
To appear in ACM TOG 32(4).

Non-Polynomial Galerkin Projection on Deforming Meshes

Matt Stanton1 Yu Sheng1 Martin Wicke2 Federico Perazzi1 Amos Yuen1 Srinivasa Narasimhan1 Adrien Treuille1

1Carnegie Mellon University 2Otherlab

Figure 1: Our method enables reduced simulation of fluid flow around this flying bird over 2000 times faster than the corresponding full
simulation and reduced radiosity computation in this architectural scene over 113 times faster than the corresponding full radiosity.

Abstract

This paper extends Galerkin projection to a large class of non-
polynomial functions typically encountered in graphics. We
demonstrate the broad applicability of our approach by applying it
to two strikingly different problems: fluid simulation and radios-
ity rendering, both using deforming meshes. Standard Galerkin
projection cannot efficiently approximate these phenomena. Our
approach, by contrast, enables the compact representation and ap-
proximation of these complex non-polynomial systems, including
quotients and roots of polynomials. We rely on representing each
function to be model-reduced as a composition of tensor products,
matrix inversions, and matrix roots. Once a function has been repre-
sented in this form, it can be easily model-reduced, and its reduced
form can be evaluated with time and memory costs dependent only
on the dimension of the reduced space.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation, Radiosity; I.6.8 [Simulation
and Modeling]: Types of Simulation—Animation;

Keywords: reduced models, fluid simulation, solid-fluid coupling,
radiosity

1 Introduction

Galerkin projection has enabled astonishing speedups in graphics.
However, despite a breadth of applications – everything from global
illumination [Sloan et al. 2002] to fluids [Treuille et al. 2006] –
a key limitation of this approach is that the underlying phenom-
ena must be polynomial, a restriction which limits its applicability
within computer graphics.

This paper proposes an efficient extension of Galerkin projection
to any function composed of elementary algebraic operations – the
four operations of arithmetic plus rational roots – thus expanding
the applicability of this model reduction approach across graph-
ics. To demonstrate the broad applicability of our method, we ap-
ply it to two strikingly different problems: radiosity rendering and
fluid simulation. Although both of these phenomena can be ex-
pressed in polynomial form on a fixed mesh, we show that allowing
geometric deformation requires non-polynomial operations to ex-
press changes to the dynamics and appearance. Applying standard
Galerkin projection to such functions is theoretically possible, but
does not yield any runtime speed improvement. Our technique, by

contrast, can efficiently model these complex non-polynomial sys-
tems. Similar to standard Galerkin projection, our approach not
only preserves key optimality guarantees, but also generates a com-
pact, analytic model in the reduced space.

Our method has a wide range of applications. Interactive environ-
ments, such as video games and architectural design applications,
increasingly incorporate physical simulation. Our technique could
add fluid effects around rigged objects including characters and ani-
mals. We could also compute real-time radiosity for scenes contain-
ing these elements, correctly accounting for their motion, deforma-
tion, and appearance. More generally, this paper is the first demon-
stration of real-time Galerkin projection for non-polynomial sys-
tems, potentially opening up interactive simulation to a wide range
of new phenomena.

2 Related Work

Galerkin projection has been used in interactive graphics to speed
up both linear and nonlinear deformation [Pentland and Williams
1989; James and Pai 2002; Hauser et al. 2003; Barbič and James
2005], sound [James et al. 2006], rendering [Sloan et al. 2002;
Sloan et al. 2005], and fluids [Treuille et al. 2006; Gupta and
Narasimhan 2007; Barbič and Popović 2008; Wicke et al. 2009].
A common thread running through these applications is that the
governing equations are polynomial. Our method builds upon
these previous efforts by extending Galerkin projection to non-
polynomial functions, which cover a broader range of phenomena.

Model reduction of non-polynomial functions. In numerical
analysis, Galerkin projection has primarily been used for linear and
rational functions. Rational Krylov methods approximate a rational
transfer function in the frequency domain using moment matching
[Olssen 2005; Ebert and Stykel 2007; Gugercin et al. 2006] to find
good bases for linear time-invariant (LTI) systems and extensions
thereof. Alternatives include rational function fitting (also known as
multipoint methods) [Liua et al. 2008; Gallivan et al. 1996; Grimme
1997] and balanced truncation [Li 2000; Zhou 2002; Gugercin and
Antoulas 2004]. The key difference between these works and ours
is that their goal is to reduce linear, time-invariant systems (LTIs)
by analyzing their rational transfer functions, whereas we are in-
terested in the reduction of non-polynomial functions for their own
sake.

Because of the restrictive nature of LTIs, extensions have been pro-
posed for time-varying systems, both linear [Phillips 1998; Sand-
berg and Rantzer 2004; Chahlaoui and van Dooren 2005; Hossain
and Benner 2008] and multilinear [Savas and Eldén 2009]. The

1

To appear in ACM TOG 32(4).

work closest to ours is Farhood and Dullerud [2007], who apply
rational Krylov methods to linear systems rationally dependent on
time-varying parameters. However, unlike our work, theirs does
not guarantee preservation of polynomial degree for arbitrary com-
positions of elementary algebraic operations and therefore can be-
come computationally intractable for complex phenomena. Using
an algebraic approach similar to that of Debusschere et al. [2004]
for probabilistic dynamics, we alter Galerkin projection to enable
order-preserving reduction for arbitrary compositions of elemen-
tary algebraic operations. To our knowledge, ours is the first work
to present a general framework for Galerkin projection of arbitrary
compositions of elementary algebraic operations while preserving
polynomial degree, an essential property for real-time graphics,
and the first work to simulate fluid flow or radiosity on deforming
meshes.

