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Abstract
We present a novel approach for the analysis and design of self-
supporting simplicial masonry structures. A finite-dimensional for-
mulation of their compressive stress field is derived, offering a new
interpretation of thrust networks through numerical homogenization
theory. We further leverage geometric properties of the resulting
force diagram to identify a set of reduced coordinates characteriz-
ing the equilibrium of simplicial masonry. We finally derive com-
putational form-finding tools that improve over previous work in
efficiency, accuracy, and scalability.
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1 Introduction
The most subtle and exquisite part of architecture [...] is the formation

of [...] vaults; cutting their stones, and adjusting them with such artifice,
that the same gravity and weight that should have precipitated them to
the ground, maintain them constantly in the air, supporting one another
in virtue of the mutual complication which binds them [...].

Vicente Tosca, Compendio Matematico (vol. 5-15), 1727

Masonry structures are arrangements of material blocks, such as
bricks or stones, that support their own weight. Constructing curved
vaults or domes with compression-only structures of blocks, further
prevented from slipping through friction and/or mortar, has been
practiced since antiquity. It is therefore no surprise that form finding
and stability analysis of masonry structures have been an active area
of research for years.

Equilibrium of a masonry structure is ensured if there exists an inner
thrust surface which forms a compressive membrane resisting the
external loads [Heyman 1966]. Balance conditions relating the stress
field on the thrust surface to the loads are well understood in the
continuous setting [Giaquinta and Giusti 1985; Fosdick and Schuler
2003; Angelillo et al. 2012]. Discretizing these equations have been
done through conforming and non-conforming finite elements, with
formulations involving stress, displacements, or both [Fraternali et al.
2002; Fraternali 2010; Fraternali 2011]. The discrete block-based
nature of masonry has also led to the analysis of the network of
compressive forces keeping masonry blocks together while resisting
external loads [Block 2009]. The rich geometry of this force diagram
has received attention from the geometry processing community
as well, with recent work on the structural soundness of masonry
buildings [Whiting et al. 2009; Whiting et al. 2012] and on the
design of self-supporting polygonal meshes [Vouga et al. 2012].

In spite of the variety of computational techniques currently avail-
able, existing tools still impose stringent limitations on the process

Figure 1: Simplicial Masonry. A self-supporting simplicial masonry struc-
ture is a triangle mesh, defined as a height field over the plane (left). We
show through numerical homogenization of the stress tensor that they support
their own weights if there exists an orthogonal dual diagram (middle), repre-
senting a finite-dimensional approximation of the purely compressive forces
at play. We provide discrete counterparts to a number of continuous fields
(such as the convex Airy stress function, right) and differential equations
traditionally used in describing the equilibrium of these masonry buildings;
in particular, we offer a set of reduced coordinates of the space of statically
admissible shapes, linking our approach to regular triangulations.

of form finding for masonry structures: while previous finite element
methods are known to restrict the topology of masonry structures to
the case of simply connected domains, thrust network approaches
may lead to overconstrained balance equations depending on the
choice of boundary conditions. To overcome these issues, we intro-
duce in this paper a discrete theory of simplicial masonry structures.
We show that the self-supporting properties of discrete simplicial
structures can be derived from a numerical homogenization of the
underlying continuous differential equations. By leveraging previous
methods, we offer a unified computational framework that enforces
the compressive nature and the equilibrium of masonry structures
exactly, for surfaces of arbitrary topology. In the process, we intro-
duce reduced coordinates to generate all possible reciprocal force
diagrams from simplicial meshes, and reveal geometric connections
to well-known continuous notions such as the Airy stress function.
Finally, we turn our theoretical contributions into an effective com-
putational technique for the design of simplicial masonry structures
that offers improved performance over previous work.

2 Discrete Self-Supporting Surfaces

The analysis of masonry structures follows two common assump-
tions [Heyman 1966; Giaquinta and Giusti 1985]: no tensile strength
or material failure is at play; and there exists a thrust surface, con-
tained within the masonry structure, in static equilibrium with the
load applied to the structure (including its own weight). A masonry
structure based on these conditions is named a self-supporting sur-
face, and we will further concentrate on pure vertical loading. We
review next the continuum formulation of self-supporting surfaces,
before describing how one can upscale (or homogenize) these equa-
tions and turn them into a finite-dimensional problem—which will
provide rigorous foundations and extensions to the common use of
reciprocal force networks [Block 2009; Vouga et al. 2012].

2.1 Setup and definitions

Before explaining our approach, we first fix a few notations.

Continuum Setup. A self-supporting surface S is henceforth rep-
resented as a height function z over a two-dimensional domain U
with a Cartesian coordinate system u = [u, v]:[

u, v
]
→ S(u, v) =

[
u, v, z(u, v)

]
, (1)

where we use brackets to concisely denote vectors. The Jacobian
matrix∇S =

[
I,∇zt

]
of this map lifts (i.e., pushforwards) vectors



from U ⊂R2 to tangent vectors on S expressed in R3, and thence
defines an induced metric tensor M on S as M=(∇S)t∇S. Conse-
quently, quantities on the surface S (that we will denote for clarity
by an overline ·̄ ) can be expressed in the plane as a function of u
and v. For instance, the mass density ρ̄ at a surface point S(u, v)
defines a density function ρ in the plane as:

ρ(u, v) = ρ̄(S(u, v))
√

detM, (2)
where

√
detM accounts for the area change between S and U .

Similarly, a second-order tensor σ̄ that acts on tangent vectors of the
surface expressed in R3 defines a tensor σ in the plane through:

σ(u, v) = ∇S(u, v)t σ̄(S(u, v)) ∇S(u, v). (3)
This setup will allow us to reexpress the 3D equilibrium conditions
of masonry surface in 2D. We also refer to [Angelillo et al. 2012] for
a rigorous derivation of this setup obtained by considering 3D equa-
tions in the asymptotic limit of singular statically admissible stress
field concentrated on a surface lying inside the masonry structure.

