
Twitter’s Visual Pulse

Jonathon S. Hare
jsh2@ecs.soton.ac.uk

Sina Samangooei
ss@ecs.soton.ac.uk

David P. Dupplaw
dpd@ecs.soton.ac.uk

Paul H. Lewis
phl@ecs.soton.ac.uk

Electronics and Computer Science, University of Southampton, United Kingdom

ABSTRACT

Millions of images are tweeted every day, yet very little re-
search has looked at the non-textual aspect of social media
communication. In this work we have developed a system
to analyse streams of image data. In particular we explore
trends in similar, related, evolving or even duplicated visual
artefacts in the mass of tweeted image data — in short, we
explore the visual pulse of Twitter.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Keywords

Stream analysis; near-duplicate image detection; trend anal-
ysis; Twitter analysis

1. INTRODUCTION
There is currently a massive amount of research being

performed by the natural-language understanding and data-
mining communities on trying to understand and harness the
mass of information being tweeted across the world. The
aims of this research are diverse, from trying to understand
opinions about current events, to detecting disasters as they
happen, to predicting future stock prices.

Virtually all the current research looking at Twitter con-
centrates on the short textual messages that compose a Tweet
and on the social network of Twitter users. Millions of im-
ages are tweeted every day. However, there has been very
little research looking at non-textual aspects of social me-
dia communication. Recently, we’ve been exploring some
different aspects of this mass of tweeted image data.

This paper describes a demonstration system we have
built for investigating trends in streams of images in Twit-
ter. Specifically, we’ve investigated and designed a sys-
tem for detecting near-duplicates in live streams of images
(where we forget after a period of time) and coupled this
to the live Twitter sample stream. We detect duplicates
using a graph-based approach in which Locality Sensitive
Hashing is applied to local features to efficiently determine
feature matches between images. The system also incor-
porates a modular approach to actually extracting images
from Tweets. Currently we have modules for a number of
the most common image hosting sites used by Twitter.

Copyright is held by the author/owner(s).
ICMR’13, April 16–20, 2013, Dallas, Texas, USA.
ACM 978-1-4503-2033-7/13/04.

2. TECHNICAL DESCRIPTION
The system is built from three main components: 1) a

tool called PicSlurper, that is responsible for reading the
Tweets in the Twitter stream and parsing them to extract
any images; 2) a component for detecting near duplicates
within the most recent images; and 3) a visualisation, show-
ing currently trending images as well as historical trends.
The system is able to process the Twitter sample stream
(>100,000 images per day) in real-time on a standard PC.
The system built on top of OpenIMAJ [3] and is available
as part of the OpenIMAJ codebase1.

2.1 PicSlurper
Tweets do not themselves contain images; rather they con-

tain links to images hosted by a variety of different providers.
This means that to extract images from Tweets, we need
to be able to extract the links from the Tweet and resolve
the image content. Even this is not simple, as each image
hosting provider uses a different technique for providing the
image; usually the image is embedded in an html page.

PicSlurper is a tool we have developed to extract the im-
ages from a stream of Tweets (either read from a file, or in
real-time from the live Tweet data provided by the Twitter
API). Internally, PicSlurper has a set of consumer modules
that deal with specific hosting sites. When PicSlurper ex-
tracts a URL from a Tweet, it asks each module if it is able
to extract an image from the URL. If a module is able to
extract the image, then the module is used to download the
image, and the image and the respective Tweet metadata are
emitted for further processing. If no module is able to deal
with the link(s) in the Tweet (or if there are no links), then
the Tweet is ignored and nothing is emitted. Currently, we
have modules for a number of the most popular image host-
ing services used with Twitter: Facebook, imgur, Instagram,
ow.ly, Tmblr, Twiple, TwitPic, yfrog, and of course Twit-
ter’s own image hosting service. Using PicSlurper with the
Twitter sample stream2 we are able to extract over 100,000
images per day; the actual number of tweets processed is far
higher than this though (it varies a lot, but between 30 &
80 tweets per second is normal).

