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ABSTRACT

We present an approach for automatically devising object
annotations in images. Thus, given a set of images which
are known to contain a common object, our goal is to find
a bounding box for each image which tightly encloses the
object. In contrast to regular object detection, we do not
assume any previous manual annotations except for binary
global image labels. We first use a discriminative color
model for initializing our algorithm by very coarse bounding
box estimations. We then narrow down these boxes using
visual words computed from HOG features. Finally, we ap-
ply an iterative algorithm which trains a SVM model based
on bag-of-visual-words histograms. During each iteration,
the model is used to find better bounding boxes which can
be done efficiently by branch and bound. The new bounding
boxes are then used to retrain the model. We evaluate our
approach for several different classes of publicly available
datasets and show that we obtain promising results.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION

Object detection is an important step towards automatic
image understanding. Almost all current object detection
frameworks require a training and validation set with ob-
ject annotations. The most common form of object anno-
tations are labeled rectangular regions. However, in many
cases manual object annotations are not (sufficiently) avail-
able for training, especially in real world datasets. Labeling
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Figure 1: A sample result for an image from the FlickrLogos-
32 dataset: The left image shows the result of applying a
mined color model (dark green area), a HOG model (dark
blue area), and the combination of both (cyan area). The
right image shows the final result of our algorithm (green
box, white box is the ground truth annotation).

them manually is very tedious. In some cases it is even in-
acceptable due to the nature of the positive class, e.g. for
adult images which are needed for training a filtering al-
gorithm. Contrary to these difficulties, it is relatively easy
today to collect positive images for many object classes via
the Internet. Our goal is to determine object annotations
automatically from such positive image sets.

Therefore, we present an approach to automatically deter-
mine object annotations by finding regularities among im-
ages in a set of positive images (images showing instances of
the desired object class), which are not present in a set of
negative images (images without instances of the desired ob-
ject class). We only assume a single global binary label per
image. Our motivation is to provide a preprocessing step for
common object detection frameworks, which require object
annotations in the form of rectangular bounding boxes.

We use a two-stage algorithm for initializing and then nar-
rowing down bounding boxes within a set of positive images.
The initializing step of our algorithm finds regions of interest
(ROI) based on a discriminative color model and discrimi-
native visual words computed from gradient features. The
second step builds bag-of-visual-words histograms from the
initial ROIs and trains a SVM model which is then re-applied
to the training set in order to improve the bounding boxes.

Figure 1 shows an example result in order to illustrate
our goal and the two stages of our algorithm. In the left
image, the initialization of our algorithm by a coarse color
model and a gradient feature-based model is shown. The



right image shows the improved bounding box found by our
algorithm.

Since we do not use manual annotations, we require all
instances of the wanted object to have visual features in
common, namely color and gradient features. Also, the neg-
ative dataset must be a representative background dataset,
e.g. randomly downloaded images from the Internet.

We conduct experiments on six classes of the FlickrLogos-
32 [10] dataset for which these assumptions hold. Also, we
evaluate our approach on the Oxford 17 Flowers dataset [8].

2. RELATED WORK

As mentioned in the introduction, our algorithm consists
of two main stages. The first stage is an initialization step
which includes building a color model from binary image
labels. The color model itself is a color histogram which
corresponds to the model suggested by Jones and Rehg [6].
However, since Jones and Rehg construct their histogram
from pixel-wise annotations which we do not have, we follow
the approach by Ries and Lienhart [9] which only requires
weakly labeled data (i.e. binary image labels).

The second stage of our algorithm utilizes bag-of-visual-
words histograms as for instance proposed in [3]. These
histograms are built from clustered histograms of oriented
gradients (IIOG) which are recently among the most popular
local features. HOG features were first introduced in [1].

Since our algorithm requires rapid exhaustive maximum
search within our training images based on visual-word his-
tograms, we propose using the efficient sub window search
algorithm (ESS) by Lampert [7]. The ESS algorithm is
based on linear support vector machines (SVM) which we
implement using SVMLight by Joachims [5].

Our algorithm was inspired by the recent state-of-the art
object detection algorithm by Felzenszwalb et al. [4]. Felzen-
szwalb et al. also try to improve the regions of interest
within the positive training images iteratively. However,
they aim for correcting inaccuracies among the readily pro-
vided manual annotations while we try to find regions of
interest from scratch.