Discrete Setup. For computational purposes, we will use a planar
triangulation T discretizing the domain U . We call V , E, and
F the set of vertices, edges, and triangles of the simplicial mesh,
respectively. The positions of vertices are denoted as ui=[ui, vi],
and their associated heights are zi=z(ui, vi), while |ij| indicates
the length of edge ij and |ijk| indicates the area of triangle ijk in
2D. Triangles are oriented counterclockwise, and edges are given
an arbitrary (but fixed thereafter) orientation. We callN (i) the set
of vertices that share an edge with i, and we use φi to denote the
piecewise linear basis function over T for vertex i with φi(uj)=δij .
Thus, the height field z(u)=

∑
i∈V zi φi(u) represents a simplicial,

piecewise-linear masonry structure. Finally, we denote by d0 the
transpose of the incidence matrix of vertices and edges (|E| rows,
|V | columns), where each row contains a single +1 and −1 for the
endpoints of a given edge (the sign being determined from the chosen
edge orientation), and zero otherwise; and by d1 the transpose of
the incidence matrix of edges and faces (|F | rows, |E| columns),
with +1 or −1 entries according to the orientation of edges as one
moves counterclockwise around a face.

2.2 Continuum mechanics description of equilibrium

A self-supporting surface S is in equilibrium if the compressive
forces at play compensate for the dead load created by the surface
mass density ρ̄ in a gravitational field g = [0, 0,−g]. This amounts
to a surface stress tensor σ̄ defined by a symmetric, negative semi-
definite matrix that satisfies:

∇· σ̄ = [0, 0, ρ̄g]. (4)
One can conveniently rewrite this equilibrium condition as two
separate equations using the 2D scalar field ρ and tensor σ defined
via Eqs. (2) and (3):

∇· σ = 0 and ∇· (σ∇z) = ρg. (5)

The first equation indicates that the stress tensor σ on U is
divergence-free (i.e., the divergence of each of the columns of σ is
zero); the second relation equates an elliptic operator on the height to
the local dead load in order to enforce balance. This last equation can
be further reduced to ∆σz = ρg, where ∆σ is the Laplacian operator
in the metric induced by the stress σ. Moreover, two-dimensional
stress tensors over simply connected domains can be encoded simply
as the Hessian of a real-valued function ψ negated and rotated on
both sides by π/2 [Green and Zerna 2002]. Called the Airy stress
function, this function must be convex to enforce the compressible
nature of stress tensor (Fig. 1).

2.3 Existing discrete approximations of equilibrium

The aforementioned differential description of equilibrium can natu-
rally be leveraged to develop numerical schemes for the generation
of self-supporting masonry structures. Next we summarize previous
approaches before introducing our rationale for simplicial masonry.

Finite/Discrete Elements. Discretized balance equations can be
derived through finite element analysis for a finite-dimensional ap-
proximation of the surface—typically, a triangle or quad mesh. How-
ever, traditional displacement-based conforming and low-order fi-
nite element methods applied to this problem can lead to indeter-
minacy or divergence under refinement of the solution [Giaquinta
and Giusti 1985]. Stress-based discrete element methods were in-
troduced to remediate these issues, but they often required mesh
elements to be aligned with the principal directions of stress (see,
for instance, [O’Dwyer 1999]). This unsavory constraint was further
removed through the use of non-conforming finite elements, where
stress is expressed via a discretized Airy stress function [Fraternali
et al. 2002; Fraternali 2010; Fraternali 2011; Angelillo et al. 2012].
Since the existence of a stress field deriving from a Hessian matrix of
an Airy function is only guaranteed for simply-connected domains,
this tight and efficient discrete formulation restricts the topology of
the surface.

Force Diagrams. Another well-studied approach is to approximate
the continuum medium with an equivalent truss structure: the edges
of a mesh are seen as the support of a force diagram acting on
the nodes, thereby approximating the stress field through uniaxial
singular stresses. Such a thrust network analysis (TNA) [Block and
Ochsendorf 2007; Block 2009] only requires a negative value σij
per edge eij , interpreted as a force density, to effectively encode the
stress tensor. The equilibrium equations for each interior vertex ui
with height zi are then reduced to:

∑
j∈N (i) σij(uj − ui) = 0∑
j∈N (i) σij(vj − vi) = 0∑
j∈N (i) σij(zj − zi) = mig

(6)

where mig is the local (lumped) gravitational load on vertex i. De-
spite great practical relevance stemming from its elegant simplicity,
there is no rigorous analysis on the accuracy and convergence of
TNA. The recent work of [Vouga et al. 2012] proposed to help archi-
tects design self-supporting structures by applying the TNA model
on polygonal meshes; they solved for edge values σij by iteratively
minimizing the residual of the TNA equations in the least-squares
sense while best matching a user-given height field. Unfortunately,
this least-squares based methodology is not without shortcomings:
for mixed boundary conditions on the height, the resulting system of
equations is in general overconstrained, and it may thus fail to find a
self-supporting solution without resorting to user interaction.

Towards a Hybrid Approach. It is worth noting that the modeling
of a continuous membrane through a discrete force network [Block
2009] closely matches the non-conforming approximation of the
equilibrium problem [Fraternali 2011]. In particular, they both point
out the singular nature of the stress (which is “lumped” along mesh
edges only) and the importance of a reciprocal diagram to the planar
orthographic projection of the surface mesh. There are, however,
a few significant differences. For instance, Block [2009] favors
primal and dual graphs with corresponding edges intersecting at
a fixed angle, but Fraternali [2011] uses a barycentric dual graph
instead. This difference stems from the physical interpretation of
the dual graph: while the latter only needs well-formed dual cells
over which the stress can be averaged in order to weakly enforce
equilibrium, the former associates a reciprocal diagram to the exis-
tence of edge-aligned forces that cancel out the gravitational loading
on each vertex. Our approach, described next and based on numeri-
cal homogenization, can be seen as reconciling these two methods
for simplicial masonry structures, as we will inherit the conceptual
simplicity of TNA while still leveraging finite elements literature for
rigorous convergence analysis and bounds on accuracy. In particular,
we will introduce a discrete formulation for which both conditions
in Eq. (5) will be precisely enforced.



2.4 Upscaling of Self-Supporting Surfaces

We now introduce our finite-dimensional characterization of equilib-
rium for masonry structures. Derived from an edge-based discretiza-
tion of symmetric tensors and leveraging a geometric interpretation
of the diagram of forces at play, it will serve as the foundation of our
computational approach to simplicial self-supporting form finding.

