threaded, LP-WGO-RANSAC Lo IM 0563 11
including I/O) making it suitable for real-time applications. - - , 10 : 5

5. WARPING

While current local features are by design scale invariant
and also somewhat robust to changes in lighting and im-
age noise, it is well known that local features such as STFT

Table 2: Comparison of spatial re-ranking results for
the Oxford5K dataset following the protocol in [13].

Table 3: FlickrLogos-32: Spatial re-ranking results.

are particularly susceptible to changes in perspective. With
increasing vocabulary size this effect gets more severe: de-
scriptors computed from image patches that are actually
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Figure 4: Top: Synthetic query expansion. Bottom:
Synthetic database augmentation.

identical but seen from a different perspective are quantized
to different - and therefore unrelated - visual words.

There exist several partial solutions to this problem. The
most popular is query expansion (QE) where the top-ranked
retrieved images are exploited to augment the original query.
The augmented query is then re-issued in order to retrieve
images that have not been found in the first round. Con-
sequently, query expansion fails - and causes the results to
be worse than without - if the top-retrieved images are false
positives. This may happen if the query is actually challeng-
ing or only few true positives are contained in the database.

We propose a different method to overcome this problem,
especially suited for small objects where it is crucial to find
the few true matching visual words. It is a purely data-
driven approach that synthesizes new images from existing
images by applying transformations to the image itself, a
process often called “warping”. There are different ways to
exploit image warping:

1. Synthetic Query Ezpansion (SynQE):
Multiple versions of the query image may be synthe-
sized simulating the query as it may be seen under
different conditions and perspectives. Each image is
then treated as an individual query; their correspond-
ing result lists are then merged into a single list. This
method is illustrated in the upper half of Figure 4.

2. Synthetic Database Augmentation (SynAUG):
The database is augmented by adding new generated
images synthesized from each original database image.
This is especially useful if it is desired that a query
containing certain predefined objects - such as logos -
should find the true results with high probability from
a limited set of manually managed reference images.
This method is illustrated in the lower half of Figure 4.

3. SynQE + SynAUG: The combination of (1) and (2).
This can be seen as counterpart to ASIFT [11] working
with discrete visual words and an inverted index or
another database instead of comparing raw descriptors
between two images.
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Figure 5: FlickrLogos-32: Impact of synthetic query
expansion and database augmentation on bag-of-
word retrieval performance.

We choose the following simple transformations to syn-
thesize new images: Sy(a), Sy(a), Sz(a)R(45°)Sz(a) and
Sz (a)R(—45°)Sz(ar). Sg(a) denotes the matrix for scaling
by factor a in x-direction, Sy (a) analog in y-direction and
R(45°) denotes the matrix for rotation by 45°. The last two
transformations are opposed shearings along x direction.
The inverse transformations of the former four are added as
well, resulting in a total of eight transformations.

For SynQE multiple queries are issued to the index yield-
ing multiple separate result lists. These are merged sub-
sequently: images contained in multiple result lists get the
maximum of each individual cosine similarity score as pro-
posed in [1]. Similar for SynAUG: once a synthetic image is
found it votes with its score for the original image and the
maximum of all votes is taken as final similarity measure.

We test these techniques with a bag-of-words retrieval as
described in Section 3.4.3 (RootSIFT, tf-idf-sqrt) and a vo-
cabulary of 1M and 2M words. The scaling parameter «
is varied from 0.95 to 0.5 to test which group of transfor-
mations works best for simulating the perspective change in
practice. The corresponding results are shown in Figure 5.

Both SynQE and SynAUG improve the retrieval perfor-
mance with a maximum at « = 0.7/0.8. The combination
of both, i.e. SynQE+SynAUG slightly increases the per-
formance further. An even larger visual vocabulary of 2M
words increases the performance dramatically over its base-
line (11.6%) but somewhat surprisingly only slightly above
those of the vocabulary with 1M words.

To summarize, the obtained results underline that discrete
visual descriptions benefit from synthetic image generation.
In the following we refer to the transformation group with
a = 0.7 when referring to SynQE and SynAUG.