3. PROBLEM AND APPROACH

Given a representative set P of images with instances and
a set N of images without instances of a given object class,
we aim to find a bounding box for each image of the posi-
tive dataset P which describes the position of the instance
of the object class all images in P have in common. We
do not assume any further annotations. However, a few as-
sumptions about the object instances must hold: (1) The
objects must have common visual features across the posi-
tive images, which cannot be found in the negative set. (2)
In the positive images the background must be visually more
diverse than the object instances.

For our approach these features are color and image gra-
dients. Thus the objects must have a distinct color scheme
and some visual structures in common, which we can catch
with gradient-based features. Our negative images may be
random images from an image repository as a few noisy im-
ages will not affect our approach.

Our goal is to estimate a rectangular bounding box 7; for
each image 7 in the positive image set. A bounding box 7;
(@i, 9, wi, hi) is a rectangle with upper left corner (z;, )7,
width w;, and height h;, specified in image coordinates. For
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simplicity we only search for the single best rectangle 7; in
each image i, even if the image shows multiple instances of
the wanted object. However, all of the methods we use can
be extended to multiple instances per image.

Let r; be the optimal (i.e. the ground truth) rectangle in
image i from set P. Then, our goal is to find an rectangle 7;
which maximizes the overlap o(7i, ;) between 7; and r; for
all images:

f,;ﬂ?"i
fiUTi

(1)

This overlap definition is a common quality measure for
bounding boxes and is for instance used in the Pascal VOC
challenge [2]. If an image shows multiple object instances, r;
is considered to be the one instance with which our estima-
tion produces the best overlap. Remember that the ground
truth r; is only used for evaluation.

Our approach to this problem consists of two major stages.
We first find initial bounding boxes based on color and gradi-
ent features. We thus estimate a color model for the wanted
object class from image set P and then use it to create a
coarse region of interest (ROI) for each image in P. Based
on these ROIs, we determine local gradient features which
are likely to describe the wanted object the same way we
determined positive colors. The bounding boxes are then
narrowed down by combining the responses of both models.

Afterwards, we train a linear SVM model on Bag-of-Visual-
Words histograms for these bounding boxes. This model is
used to further improve the ROIs within our images. For
this purpose, we iteratively re-apply the trained SVM to the
training data in order to get better training examples from
improved bounding boxes for the following iteration. The
following sections describe each individual step in detail.

O(f‘z, T’i) =

4. INITIALIZATION

The first step of our algorithm is finding initial bounding
boxes for each positive training image. We first apply a
color model for a coarse first estimation and then use HOG
features to improve these estimations.

4.1 Color models from global image labels

We first initialize our regions of interest based on a color
model. Thus, we first need to build a model which discrim-
inates positive colors (object colors) from negative colors
(background colors). In other words, we need a binary deci-
sion function h.(pj) € [0, 1] which determines for each pixel
P;, if its color ¢; belongs to the wanted object.

Usually, such color models are either parametric functions
on some color space or histograms of color occurrence fre-
quencies [6] which are then thresholded. We chose the latter
variant (with 323 bins in YCbCr color space), since color his-
tograms provide a detailed partitioning of the color space at
the expense of requiring more storage space. In [9], Ries and
Lienhart describe a method for creating a color histogram-
based model from global image labels only. Thus, we do not
have to violate our assumption about not having manual
annotations of regions of interest.

The main idea of [9] is to statistically determine which col-
ors appear regularly in positive images and less regularly in
negative images. Let fn(c) and fp(c) be the relative num-
bers of negative images and positive images in which color
c occurs. The underlying assumption is that the relative
occurrence frequency fn(c) of a color ¢ in a set of random



negative images is representative for any given set of images
which do not feature any particular common object. Thus,
the occurrence of the respective color in any random back-
ground image is assumed to be normally distributed around
the relative occurrence fy(c) observed in the negative im-
ages. If a color not only appears as a background color in a
set of positive images, it will occur significantly more often
as expected and therefore can be considered a positive color.