Masonry equilibrium as upscaled elliptic problem. In §2.2 we
formulated the condition of equilibrium of masonry structures as an
elliptic problem in the space of divergence-free, symmetric, nega-
tive, and semi-definite tensors (Eq. (5)). This exact case (up to sign)
appeared in the very different context of electric impedance tomog-
raphy with rough conductivity coefficients in [Desbrun et al. 2013],
where a numerical homogenization (or upscaling) of the equations
were proposed via a harmonic change of coordinates. In particular, it
was pointed out that a symmetric tensor σ in 2D can be conveniently,
but rigorously discretized on a simplicial mesh T by a scalar value
σij for every (unoriented) edge ij using the piecewise linear basis
functions φi and φj as:

σij = −
∫
U
∇φi tσ∇φj dudv.

Properties of the continuous tensor σ were shown to carry over as
simple properties on the coefficients σij . For instance, the negative
semi-definiteness of the continuous tensor corresponds to negative
values of σij . Moreover, due to the tensor σ being divergence-free,
the authors proved that for every vertex i,∑
j∈N (i)

σij(uj − ui) = 0, and
∑

j∈N (i)

σij(vj − vi) = 0. (7)

Finally, the elliptic operator in Eq. (5) was then expressed in weak
form on T as

∑
σij(zj − zi). Consequently, a direct application of

their finite elements methodology to our masonry case recovers the
TNA formulation of Eq. (6).

Connection to DEC. The use of edge values to encode the stress
tensor fits well the formalism of discrete exterior calculus (DEC,
see [Desbrun et al. 2007; Grady and Polimeni 2010]), which will
allow us to use a more compact notation expressing both the continu-
ous and discrete equations at play. Indeed, discretizing a symmetric
tensor with a value per unoriented edge complements the discrete
version of a differential form (i.e., an antisymmetric tensor), which
uses a value per oriented edge instead. In fact, σij can be interpreted,
up to the sign, as a discrete Hodge star deriving from the continuous
metric σ. Notice that if σ is minus the identity (i.e., the negated Eu-
clidean metric on U), one finds the well-known cotangent-based di-
agonal Hodge star widely used in geometry processing. (See [Zayer
et al. 2005] for a related expression in the context of quasi-conformal
maps with piecewise-constant tensors.) More generally, the diago-
nal matrix ?σ1 = {?σij := −σij}ij∈E is the discrete Hodge star for
one-forms associated to the metric corresponding to the planar stress
tensor σ. Note that the compressive nature of the stress imposes
that the discrete Hodge star values must all be positive. Moreover,
Eqs. (7) resulting from the divergence-freeness of the stress tensor
σ can be concisely rewritten as

dt1 ?
σ
1 d0 u=0. (8)

One can readily check this corresponds to a statement of linear
precision for the σ-induced discrete Laplacian ∆σ=dt1 ?

σ
1 d0 on U ,

since this discretization of the elliptic operator∇·(σ∇) applied to
the u and v coordinates of the mesh T returns zero.

Equilibrium equations. Finally, the equilibrium equations that the
height z must satisfy can be given in a weak form, by integrating the
differential equation over each planar dual cell of T :

dt1 ?
σ
1 d0 z = ?0ρg, (9)

where ?0 = {?i}i∈V is the conventional discrete Hodge star for
zero-forms on T [Desbrun et al. 2007]. Note the presence of two
different Hodge stars: while we discussed the emergence of a stress-
induced Hodge star ?σ1 for discrete one-forms that provides a geo-
metric realization of the force diagram, the second Hodge star ?0 is
for zero-forms and represents an integration over each (barycentric,
circumcentric, or otherwise) partition of the mesh. This latter Hodge
star corresponds to the common practice of “mass lumping” in com-
putational mechanics. With Eqs. (8) and (9), we have a discrete
formulation mirroring the continuous conditions of Eq. (5).

2.5 Stress-induced orthogonal dual diagram

The properties of the scalar values σij we listed above also have
a simple geometric implication due to the Maxwell-Cremona the-
orem [Wardetzky et al. 2007]: it implies that any divergence-free
discrete stress tensor is associated to an orthogonal (reciprocal)
Poincaré dual diagram to the simplicial planar mesh for which the
supporting lines of primal and dual edges are perpendicular. Conse-
quently, a simplicial surface is self-supporting if and only if exists
a stress-induced orthogonal dual mesh, corresponding to the TNA
force diagram in [Block and Ochsendorf 2007; Vouga et al. 2012].
Conversely, the requirement of a divergence-free stress tensor re-
moves the need to consider non-orthogonal dual diagrams.

Reduced coordinates of orthogonal dual diagram. An orthog-
onal dual diagram to a given planar primal mesh can be defined
by a set of dual vertex locations with added constraints to sat-
isfy the orthogonality condition between primal and dual edges:
this characterization was first used in the context of conformal
parameterization [Mercat 2001] before being adopted for self-
supporting surface design through thrust network analysis [Block
and Ochsendorf 2007; Vouga et al. 2012]. We instead introduce
a set of reduced coordinates that encode all possible orthogonal
dual diagrams for a primal mesh of arbitrary topology. Recall that
orthogonal dual structure in a single
triangle exists if and only if three per-
pendicular bisectors crossing the tri-
angle edges have a common intersect-
ing point. This condition, which must
hold on every triangle of a given sim-
plicial mesh, was explicitly written
in [Glickenstein 2005] as:(

d2ji − d2ij
)

+
(
d2kj − d2jk

)
+
(
d2ik − d2ki

)
= 0, (10)

where dab is the signed distance between the vertex ua and the
intersection of the lines supporting edge ab and its perpendicular
bisector (note that dab + dba = |ab|; see inset). We can rewrite this
condition in the language of algebraic topology (using DEC) so as
to uncover a parametrization of the whole space of orthogonal dual
diagrams for a given triangulation. Indeed, define a primal discrete
one-form ω with value ωij = d2ji − d2ij per oriented edge ij. Then
Eq. (10) states that an orthogonal dual mesh is fully defined by a
closed primal one-form ω, i.e., d1ω = 0: once such a closed form
ωij is known, dij can be deduced from the given primal lengths |ij|
(Eq. (12)). Furthermore, Hodge decomposition (see, e.g., [Desbrun
et al. 2007]) can be invoked to rewrite this closed one-form as a
function of a primal zero-form w and a (non-integrable) primal
harmonic one-form η, i.e.,

ω = d0w + η,

with normal and tangential boundary conditions for the two terms
respectively. (Intuitively, the one-form η corresponds to a harmonic
vector field which cannot be written as the gradient of a scalar func-
tion, hence the term non-integrable.) Finally, recall that harmonic
one-forms admit a small set of β1 basis one-forms for an arbitrary
bounded planar triangulation, where β1 is the first Betti number
indicating the number of holes in the domain (see a simple computa-
tional procedure to compute this basis in, for instance, [Tong et al.