6. LOGO RECOGNITION

Now that we have discussed visual features, vocabularies,
feature bundling, re-ranking and synthetic query expansion
we present our final logo recognition system:

Indexing. The logo classes that our system should be able
to detect are described by a set of images showing these lo-
gos in various poses. We refer to this set as reference set
and use the images within the training and validation set
of the FlickrLogos-32 dataset for this purpose. Feature bun-
dles are computed for each image in the reference set and in-
serted into the hash table associated with the information to
which class a reference image belongs. Optionally, SynAUG
is applied: Artificially generated transformed versions of the
original images are used to augment to the reference set.

!These are equivalent to the two shearings along y-direction.



Method Precision | Recall
Romberg et al. [16] 0.98 0.61
Revaud et al. [14] > 0.98 0.73
bag-of-words, 100K 0.988 0.674
bag-of-words, 1M 0.991 0.784
bag-of-words, 1M, SP 0.996 0.813
bag-of-words, 1M, SP+SynQE 0.994 0.826
bag-of-words, 1M, SP4+SynAUG 0.996 0.825
BmH, 200K, collision count 0.688 0.411
BmH, 200K, CosSim 0.987 0.791
BmH, 1M, collision count 0.888 0.627
BmH, 1M, CosSim 0.991 0.803
BmH, 1M, CosSim+SP 0.996 0.818
BmH, 1M, SP only 0.996 0.809
BmH, 1M, CosSim+SP+SynQE 0.999 0.832
BmH, 1M, CosSim+SP+SynAUG 0.996 0.829

Table 4: FlickrLogos-32: Logo recognition results.

Testing. An image is being tested for the presence of any
of the logo classes by computing feature bundles and per-
forming lookups in the hash table to determine the refer-
ence images that share the same bundles. The retrieved
list of images is then re-ranked as described in Section 3.3.
Optionally, SynQE and SynAUG may be applied: Multiple
transformed versions of the original query image are used to
query the database multiple times or the database is aug-
mented with synthetic images as described in Section 5. Af-
terwards the fast spatial re-ranking with 1P-WGC-RANSAC
without projective refinement (see Section 4) is applied to
the retrieved list. Finally a logo instance is classified by a k-
nn classifier: A logo of the class c is considered to be present
if the majority of the top k retrieved images is of class ¢. In
our experiments we chose k = 5.

Experimental Setup. The evaluation protocol is identical
to that in [16]: The training and validation set including
non-logo images are indexed by the respective method. The
whole test set including logo and logo-free images (3960 im-
ages) is then used to compute the classification scores.

Results. Table 4 shows the obtained results for various ap-
proaches. Revaud et al. use a bag-of-words-based approach
coupled with learned weights that down-weight visual words
that appear across different classes [14]. It can be seen that
a bag-of-words-based search as described in Section 3.4.3
followed by 5-nn majority classification already outperforms
this more elaborate approach significantly. In fact, our ap-
proach using bag-of-words to retrieve the logos and perform-
ing a majority vote among the top 5 retrieved images already
outperforms the best results in the literature so far.
Bundle Min-Hashing also outperforms the former scores
out of the box. The difference between a ranking based on
sketch collision counts (“collision count) and a ranking based
on cosine similarity ("CosSim”) makes clear that the result
lists obtained by BmH must be re-ranked to ensure that the
top-most images are indeed the most similar ones. We com-
pared BmH with 200K words (highest mAP for BmH only,
see Table 1) with a larger vocabulary of 1M words (slightly
lower mAP). The preferable vocabulary of 1M words slightly
improves the results but also reduces the complexity of the
system as it eliminates the need for two different vocabu-
laries for bundling and re-ranking. Moreover, the response
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ratio of this system is 100 times smaller (RR = 0.0096 for
BmH with 1M words) than that of bag-of-words.

Finally, it can be seen that both SynQE and SynAUG
consistently improve the classification performance for both
bag-of-words and Bundle Min-Hashing. As there is actu-
ally little difference SynAUG is the preferred method as the
database augmentation can be performed off-line.

7. CONCLUSION

In this work we introduced a robust logo recognition tech-
nique based on finding local feature bundles in a database
of reference images. This approach in combination with the
new 1P-WGC-RANSAC variant for extremely fast re-ranking
as well as synthetic query expansion and synthetic database
augmentation significantly outperforms existing approaches.
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