Thus, if fp(c) < fn(c), color ¢ is considered a negative
color. Otherwise, the probability P(fp(c)|—object) of ¢ be-
ing a negative color if it is observed in fp(c) of the posi-
tive images is compared against a threshold .. The proba-
bility P(fp(c)|—object) is a normal distribution over fp(c)
with p = fn(c) and 0® = fn(c)(1 — fn(c)). Thus, the
larger the difference between fn(c) and fp(c) the smaller
P(fp(c)|—object).

As suggested in [9] , we use the 0.97 quantile for 0., i.e. we
adaptively select the top colors for each class. This threshold
is relatively strict, however, a flood fill algorithm (seeded at
pixels where h(c) = 1) is used on the positive images in order
to extend the color model to chromatically and spatially
related colors. Finally, we can use our model to determine
for a given pixel p; = (z;,y;)" with color ¢; within an image
if it is a positive pixel:

he(py) = {(1) if P(f}i(Cj)'ﬁObject) < 0. @)
otherwise

Note that for simplicity, we re-wrote the respective deci-
sion function h from [9] by aggregating all constants into 6.
and by making it a function on a pixel p;.

Now we have a set X; = {p;|hc(p;j) = 1} of color-based
positive pixel locations in a given image i. Based on this
set we compute an initial bounding box as described in the
following section.

4.2 Finding Bounding Boxes based on positive
pixels

After creating an initial model which assigns a binary
value to each pixel within an image, we can use the posi-
tive pixels to form a bounding box. We assume that the
majority of positive pixels is located on the wanted object
and thus close to its center while only a few are at a large
distance of the object. Therefore, we expect the distribution
which generated the positive pixels to be a normal distribu-
tion centered at the wanted object’s centroid. We thus fit a
normal distribution into the two-dimensional distribution of
positive pixels as follows.

We first compute the center pixel p; = (i, m,y)T of the
object as the mean value of all positive pixels X; and the
corresponding standard deviations o = (04,4, 04,)7. Our
bounding box coordinates 7; = (x;,y:,w;, h;) are then

Ti = Hiy — 0ix(1 4 8)
Yi = iy — iy (1 +6)
wi = 2042(1 4 B)
hi; = 20’1’&(1 + ﬁ)

®3)

The factor B is used to enlarge the bounding box. Ac-
cording to an exhaustive parameter sweep, 8 = 0.6 is a
good choice which we use for all experiments.

If the color model fails and does not find any positive
pixels, we use the full image for the following step, since we
know the object is present at some location in the image.
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(b) Pos. by color model

(d) Pos. by HOG

(f) Final box

(e) Pos. combined

Figure 2: Example for the initial bounding boxes. (a) shows
the original image, (b) the positive pixels found by the color
model as white pixels, (¢) the resulting bounding box based
on color model, (d) the positive pixels determined by HOG
features, (e) the combined model (i.e. ”AND” between (b)
and (d)), (f) final bounding box based on combined model.

Also note that we could use the same method for creating
multiple bounding boxes, by fitting a Gaussian mixture with
multiple peaks into the two-dimensional distribution of pos-
itive pixels using an EM algorithm. In this paper however,
we only examine the single-object problem.

While the color model described in the previous section
overall correctly identifies most positive pixels and a large
portion of negative pixels, it does not yield very accurate re-
gions of interest for multiple reasons. TFirst, positive colors
naturally also appear in the background. Second, for some
classes (e.g. brand logos) the actual wanted object may be
surrounded by a background area of the same color. Also,
there are obviously always a few noisy colors, i.e. false pos-
itive and false negative colors. Thus, if we use the color
model to find a ROI as described in the following section,
we usually ”overdetect” the object.

In figure 2, an example for the abovementioned problem
is shown. The wanted object (the brand logo) is detected
together with a larger background area due to false positive
detections (see figures 2b and 2c) which are difficult to avoid
by a color model. We therefore utilize a second feature which
is based on gradients in order to improve our initialization.

4.3 HOG-based models

Since the color model often produces false positive regions,
we add another feature to our initialization process. His-



tograms of oriented gradients (HOG) [1] model edge-based
information and are thus complementary to our color model.
We use an implementation of HOG which is analogous to
the implementation described in [4]. The HOG descriptor is
usually computed on a dense grid of cells. We set the cell
size to 8 pixels and concatenate groups of four neighboring
cells into a single feature vector in order to increase the ex-
pressiveness of a single feature as suggested in [1]. Since we
do not know the relative size of the wanted object within
a positive image, we extract HOG on multiple scales on a
scale space pyramid with scaling factor (27°-%)70-3,

We now use the HOG features in the same way as the
color model, thus we need to limit the infinite set of poten-
tial HOG features to a finite number of identifiable features.
This can be done by a Bag-of-Visual-Words (BOW) model.