2006]). We can thus compactly encode the one-form η at an edge ij
as a linear combination of these basis one-forms, i.e.,

ηij =
∑

q=1..β1

cqγ
q
ij , (11)

where γq is a basis element for harmonic one-forms (with unit
circulation around its associated hole) and cq is a real-valued hole-
indexed coefficient. An orthogonal dual mesh can thus be arbitrary
constructed by assigning a value wi per vertex (zero-form) and a
set of β1 values {cq}q=1..β1 defining a harmonic one-form. Note
that the use of d0 makes the zero-form defined only up to a constant.
The dimensionality of the full space of orthogonal dual meshes for a
given mesh T discretizing a domain U is therefore (|V |−1)+β1,
i.e., the number of vertices of T (minus one to remove the additive
constant of the zero-form) plus the number of holes β1 of the domain
U . An example of how the dual diagram is changed by hole-indexed
coefficients is in Fig. 2; notice the concentration of stress near the
hole, linked to the Saint-Venant principle of structural engineering.
Even though we will only consider planar meshes in this work, this
result is also valid for manifold triangulations of arbitrary genus.

Closed-form expressions of edge stress values. Another con-
sequence of the Maxwell-Cremona theorem is that the values σij
(or, equivalently, the discrete Hodge star for one-forms ?σ1 ) are di-
rectly linked to the geometry of the primal-dual structure: each
edge value σij is (minus) the ratio of dual length to primal length
of edge ij—fitting the definition of the diagonal Hodge star on
circumcentric duals [Desbrun et al. 2007] and on weighted trian-
gulations [Glickenstein 2005; Mullen et al. 2011]. We can then
provide closed-form expression of
the edge values corresponding to a
divergence-free tensor σ. Denote by
cijk the position of the stress-induced
dual node to triangle ijk, and by cij
the position of the intersection of the
supporting lines of the primal edge
ij and of its stress-induced dual (see
inset). Additionally, define hjki as
the signed distance between cijk and
cij , with a positive sign if the trian-
gle (cijk,ui,uj) has the same ori-
entation as the triangle (ui,uj ,uk),
and negative otherwise. One finds, for triangle ijk, the following
expressions:

dij =
|ij|2 + ωji

2 |ij| , dji =
|ij|2 + ωij

2 |ij| , (12)

hjki=
|ij| cotαjki

2
+

cotαkij
2 |ij| ωkj+

cotαijk
2 |ij| ωki. (13)

Then, from these functions of ωij , the stress-induced Hodge star
value ?σij is expressed as the ratio of the dual length (denoted hij) to
the primal length of the stress-induced diagram edge ij, i.e.,

?σij =
hij
|ij| , with hij = hjki + hilj . (14)

Notice from this last formula that the σ-induced Hodge star has only
positive coefficient (corresponding to pure compression) if and only
if every dual edge has a positive length, i.e., if the primal mesh T is
a regular triangulation [Preparata and Shamos 1985].

2.6 Boundary conditions

Proper handling of the boundaries is crucial to both the numerical
treatment (i.e., to avoid overconstrained equations) and the quality
of the results (i.e., to guarantee self-support). Our discrete setup
leads to simple and flexible boundary conditions.

Stress on boundaries. First recall that since only compressive
forces should be at play, the σij edge values must all be negative; the
boundary σij values are no exception, and they define boundary dual
edges on the stress-induced dual diagram. Moreover, since boundary
vertices may be fixed (via a buttress or other construction artifacts),
enforcing a divergence-free stress tensor at the boundary is necessary
only for non-fixed vertices. In our setup, the divergence-free con-
dition at the boundary is enforced in weak form by integrating the
strong form over the planar region Vi formed by the circumcentric
dual cell associated to i clamped at the boundary ∂T ; it thus reads:

0 =

∫
Vi

∇ · σ =

∫
∂Vi

σn =
∑

j∈N (i)

?σij(ui − uj) +

∫
Vi∩∂T

σn.

The first term of this equation matches the definition of divergence-
freeness for interior points (Eq. (8)), yet with an important difference:
boundary edges have values hij made out of only a partial dual edge
(one of the two terms in Eq. (14) is zero since there is only one
triangle adjacent to ij). We thus complete these dual edges by adding
boundary dual lengths h∞ = {hi∞j}ij∈∂T : with these additional
boundary variables, the resulting stress-
induced Hodge star values ?σ1 (that must
be positive to enforce compression) are
well defined even at the boundary as
dual/primal edge length ratios. Notice
that the resulting stress-induced dual
boundary edges represent the (rotated)
tangential boundary forces (just like
the internal dual edges represents the
rotated edge-aligned forces at play in
the domain). The compressive normal
forces on the boundary are instead re-
flected in the second term of the equa-
tion above: if we define the (negated)
normal stress at the boundary edge ij
as τij≥0, the resulting normal force on ij is thus equal to −τijnij
with nij being the length-weighted outward normal of ij. The inte-
gration of the normal forces along Vi ∩ ∂T with adjacent boundary
vertices j and k (see inset) becomes1:

−1

2
τijnij −

1

2
τkinki.

These tangential and normal boundary terms offer a discrete analog
to the continuous, general stress boundary condition on σn [Gi-
aquinta and Giusti 1985], and brings a more flexible and general
boundary handling in the design of self-supporting surfaces.