2.2 Streaming Duplicate Detection
Our streaming duplicate detection is heavily inspired by

the techniques proposed in [2], however it does have a num-
ber of differences. Most notably, in our technique, we are

1http://www.openimaj.org
2https://dev.twitter.com/docs/api/1.1/get/
statuses/sample

297



Figure 1: Flowchart illustrating the streaming du-

plicate detection algorithm.

only interested in images within a time-window, so we have
to continually remove old images as new ones arrive. In
the approach, two images are defined as near-duplicates if
they share a certain number of (local) features. To detect
all near-duplicates we build an undirected weighted graph
where the vertices are images and the edge weights repre-
sent the number of matching features between the images.
Once the graph is constructed, edges with low-weight are
pruned, and connected-component analysis is performed to
extract all the sets of near-duplicates. The largest sets of
duplicates are said to be trending and are emitted to the
visualisation component of the system.

To efficiently assess whether features match, Locality Sen-
sitive Hashing is used to create sketches (compact binary
strings) from the features. The sketches are produced such
that the Hamming distance between sketches approximates
the Euclidean distance between the features [1]. As in [2],
we choose our sketches to be 128 bits in length, and set
the minimum Hamming distance for two sketches/features
to be classed as matching at 3 bits. Rather than explicitly
compute Hamming distances between all features, a more ef-
ficient (approximate) scheme is used: The 128-bit sketches
are partitioned into 4 32-bit strings and represented as 32-
bit integers. For a pair of matching sketches there could
be at most 3 different bits, so at least one of the pairs of
integers from the sketches must be the same. By using the
four integers from each sketch as keys in four hash tables
and storing the images containing the features as the values
in the tables, the graph construction becomes trivial. As we
are interested in temporal detection of duplicates, we reg-
ularly prune old images from the hash tables so that their
respective contents only cover images from a fixed window
into the past. The overall process we use is illustrated in
Figure 1. Figure 2 illustrates the duplicate detection from
the hash tables through construction of a graph.

The specifics of the image analysis and feature extrac-
tion up to the point of sketch construction are as follows:
1) images are resized to 150px on the longest side; 2) SIFT

Figure 2: Illustration of the how the hash tables

define the duplicates graph.

Figure 3: The trending image visualisation.

features detected at peaks in a difference-of-Gaussian pyra-
mid [4] are extracted; 3) Low-entropy features are removed [2];
and finally, 4) log-scaling is applied to make the feature val-
ues more uniform [2].

2.3 Visualisation
Currently we have the system set up so that the PicSlurper

& duplicate detection modules produce information about
the trending images (and the Tweets in which they occur)
in a file in JSON format. A visualisation written in HTML
and JavaScript continually polls this file and displays the
currently trending images. The visualisation is depicted in
Figure 3. A video describing the system and showing the
visualisation is online at http://youtu.be/CBk5nDd6CLU.

3. ACKNOWLEDGMENTS
The described work was funded by the European Union

Seventh Framework Programme (FP7/2007-2013) under grant
agreements 270239 (ARCOMEM), and 287863 (TrendMiner).

4. REFERENCES
[1] W. Dong, M. Charikar, and K. Li. Asymmetric distance

estimation with sketches for similarity search in
high-dimensional spaces. In SIGIR’08, pages 123–130.
ACM, 2008.

[2] W. Dong, Z. Wang, M. Charikar, and K. Li.
High-confidence near-duplicate image detection. In
ACM ICMR’12, pages 1:1–1:8. ACM, 2012.

[3] J. S. Hare, S. Samangooei, and D. P. Dupplaw.
OpenIMAJ and ImageTerrier: Java libraries and tools
for scalable multimedia analysis and indexing of
images. In Proceedings of ACM Multimedia 2011, MM
’11, pages 691–694. ACM, 2011.

[4] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, January 2004.

298