A BOW model requires a Visual Dictionary which is a
finite set of prototypical visual features, the so-called visual
words. The visual words are created by extracting a large
number of visual features and clustering these features into
k groups. Each cluster is then represented by its cluster
id, thus the number of different local features is reduced to
k. For our experiments, we cluster the HOG features into
k = 1,000 visual words.

Since we now have a limited number of different features,
we can apply the same strategy we use for the initial color-
based bounding boxes. We simply count the relative num-
bers fp(w) and fn(w) of positive and negative images with
a given visual word w. However, since we are confident,
that the color model is very likely to return a region which
includes the actual object, we only count images for fp(w)
where w is found inside the color-based bounding box.

We then compute probability P(fp(w)|—object) analo-
gous to P(fp(c)|—object) in section 4.1 and use an equation
which is analogous to equation 2 in order to determine if a
HOG grid point p; is a positive pixel:

H (1) = {1 if P(fp(wi)|—object) < Oy (@)

0 otherwise

where w; is the visual word observed at grid point p;.
Since from h!, we do not obtain a decision at every possible
pixel location j, we define

1 it 3 hw(p) = 1A || pr = Py [I°< whog
hy = 705
(P) { 0 otherwise (%)

where wpoq4 is the width of one HOG cell and p; is a HOG
grid point for which h (pi) can be determined as described
above. This provides us with a binary map of positive and
negative pixels analogous to the color model.

In contrast to the color model, however, we must choose
a less strict threshold 6, since we cannot use an additional
flood fill algorithm on the HOG features. Besides, the num-
ber of different HOG features is far smaller than the number
of different colors. Thus, we use an adaptive threshold which
depends on the lowest value pyest of P(fp(w)|-object) found
for any word w. Empirically, we define 0, = 20 - ppest, i.e.
we use all visual words within a certain interval defined by
the best word with regards to their probability. Note that
this strategy ensures that if the visual words are not very
characteristic for a given class (i.e. if ppes: is large) we will
select a large number of visual words. Thus, a "bad” set of
visual words results in large areas of positive pixels which
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are neutral for the combined model explained below and do
not produce false negative pixels.

4.4 Combined Initialization

As mentioned above, our assumption is that the wanted
objects are characterized by both, distinct colors and dis-
tinct gradient features. Therefore, we expect to find positive
colors as well as positive visual words on the wanted object.
We thus now determine locations, where both are present
by applying a decision function which combines color and
gradient evidence at each pixel p; by

1 if he(p;) A hw(ps)

hpy) = {0 otherwise ©)

We now use updated pixel sets X; = {p;|h(p;) = 1} to
create new bounding boxes as described in section 4.2.

In figure 2, all stages of the initialization process are shown.
Figures 2b and 2c¢ show the positive pixels determined by
color model h. and the resulting bounding box. Figures 2d
and 2e show the positive pixels determined by the hog fea-
ture model h,, and the combined model h. Finally, figure 2f
shows the bounding box based on the positive pixels of the
combined model. Another example for the three components
of the initial model is shown in figure 1 (left).

The combined model stil tends to detect false positive
regions. We thus try to further improve our bounding boxes
with an iterative algorithm explained in the next section.

5. ITERATIVE ALGORITHM

In the previous sections we have explained how we create
an initial bounding box for each of our positive images based
on occurrence statistics of colors and HOG features. We now
want to show that we can use these initial bounding boxes
for a discriminative, iterative algorithm in order to further
improve the bounding boxes.

5.1 Representation of examples by BOW his-
tograms

At first glance, the nature of the classes we use for our
experiments (e.g. brand logos) indicates the usage of rigid
templates which are applied (enhanced by deformable ge-
ometric layouts) by state-of-the-art object detection algo-
rithms, for instance [4, 11]. Such templates basically consist
of given aspect ratios of horizontal and vertical cells.