Boundary equilibrium. Consider now the balance equations,
which this time involve heights zi at the boundary. There are only
two types of boundary condition for a boundary vertex:

• if a boundary vertex is anchored, its height z is fixed (generally
to zero if the height is supposed to be on the ground), and no
balance equation is needed for this vertex;

• if a boundary vertex is not anchored (i.e., free), the balance
equation is then activated.

The physical and geometric justifications of these two cases are
straightforward. Indeed, the equilibrium equation for the height at a
boundary vertex i is written in weak form as before:∫
Vi

∆σz =

∫
∂Vi

ntσ∇z =
∑

j∈N (i)

?σij(zi − zj) +

∫
Vi∩∂T

ntσ∇z.

Besides the ?σij(zi − zj) terms which are also present for interior
points, an additional integral of the boundary stress appears relating

1Note that the two 1/2 coefficients come from our specific choice of Vi
as circumcentric dual cells, which split every primal edge into two equal
parts; other cell decompositions would lead to different coefficients.



∇z to the boundary values h∞ and τ . As in the divergence-freeness
case, the values h∞ are incorporated in the dual lengths, while the
normal component along the boundary segment ij ∩ Vi adjacent to
the triangle ijk is discretized following [Fisher et al. 2007] as:

1

2
τij

(
cotαijk(zi − zk) + cotαkij(zj − zk)

)
.

Engineering considerations. Note that engineering design of
masonry-like edifices needs a full control of the stresses at play
in the structure. So while we proposed to simply skip the divergence-
freeness and equilibrium equations for anchored boundary vertices,
one may also adopt a more thorough description of the stress field by
adding these equations back, and including the respective boundary
compressions as variables for each vertex. Then one can control
these values to either make sure they do not exceed a critical thresh-
old that the anchor could not bear, or simply to make sure that these
forces are also sufficiently compressive as a margin of safety. Simi-
larly, hole-indexed coefficients c and free boundary stresses τ can
be either fixed based on engineering constraints such as prestressing,
or simply optimized along with the other variables. While we do not
explore all these specific engineering requirements, our formulation
accommodates them naturally.

Special cases. Finally, we point out that our approach reproduces
as special cases the boundary treatments presented in previous work.
Employing Dirichlet or Neumann boundary conditions on the Airy
function as in [Fraternali 2010; Angelillo et al. 2012] (enforcing
both is known to be overconstrained) corresponds to enforcing the
same conditions on the zero-form values wi at the boundary. Instead,
free boundary dual edges intersecting in a single point as in [Block
2009; Vouga et al. 2012] corresponds to setting normal stresses τ to
zero (Figs. 3 and 9). Note that the latter boundary condition pushes
the extra boundary term in the equilibrium equation to zero as well.
While these choices are valid, they only correspond to a subset of all
possible boundary conditions.

2.7 Discussion

Our discretization provides a formal backdrop to the equations used
in thrust network analysis [Block and Ochsendorf 2007], and inherits

Figure 2: Effect of harmonic one-forms. If a harmonic one-form η is added
to a planar triangulation with non-trivial genus (top left), the stress-induced
dual diagram (top right) is displaced (bottom right) by a non-integrable
vector field (bottom left), adding a valuable degree of freedom to find self-
supporting shapes. Notice that the displacement is larger around the hole,
and decreases rapidly due its harmonic nature.

the convergence and accuracy analysis tools available in the finite
elements literature [Desbrun et al. 2013]. Moreover, we managed
to completely characterize the space of valid discrete equilibrium
solutions, which will allow us to solve for self-supporting structures
using the reduced set of variables w and c that fully describe the
set of valid discrete divergence-free symmetric tensors σ. Many
remarks are in order, as our results relate to previous work not only
in masonry design, but also in computational geometry.

Weighted vs. regular triangulations. We parameterized the set of
all orthogonal dual of a simplicial mesh with a primal zero-form and
a harmonic one-form. Note that if the mesh T is simply connected,
there exists no harmonic one-forms, so only vertex values are needed
to span the space of orthogonal dual diagrams for a simply connected
mesh. This special topology case was in fact explicitly stated by
Glickenstein [2005], with the zero-form w being referred to as
vertex weights. (The reader can easily check that the expressions
given in his paper match ours for the restrictive case ω = d0w.)
The resulting “weighted triangulations” were also shown useful for
geometry processing [Mullen et al. 2011]. However, the case of an
arbitrary domain topology was left unattended, probably due the
fact that meshes in computational geometry are often studied as
projections of higher-dimensional convex polytopes—which forbids
the presence of holes. It should be noticed that, as a consequence,
weighted Delaunay triangulations and regular triangulations are
often assumed to be equivalent, but this statement ignores the β1

additional dimensions available for the latter due to topology (Fig. 2).

Airy function. Although our formulation drastically differs from
Fraternali’s work, a formal connection to the Airy stress function
is easily made, once again for the special case of simply connected
domains. The Airy function comes from the integrability of the
stress tensor seen as the (rotated and negated) Hessian of a scalar
function [Green and Zerna 2002]. In the discrete setting, this func-
tion corresponds to the integrable part of the orthogonal dual mesh
associated to the discrete stress values σij and thus it is defined
through the zero-form w via ψ(u) = 1

2

∑
i

(
‖ui‖2 − wi

)
φi(u).

Geometrically, the Airy function can be seen as the lifting of the 2D
mesh T to a paraboloid of height ψ(u) as used in [Desbrun et al.
2013]; see Fig. 1. This geometric picture was previously used to
construct power diagrams [Aurenhammer et al. 1998] and is related
to the convex potential function found in optimal transport [Mérigot
2011]. Hence, we have formally established that the discrete Airy
values ψi in Fraternali’s work are related to weights of the resulting
weighted Delaunay triangulation through: ψi=

1
2
‖ui‖2− 1

2
wi. Be-

sides extending his approach to arbitrary topology (i.e., non-zero β1),
our analysis offers a valuable discrete notion of divergence-freeness
that his work did not exploit, and links the convex hull procedure he
advocated to the construction of a weighted Delaunay triangulation.