However, we do not use manual annotations for regions
of interest and our initial bounding boxes which are cre-
ated by the initial models are often highly noisy. Thus, no
meaningful single aspect ratio can be selected because we
cannot expect to find similar HOG cells at similar relative
grid locations. Since the initial bounding boxes often de-
viate significantly from the actual object position, we also
cannot expect to learn a meaningful part representation.

These problems can be sidestepped to some extent (at
the expense of a much less specific model) by using BOW
histograms. A BOW histogram is an occurrence histogram
over the k clusters of our visual dictionary within a ROI. We
L1-normalize all BOW histograms in order to obtain relative
occurrence frequencies.

Therefore, bounding box #; of image 14 is represented by a
k-dimensional relative word occurrence histogram vector x;.
Thus, it is guaranteed that each bounding box is represented



by a vector of the same dimensionality k& which is indepen-
dent of the actual number of cells within the bounding box.

However, we still limit the set of aspect ratios we use to
model examples to a reasonable set. At the same time, we
only want to have training examples with approximately the
same number of HOG cells for comparability. We therefore
use a template set T consisting of templates for which we
define a constant minimum width and height ¢ € Z and a
maximum width and height 1.5¢:

T = {(w,h)|w,h € [c,1.5c] ANw - h ~ c- 1.5c} (7)

As a default value, we choose ¢ = 8. If we assume that
additional information about the absolute size of the images
or the usual relative sizes of the wanted objects is available,
we can adjust ¢ accordingly. For instance, for a dataset
which only consists of images with relatively large objects
(e.g. Oxford 17 Flowers) it is reasonable to increase c.

Note that vector x; can only be created for a template
rectangle which lives on the multi-scale HOG grid. The ini-
tial rectangle 7; j, created by our initial model h on the orig-
inal image scale, however, lives in image coordinates which
usually do not match the HOG grid. Thus, for representing
an arbitrary bounding box 7;, by a bounding box 7; on the
multi-scale HOG grid, we find the template rectangle #; in
scale space which best matches 7;;, with regards to overlap.
Histogram vector x; is then computed from 7; .

For our negative examples, we randomly sample valid
bounding boxes (i.e. rectangles which fit one of our tem-
plates on a random scale) from a set of m negative images.

Due to the inaccurate initial bounding boxes, all positive
examples include a number of noisy (negative) visual words.
We thus use a linear SVM classifier which is to some extent
robust to noisy input data. We expect our SVM classifier to
learn which visual words are found in most positive exam-
ples, while the remaining (non-object) words appear more
at random since they originate from background areas.

Another advantage of BOW models and linear SVMs is
that they allow applying an efficient algorithm for multi-
scale subwindow search.We propose using the Efficient Sub-
window Search (ESS) algorithm introduced by Lampert et
al. [7] which is explained in the following section.

5.2 Training and Detection

In this section we explain the classification method we
use and how we efficiently search for the best rectangles
within the positive images during each iteration. In the
first iteration of our algorithm, we perform SVM training
on the bounding boxes found by the initial model. For the
remaining iterations, we train our current new model on the
best detections found by the previous model.

The iterative algorithm terminates after a given number
of iterations or if the bounding boxes do not change any-
more between subsequent iterations. For our experiments,
we only use two iterations since our linear classifier does
not improve beyond a few iterations. The reason for apply-
ing the iterative algorithm, however, is mainly to show that
our initial models deliver bounding boxes which can be used
to train a discriminative classifier in an iterative fashion to
further improve the bounding boxes.

5.2.1 Training and Efficient Classification

We have a set of n positive BOW histograms x;,7 €
{0, ...,n} and m negative histograms x;,j € {0,...,m}. We
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now need to devise a decision function f(x;) which returns
a score value for an unknown example x; (i.e. the BOW
representation of an arbitrary rectangle r; of image [) in-
dicating either positive or negative classification. Since we
need to perform an exhaustive search for the best rectangle
in an image, we propose using an efficient search algorithm
analogous to the approach by Lampert et al. [7] which re-
quires a linear decision function. Thus, for f(x;) we use a

linear SVM model which is defined as

Fox) =B+ an(x,xx) (®)
k

where xj denotes the k-th training example (including
positive and negative examples), (-, -) is the scalar product,
and ay and S are constant weights and bias which have to be
learned. We use the SVM implementation by Joachims [5]
for learning the optimal a-weights. Note that for some train-
ing examples o = 0 since they are not selected as support
vectors during training. The bias # may be neglected since
it does not influence the maximum search explained below.

Each visual word v then obtains an individual weight w,:

Wy = > YkOkTho 9)
k

where xy, is the v-th entry of BOW histogram x;, (thus
the frequency of visual word v in the k — th training exam-
ple), and yi € {1,—1} is the respective image’s label.

Following Lampert et al., we now re-write the linear SVM
function 8 as a function on the respective rectangle r;, from
which x; was extracted, as follows

f('rl) :/8+ Z Wy,p

DPEPy

(10)

Where p denotes a two-dimensional point on the HOG
grid of image [ and Py, is the set of all points enclosed by
rectangle r;. Note that the function f(r;) is a function which
computes the sum over values within a given rectangle and
can thus be computed very rapidly for arbitrary rectangles
by using integral images.

5.2.2 Branch And Bound

Using integral images on visual word weights as described
above, we can evaluate the classification score of an arbitrary
rectangle with only four look-ups. Still, we have to evalu-
ate many possible rectangles, since we perform multi-scale
search with multiple templates. In order to further speed up
the search, we suggest utilizing a branch and bound search
strategy, also proposed by Lampert et al. [7]. The main idea
is computing a maximum quality (i.e. an upper bound) for
a set of potential rectangles in order to be able to dismiss
a large number of rectangles at a time instead of evaluating
cach rectangle individually. Since we use a linear SVM, we
can compute the upper bound based on per-point contribu-
tions and thus by using integral images as described above.

We first require a bounding function f(R) which is defined
on a set of rectangles R and has to fulfill two conditions.
First, f(R) must be an upper bound of f(r). Function f(R)
is an upper bound if its value is at least as large as the SVM
score of the best individual rectangle within R. Second,
f(R) must converge to f(R) = f(r) if R only contains r as
a single element. A valid bounding function, for which both
conditions hold is

FR) = fH(Ur) + £~ (nr) (11)



where f1(Ur) are the positive summands of f on the union
Ur of all rectangles in R and f~(Nr) are the negative sum-
mands of the intersection Nr of all rectangles in R. It is
relatively straightforward to show that f(R) is at least as
large as the SVM score of the best r € R and thus that the
function is a valid bound. For further details refer to [7].

Now we can efficiently search by branch and bound. Thus,
we first split the set of all possible rectangles into two disjoint
subsets and compute the bound of both sets. According to
their bounding function values, both sets are added to a
priority queue (where the set with the highest bound value
is on top). Then, we iteratively repeat this process for the
current top set of rectangles of the queue. When the top set
of rectangles in the priority queue only consists of one single
rectangle, we have found the globally optimal rectangle.

5.2.3 Using a predefined aspect ratio

Due to our scaling pyramid, we have much more small
candidate rectangles than large ones. Hence our approach
tends to prefer small boxes over large ones, since the train-
ing algorithm is more likely to select histograms from larger
scales as positive examples. Also, squared boxes which only
cover a principal part of the object are often preferred, since
our algorithm does not explicitly prohibit finding a common
partial object instead of the full wanted object.

If we however assume that we roughly know the actual
aspect ratio of the wanted object, we can use this informa-
tion in order to find better fitting bounding boxes based on
the ones we found. Thus, we apply an heuristic which only
requires defining the object as being "horizontal”, "vertical”,
or "squared” for each class. Based on this information, we
first enlarge the bounding box found by our SVM by 10% at
each edge and then transform the box into a horizontal or
vertical bounding box while preserving the area of the box.
For horizontal and vertical boxes we simply use an aspect
ratio of % or %, respectively. For the "squared” case we as-
sign a squared bounding box with roughly the same area as
the original rectangle.

6. EVALUATION

As mentioned in section 3, our goal is to find an opti-
mal bounding box with regards to overlap as defined in the
problem statement in equation 1. Thus, for evaluation we
use rectangular ground truth annotations r; for each pos-
itive image ¢. Given this annotation, we can compute an
overlap value for our estimated bounding box 7; for each
image. This enables us to plot an overlap-recall (OR) curve
which shows the relative number of images (the recall) in
which the overlap of our estimation surpasses a given value.
Since we only aim to find a single best bounding box for each
image, only the best overlapping ground truth rectangle is
counted for our evaluation.