Generalized Airy function. In the broader context of elastostatics,
Fosdick and Schuler [2003] introduced a continuous generalization
of the Airy stress function to domains with holes by incorporating
the symmetric part of the derivative of smooth vector fields. Remark-
ably, our reduced set of coordinates for orthogonal dual diagrams
provides a principled and complete discretization of such general-
ized representation of stress in the case of divergence-free tensors
on simplicial meshes of arbitrary topology.

Lumped mass matrix. Finally, we point out that the specific choice
of lumped mass matrix (in our case, �0) varies across the literature.
While Fraternali [2011] uses the integral of the density over each
barycentric dual cell of T , Vouga et al. [2012] integrates over cir-
cumcentric dual cells. We also adopt circumcentric dual cells for
simplicity, but alternatives are easy to incorporate. One may even
consider using the space of all possible partitions of the domain as
yet another set of degrees of freedom. Besides the changes in local
dead load that other choices of dual cells generate, the only other



Figure 3: Boundary conditions. The normal stress imposed around holes
can significantly affect the shape of a masonry structure; here, a shape
from [Vouga et al. 2012] with several holes, where the boundary normal
stresses are either set to zero (left; notice that the boundary (orange) dual
edges meet at a point) or not (right; the normal forces are in dark blue).

difference that one needs to address is the treatment of boundary
conditions: using two sub-variables τij and τji per boundary edge
ij representing the integration of the normal stresses on Vi ∪ ij and
Vj ∪ ji respectively allows for a more general setup with minimal
code modification.

3 Variational Formulation

Variational formulations for equilibrium equations have a long his-
tory in mechanics, and the specific case of masonry structures is no
exception [Giaquinta and Giusti 1985; Fraternali et al. 2002; Fosdick
and Schuler 2003; Fraternali 2011]. Our setup involving a primal
simplicial mesh and a stress-induced orthogonal dual diagram turns
out to also offer a convenient variational formulation, but now at the
discrete level, which can then be used for computational purposes.

Equilibrium functional. We introduce an energy E that is a func-
tion of both the zero-form (“weights”) w = {wi}i∈V and the
harmonic-form coefficients c = {cq}q=1..β1 as follows:

E(w, c)=
∑
i

zi

1

2

∑
j∈N (i)

dijhij

−∑
i

wi (?i ρi g) . (15)

Based on Eqs. (12) and (13), we note that this functional is quadratic
in both variables w and c. We also point out that the term in brackets
is an analytical expression of the area of the stress-induced dual cell
for vertex i, while the second term depends on the vertex load ?i ρi g.
To account for the boundary equilibrium conditions discussed in
§2.6, we also incorporate to our energy E an extra term for every
free boundary edge ij:

hi∞j (dijzi + djizj)

+ 1
2
τij (wi + wj)

(
cotαijk(zi − zk) + cotαkij(zj − zk)

)
.

Extremization conditions. Using the derivatives of the terms dij
and hjki provided in the appendix, one finds that the gradient of E
with respect to the weight wi of an interior vertex i is:

∇wiE =
∑

j∈N (i)

?σij (zi − zj)−(?i ρi g) .

We immediately deduce that a critical point for weights of E enforces
exactly the balance equations on all interior vertices, and similarly
for free boundary vertices if we include the additional boundary
terms. Therefore, finding a self-supporting structure for a fixed
set of heights, boundary anchors, and harmonic-form coefficients c

amounts to extremizing E subject to the linear inequality constraints
?σ, τ ≥ 0 that enforce pure compression throughout the structure,
plus the divergence-free condition at the free boundary vertices.

4 Computational Form Finding Algorithms

With a clear understanding of the geometry of the problem and of the
variables at play, we can now provide an approach to the generation
of self-supporting simplicial structures. We assume that an initial
pointset (ui, zi) is given, as well as a connectivity that defines the
planar mesh T with a non-overlapping orthographic projection, and
with tags on boundary vertices indicating whether an anchored or
free boundary condition is desired. In case the surface can not stand
by itself with the given inputs, we need to (minimally) alter its shape
to make it self-supporting. We give pseudocode of our overall form
finding procedure in Fig. 4, and go through the numerical details of
each step. We then discuss possible variants and design tools derived
from this basic computational approach.

Input: initial mesh T + associated heights zi + boundary conditions
repeat

// Find best force diagram
PERFORM STRESS OPTIMIZATION (§4.1)
PERFORM HOLE-INDUCED STRESS OPTIMIZATION (§4.2)
// Alter heights (and optionally, move vertices too)
PERFORM SHAPE OPTIMIZATION (§4.3)

until (equilibrium criterion met)

Figure 4: Pseudocode of our form-finding solver.

4.1 Stress optimization

We designed in §3 a variational principle whose gradient with respect
to weights measures how self-supporting a structure is: if we are at
a critical point (gradient equals zero), the structure is at equilibrium.
Unfortunately, this energy is not necessarily convex depending on
the input mesh; furthermore, there may not even be weights that
enforce equilibrium for a given arbitrary shape while satisfying
the inequality constraints. However, we previously noted that this
energy is quadratic in the weights. So from our variational principle,
we can find vertex weights and boundary values that best enforce
equilibrium of non-anchored vertices in the L2 sense by solving for:

argminw,h∞,τ ‖∇wE‖
2
2 s.t. ?σ, τ ≥ 0, (∇·σ=0)boundary . (16)

Note that the divergence-free constraint is necessary only for free
boundary vertices due to the extra boundary terms described in §2.6.
This quadratic energy with linear constraints will reach zero iff
there exists a set of weights and boundary values defining a valid
stress-induced orthogonal dual for which the heights zi satisfies the
equilibrium equations. In the likely case there are no such weights
(as the user may start from a very bad configuration), we find the
weights which make the structure as close to equilibrium.

Our approach is similar in spirit to [Vouga et al. 2012], but we
now compute the best stress configuration using a smaller set of
equations. In fact, working in reduced coordinates enforces the
divergence-free equations (Eq. (8)) exactly for all interior vertices—
thus we only have to solve for the remaining equilibrium equations
(Eq.(9)), corresponding to two third less equations. As the size
of the system is considerably reduced, solving this optimization
to convergence is much more efficient: even on relatively small
meshes, we get a 5x speed up. Our method also resembles the work
of [Block and Lachauer 2011]; however, while the latter computes a
space of reduced coordinates through Gauss elimination of the TNA
equations (Eq. (6)), which has cubic complexity in the mesh size, our
approach provides the reduced coordinates in closed form (Eqs. (12)
and (13)). More importantly, our boundary treatment in §2.6 is more
general and turns previous approaches such as [Block and Lachauer
2011; Vouga et al. 2012] from a potentially overconstrained problem
to a systematically underconstrained problem.