Each plot shows the result after applying our color model
(labeled as "init color”). The results for the combined initial
model of color and HOG (equation 6) are shown as "init
color AND hog”. If we do not find a bounding box within
an image, we count overlap 0 for the respective model and
image. Note that in a detection scenario, one could simply
use the full image as a bounding box in this case in order not
to miss the object (given the fact that we already know the
image is positive). However, the overlap is then completely
independent from the quality of the model and depends from
the size of the object only.
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Figure 3: Overlap-recall curves for all six logo classes.

For clarity, we only show the result after the final itera-
tion of our iterative algorithm in our OR curves, labeled as
"SVM”. Each plot also provides the final result we obtain
if we apply our aspect ratio heuristic (see 5.2.3) after each
iteration (labeled "SVM asp”).

For each class, we also plot the best possible result labeled
as "max”. This curve shows the best overlap recall curve we
could reach if we always found the best overlapping rectangle
for each image in the search space. Note that a perfect
overlap score of 1.0 is very unlikely to be obtainable since
the annotations do not live on the HOG cell grid and also
the number of our templates (i.e. the different aspect ratios
we use for searching) is limited. Also note that the initial
models are not affected by these limitations.

6.1 FlickrLogos-32

We first test our approach on the same six classes from
FlickrLogos-32 [10] used in [9]: "DHL”, ”Aldi”, "Shell”, "Esso”,
"Coca Cola”, and "Pepsi”. These classes are selected in [9]
since they all have a distinct color scheme. Each class con-
sists of 70 positive images and FlickrLogos-32 also provides a
negative set with 6,000 images which we all use for creating
the initial model. For SVM training, we sample 5 random
bounding boxes (based on our set of templates) as negative



e
(e) Class "Shell” (f) Class "Esso”
Figure 4: One example result for each logo class. The dark
green rectangle indicates the bounding box found by the
color model, cyan shows the initial combined model, and
light green is the final result of our algorithm. The white
rectangle is the respective ground truth annotation which is
used to compute the overlap for our OR curves.

examples from each negative image. Since we hence have a
very unbalanced dataset, we weight the training examples
proportionally by factor m/n for the SVM training where
m is the number of negative examples and n is the number
of positive examples. In figure 3, we show our resulting OR
curves. A few qualitative examples are shown in figure 4.

The combined initial model outperforms the individual
color model for classes "DHL”, ”Aldi”, and "Coca Cola”. For
the remaining classes, the combined model is identical to the
color model, thus the initial HOG model is relatively poor
and does not contribute to reducing background areas.

Also, our iterative algorithm further improves the rectan-
gles significantly in comparison to the initial bounding box
for all logo classes except "Pepsi” and "Coca Cola”. Interest-
ingly, for "Coca Cola” our combined initial model performs
even better than the iterative algorithm, since the visual
words describing the Coca Cola logo are very specific and
the initial models are not bound to the HOG grid. The
aspect ratio heuristic slightly improves the results for all
classes, which are not defined as ”squared” ("DHL”, "Coca
Cola”, and "Aldi” are "horizontal” or "vertical”).

For the class "Pepsi” our approach fails to improve the
overlap beyond the initial models. The Pepsi logo is visu-
ally not as characteristic as the other logos with regards to
HOG features. It consists of two plain uniformly-colored ar-
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eas with relatively soft, curved edges. Therefore the edges
(and thus gradients) do not provide much more information
than the colors. Also the Pepsi logo comes in two different
variants and is often small and rotated in the training data.

Obviously, our results are not even close to perfect detec-
tion. However, note that the overlap score we use quickly
diminishes with slight deviations from the ground truth rect-
angle. For instance, the example shown in figure 4b has an
overlap of only 0.49 although it is subjectively a reason-
able detection. Only examples 4a and 4e slightly surpass an
overlap of 0.5, and only 4c (scarcely) reaches 0.8. For this
reason, the widely acknowledged Pascal VOC challenge [2]
(from which we adopted the overlap criterion) defines an
overlap of 0.5 or higher as a correct detection.

Also note that a small overlap indicates that at least the
general position of the object may have been found.This ob-
servation is confirmed by the fact that estimating the correct
aspect ratio improves the results for some classes. Similarly,
small overlap values are also produced by strong overdetec-
tion, however it is unlikely for our SVM results due to the
limited sizes of our templates.