Figure 5: Height optimization. An input shape from [Vouga et al. 2012] is optimized, improving the residual of the equilibirum equations along the way
(colormapped insets). Our form finding procedure removes the aphysical, concave center part of the shape. Compared to Vouga et al.’s result (red), we find a
self-supporting configuration with a normalized Hausdorff and a L2 distance to the initial shape of 0.04975 and 0.00758 respectively, while theirs are 0.04996
and 0.00831: their result suffers “sagging” of the initial shape near the anchored boundary, with less steep walls (see cut for comparisons).

4.2 Hole-induced stress optimization

Once the vertex weights and boundary values have been optimized,
we can then further improve balance (if it is not already enforced)
by optimizing for the harmonic-form coefficients c. This, of course,
is only performed if the domain has at least one hole (β1 > 0), and
we proceed as in the previous case by performing a solve for:

argminc,h∞,τ ‖∇wE‖22 s.t. �σ, τ ≥ 0, (∇·σ=0)boundary . (17)

Because the above energy is also quadratic in the coefficients c,
this optimization is particularly simple: we have a quadratic form
of only β1 coefficients to minimize under constraints. This allows
us to further adjust the stress-induced dual diagram in order to
improve balance, a step ignored by all previous approaches. See a
few results of stress and hole-induced stress optimization on various
input meshes in Figs. 3, 8 and 9.

4.3 Shape optimization

Finally, assuming that optimizing weights, boundary values, and
harmonic components have not yielded equilibrium, we must mod-
ify the assigned height values zi to find a self-supporting surface.
This shape optimization step can take on various forms. Vouga
et al. [2012] advocated a change of heights {zi} in concert with a
change of positions {ui} to reach a L2 minimum of the equilibrium
conditions. A change in node positions was beneficial in their case
because it helped enforce the divergence-free condition which, un-
like in our approach, was not satisfied by default. This particular
approach has the inconvenience of not separating shape control and
mesh quality, which can change the initial shape quite significantly
in the process, as demonstrated in Fig. 5. Methods enforcing the
divergence-freeness through the Airy stress function (for simply
connected domains) also proposed shape optimization of various
forms. For instance, Fraternali [2011] was removing equilibrium-
violating vertices altogether until an equilibrium was reached, but
this form finding approach may destroy the mesh quality. Instead,
Angelillo et al. [2012] proposed to freeze the parts of the surface
already satisfying equilibrium and solve for the optimal remaining
heights. However, this binary update reduces the smoothness of the
results, and ends up taking time to converge.

Here again, we leverage our variational approach to provide a simple
and robust numerical approach for smoothly modifying the shape
to become self-supported while staying as faithful as possible to
the original input shape. To achieve this effect, we use a minimiza-
tion with soft constraints: we minimize with respect to each zi the
norm of the residual of the balance equations, where each vertex
i is weighted inversely proportional to its local balance residual.
In other words, we optimize the heights by giving more leeway to
vertices that are significantly violating the equilibrium condition,
while vertices already near equilibrium will keep their heights al-
most unchanged. This weighted-L2 residual minimization has the
advantage of only affecting the shape in parts that are significantly
not self-supporting: Fig. 5 shows that while concave parts of the
original shape are necessarily altered to reach self-support, the rest

of the surface is mostly unaffected. Other weighting strategies can
of course be designed based on user preference.

As part of the shape optimization procedure, we also introduce
an optional step of mesh smoothing: based on the current vertex
positions ui in the plane, we compute an update of the Optimal
Delaunay Triangulation optimization introduced in [Alliez et al.
2005]: we move the coordinates of the mesh T such that the mesh
elements on the surface are more equilateral. Note that this may
actually reduce the quality of the shape of triangles in the plane,
but the simplicial masonry structure will be better geometrically
discretized. This optional step serves several purposes: first, it
guarantees that our algorithm does not create degenerate elements;
it also helps getting smoother resulting shape since the sampling
quality is improved; finally, it favors the creation of concavities on
free boundaries.

4.4 Variants

Many possible variants of our algorithm can be implemented. In
particular, margin of errors are important in engineering to allow
for small construction errors. One can modify the solvers to en-
force a number of physical properties. For instance, the constraint
that each σij be zero or negative can be changed to be bounded
away from zero (to enforce non-negligible, but material-adequate
compression), which we accommodate with ease by changing the
constraints in our optimization. Similarly, the boundary forces can
be assigned or optimized based on engineering needs. One could
enforce constraints on the force diagram as well, by either bounding
the maximum dual edge lengths or penalizing wild variations in dual
lengths. We could also prescribe the normal stress for free boundary
vertices, to deal with the case where a hole is attached to, say, a
pole, in order to suspend the whole masonry structure. By setting
the normal stress terms to zero, we can further enforce the boundary
dual edges to intersect in a single point, as done in [Block 2009;
Vouga et al. 2012] (Figs. 3 and 9). A user-defined varying mass
density can also be defined if the masonry structure is supposed
to withstand an extra load (Fig. 6). Finally, we point out that we
assumed a given connectivity in our approach. However, we may

Figure 6: Load bearing. By changing the load in a small region at the top
of an initial half-sphere shape, various dome shapes can be generated. In
order: constant mass, lighter top (×0.1), and heavy top (×5).



also alter the connectivity either based on user-guidance, or during
the form finding procedure to optimize for, e.g., maximum stress.
Adaptive meshing may also be an interesting avenue to explore to
refine the shape where stresses are high. In all cases, our knowledge
of the reduced coordinates for which a structure is self-supporting
leads to more compact equations and faster solves.

4.5 Timing and accuracy

We used CGAL [2012] as our mesh library, and IPOPT [Wächter and
Biegler 2006] as our numerical optimization library. Equilibrium
of all our examples was enforced by ensuring that the L∞ norm of
the gradient of the residual of non-anchored vertices is below 1e-6,
which took between 5 and 20 iterations of our form-finding iterative
solver depending on the input model size. Typical timings for the
various form finding tests we made were at most two minutes. We
also compared in Fig. 7 our stress optimization timing to Vouga et
al. [2012] and found a systematic improvement varying from a factor
2 to 7 for meshes of various sizes.

Model V ; E ; F Vouga et al.’s Ours
Cheese-model (Fig. 3) 2348;6218;3832 13.078 9.8
Lilium (Fig. 5) 1201;3504;2304 4.136 0.887
Variable load (Fig. 6) 1156;3368;2213 3.65 0.77
Shifted barrel vault (Fig. 8) 310;836;527 0.24 0.15
Moebius igloo (Fig. 8) 702;2006;1304 1.3 0.4
Dome with hole (Fig. 8) 1656;4842;3186 7.7 1.5
Groin vault (Fig. 8) 2943;8569;5627 23.6 4.1
Free vault (Fig. 9) 360;1000;640 0.387 0.18
Dome with doors (Fig. 9) 577;1600;1024 0.877 0.368
Video-surface (Fig. 9) 1131;3194;2064 3.55 0.98
Cas-model (Fig. 9) 5951;17472;11520 90.1 18.0
Oval dome (no figure) 12250;36500;24251 443.467 61.277

Figure 7: Timing. Comparisons between dual optimization timings (in
seconds) from Vouga et al. [2012] and our approach. All results were
clocked on an Intel Core i7 2.2 GHz laptop with 4GB RAM.

5 Conclusions

Our work on simplicial masonry provides a discrete theory of equi-
librium for purely compressive structures that can support their
own weight. We showed that the well-known continuous equations
from the rich mechanical engineering literature find simple, discrete

Figure 8: Gallery. Free-standing shapes can be obtained with our approach.
While the Moebius igloo was our design (top right), the dome with a circular
oculus (top left, similar to Rome’s Pantheon; notice how the opening dilates
during optimization to enforce equilibrium), the groin vault (bottom left), the
shifted barrel vault (bottom right), and the spiral staircase (center) are all
classic masonry structures (insets show the initial meshes we used).

equivalents. We also exploited these properties to formulate a set of
reduced coordinates in order to encode equilibrium and boundary
conditions. Finally, we leveraged this tight formulation to produce a
computational form finding procedure to alter a reference shape into
a free standing simplicial masonry structure.

As future work, our discretization could be used to predict or simu-
late the development of cracks over time based on the stress field’s
principle directions as postulated in [Fraternali 2011]. It may also
be interesting to apply our setup to the “opposite” case of wrinkled
membranes, for which the forces at play are tensile instead of com-
pressive [Wong and Pellegrino 2006]. Many of the properties we
mention should remain valid as is, with an opposite sign. General-
ization to arbitrary structures, including reinforced concrete, may
also bring a complementary set of computational techniques to the
traditional finite elements tools currently used in engineering firms.
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FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. In Proceedings of ACM
SIGGRAPH.

FOSDICK, R., AND SCHULER, K. 2003. Generalized Airy stress
functions. Meccanica 38, 5, 571–578.



FRATERNALI, F., ANGELILLO, M., AND FORTUNATO, A. 2002. A
lumped stress method for plane elastic problems and the discrete-
continuum approximation. International Journal of Solids and
Structures 39, 6211–6240.

FRATERNALI, F. 2010. A thrust network approach to the equilibrium
problem of unreinforced masonry vaults via polyhedral stress
functions. Mechanics Research Communications 37, 2, 198–204.

FRATERNALI, F. 2011. A mixed lumped stress–displacement ap-
proach to the elastic problem of masonry walls. Mechanics Re-
search Communications 38, 176–180.

GIAQUINTA, M., AND GIUSTI, E. 1985. Researches on the equilib-
rium of masonry structures. Archive for Rational Mechanics and
Analysis 88, 359–392.

GLICKENSTEIN, D., 2005. Geometric triangulations and discrete
Laplacians on manifolds. arXiv.org:math/0508188.

GRADY, L. J., AND POLIMENI, J. R. 2010. Discrete Calculus:
Applied Analysis on Graphs for Computational Science. Springer.

GREEN, A., AND ZERNA, W. 2002. Theoretical Elasticity. Dover.

HEYMAN, J. 1966. The stone skeleton. International Journal of
Solids and Structures 2, 2, 249–279.

MERCAT, C. 2001. Discrete Riemann surfaces and the Ising model.
Comm. Math. Phys. 218, 177–216.
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Appendix

In this appendix, we provide the analytical expressions of several
derivatives used in the paper. Deriving these expressions requires
basic trigonometric identities, and patience.

Derivatives w.r.t. w:

∂widij =
1

2|ij| , ∂widji = − 1

2|ij| ,

∂wihjki =
cotαijk

2|ij| , ∂wihijk =
cotαjki

2|ik| , ∂wihkij = − |jk|
4|ijk| .

Derivatives w.r.t. c:

∂cbdij =
γbji

2|ij| , ∂cbhjki =
cotαijk

2|ij| γbki +
cotαkij

2|ij| γbkj .

Hessian of E:

∂2
wi,wjE =

cotαkij
2 |ij|2 (zk−zj) +

cotαijk
2 |ij|2 (zk−zi)

+
cotαjil
2 |ij|2 (zl−zj) +

cotαlji
2 |ij|2 (zl−zi) ,

∂2
wi,wiE = −

∑
j∈N (i) ∂

2
wi,wjE ,

∂2
wi,cbE =

1

2

∑
j∈N (i)

(
zi − zj
|ij|

)
∂cbhij .

We also note that the energy E has an interesting derivative w.r.t. c:

∂cbE =
1

2

∑
ij

?σij (zj − zi) γbij = 1
2
〈d0z, γ

b〉σ,

where 〈·, ·〉σ is the inner product induced by σ.

Figure 9: Stress-induced Dual. Self-supporting simplicial surfaces and
their stress-induced dual diagrams computed via stress and hole-induced
stress optimization (§4.1 and 4.2) for a series of meshes of arbitrary topology
from [Vouga et al. 2012], with boundary normal stresses set to zero (τ = 0).