Given the fact that we do not utilize any manual anno-
tations or additional information except for binary image
labels and one general aspect ratio, we think that our re-
sults are promising and that the approach is worth further
research.

6.2 Oxford Flowers

For our second experiment (also analogous to [9]), we use
the Oxford 17 Flowers [8] dataset. This dataset provides 17
different flower classes, each of which consists of 80 positive
images. Since no negative set is provided, we adopt the
strategy of [9] and simply use all 16 remaining classes as
negative images for a given positive class.

Oxford Flowers

—— init color
init color AND hog

= = SVM

0.1 —— SVM asp.

max

0 0.2 0.4 0.6

recall

0.8 1

Figure 5: Overlap-recall curve over all (annotated) images
from Oxford Flowers dataset.

The Flowers dataset comes with pixel annotations. Since
for our evaluation we need ground truth bounding boxes, we
use a blob detector on the pixel annotations and fit a rect-
angle around each blob we find. Note that if two instances
of an object overlap in an image, we will hence only obtain
one single bounding box surrounding both instances. Also
note that the number of annotations per class strongly varies
(one class even has none).

Our experiment is conducted analogously to the experi-
ment on FlickrLogos-32. Since the flower images are smaller
than the logo images, however, we consider less scales for our
multi scale search. Also, the negative set is much smaller,
so we double the number of random instances per image.



Figure 6: A few example results for the Oxford Flowers
dataset. Rectangle colors are analogous to figure 4.

Since we have a large number of classes, we do not plot
each class separately but combine them all into one single
plot which is shown in figure 5. The results show that we
increase the overlap with the ground truth in comparison
to the initial model, but there is still room for improve-
ment. Again, the HOG model does not contribute much
to the combined model since the positive HOG features on
the flower images are naturally less different from the back-
ground than for brand logos. Also, for most flower classes
color is a stronger feature than gradients.

The results also show that our iterative algorithm is slightly
worse than the combined initial model for the top overlaps
(on the left of the plot) which is due to the fact that the ini-
tial model is not bound to the rigid HOG grid. However, ap-
plying the algorithm still improves the overall performance
clearly since many objects are detected which are missed by
the initial model as the right half of the plot indicates.

Again, we also show a few qualitative results in figure 6.
In 6a and 6b our algorithm improves the detection in com-
parison to the initial models. Figures 6¢ and 6d show ex-
amples where our algorithm fails to improve the bounding
box beyond the color model. For 6¢, one can see that there
are structures in the background which closely resemble the
actual respective object. Thus, the HOG model cannot dis-
tinguish the background from the foreground while the color
model is not affected by this type of noise.

7. CONCLUSION AND FUTURE WORK

In this paper we have suggested an approach to automat-
ically creating rectangular annotations for a given set of im-
ages which feature a common object. We only use binary
image labels, i.e. we are only given positive and negative
sets of images. Our approach then aims to find regions of
interest for all positive images.

We propose an algorithm which starts with coarse ini-
tial bounding box estimations and iteratively improves these
boxes based on a bag-of-visual-words model. During each it-
eration, the algorithm performs an exhaustive search for the
current best bounding box which can be done efficiently by
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using a linear SVM model and branch and bound. Based on
the bounding boxes found, the model is then re-trained.

Our results are promising given the fact that we do not
utilize any previous knowledge except binary image labels
(and a coarse estimation of the aspect ratio). Yet there is
still much room for improvement which is also shown by our
evaluation. Thus, there are many options for future work.

For instance, we think that our initial models can be re-
fined and extended in order to produce better initial esti-
mations. Also, we can enrich our BOW model by geometric
information by using a spatial layout which can also be seam-
lessly integrated into our search algorithm as shown by Lam-
pert et al. [7]. Besides, our detection algorithm is still very
basic. Adopting more ideas from state-of-the-art object de-
tection algorithms, such as latent models, may also improve
our approach if adjusted to accept noisy initial bounding
boxes as an input instead of manual annotations.

Also, our test classes are relatively easy, since the wanted
objects are homogenous and mostly rigid, so another impor-
tant aspect of future work will be dealing with more difficult
classes and detecting multiple objects per image.
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