Techniques other than Galerkin projection can model-reduce non-
polynomial systems. An et al. [2008] demonstrated model reduc-
tion of nonlinear elastic dynamics using cubature, which approxi-
mates nonlinear functions in low dimension by sampling the orig-
inal functions and fitting a model to the samples. This method
was also used to reduce thin shell dynamics by Chadwick et al.
[2009], and can be extended to support online updating of the basis
[Kim and James 2009] and domain decomposition [Kim and James
2011]. Kim et al. [2013] also applied this technique to fluid simu-
lation. Similar to our work, this work also model reduces inverse
matrices and builds separate bases for each step of the dynamics. In
general, the accuracy of cubature depends on selecting good bases
and a good set of points at which to sample the simulation dynam-
ics, unlike our work, where the accuracy depends only on the choice
of bases.

Reduced-order fluid models. Previous reduced fluid models in
graphics and numerical analysis suffered from highly restrictive
boundary conditions. A straightforward solution is to construct sep-
arate bases for each possible boundary configuration [Schmit and
Glasuer 2002]. However, this approach cannot scale to continu-
ously deforming boundaries. For flows with periodic boundaries,
and with inherent symmetries within the flow dynamics, it is possi-
ble to remove uniform translation modes [Rowley et al. 2003; Row-
ley and Marsden 2000]. For a single rotating object, the basis can be
constructed in the object’s frame of reference and then simulated at
various angles [Ausseur et al. 2004]. Treuille et al. [2006] enabled
the insertion of rigidly moving boundaries, and Wicke et al. [2009]
allowed discrete boundary reconfiguration at runtime. Perhaps the
work closest to ours is that of Fogleman et al. [2004], which en-
abled linear deformation along a single axis to model reduce piston
and combustion simulation.

We enable continuous boundary motion by embedding the fluid in
a tetrahedral mesh, similar to Elcott et al. [2007], and deforming
the mesh along with the boundary. This requires a full-dimensional
fluid solver that works for tetrahedral meshes. We considered sev-
eral classes of solvers including finite element methods (e. g. [Feld-
man et al. 2005a; Feldman et al. 2005b]), methods based on discrete
exterior calculus [Mullen et al. 2009; Pavlov et al. 2011], and ALE
methods (such as [Klingner et al. 2006]). We chose the residual dis-
tribution scheme [Sewall et al. 2007; Dobes and Deconinck 2006;
Deconinck and Ricchiuto 2007], which is akin to a finite-difference
fluid approximation [Foster and Metaxas 1996], but generalized to
a tetrahedral mesh, due to its amenability to our non-polynomial
Galerkin projection and the fact that it can be stably integrated in
the reduced space.

Reduced-order global illumination. Existing reduced-order
global illumination techniques, such as Precomputed Radiance
Transfer [Sloan et al. 2002], cannot accurately model the effect
of general continuous large-scale scene deformations on nonlocal

radiance transfer. James and Fatahalian [2003] allowed for de-
formable objects, but only for a certain set of physics-based de-
formations. Sloan et al. [2005] accounted for changes in local light
transport arising from a more general set of deformations. More
recent models allow discrete scenes to be composed without requir-
ing additional precomputation [Loos et al. 2011; Loos et al. 2012],
but do not allow for general continuous change in shape. In this pa-
per, we focus on simulating low-frequency lighting effects and use
radiosity [Goral et al. 1984] as the global illumination algorithm.
Numerous methods [Hanrahan et al. 1991; Drettakis and Sillion
1997] have been proposed to accelerate the computational speed
of radiosity for dynamic scenes. However, most previous methods
are limited to rigid transformations, such as inserting, deleting, and
moving objects in the scene. Realtime computation of radiosity
for deformable scenes remains a challenge. (We remark that [Zatz
1993] uses the term “Galerkin” in a different sense to describe the
approximation of curved geometry using flat patches; this is unre-
lated to our goal of accelerating standard radiosity).

3 Polynomial Galerkin Projection

Many areas of graphics require the time-consuming computation
of high-dimensional functions, such as the light transport and fluid
equations. At its core, model reduction is about approximating
these functions with fewer dimensions.

Suppose we wish to evaluate a function y = f(x) where the in-
put x ∈ Rn and output y ∈ Rm are very high-dimensional. We
seek a reduced approximation ŷ = q̂(x̂), where the reduced input
x̂ ∈ Rn̂ and output ŷ ∈ Rm̂ lie in much lower-dimensional spaces:
n̂� n and m̂� m. The first step is to linearly dimension-reduce
the state vectors, which means finding a pair of orthonormal bases
Bx,By which convert reduced vectors to full vectors: x = Bxx̂
and y = Byŷ. We can project from the full to the reduced space
through multiplication by the transpose: x̂ = BT

xx, and ŷ = BT
y y.

The second step is to model-reduce the transformation f , which
means finding an efficient reduced approximation q̂ : Rn̂ → Rm̂

operating entirely in the reduced space. The standard approach is
Galerkin projection, which works well if f is polynomial but can be
inefficient otherwise.

The following sections present our technique to efficiently model-
reduce equations of the form

y = f(x)

where f(x) can be written using only the four basic arithmetic op-
erations and fractional powers. We begin by describing standard
Galerkin projection, which allows us to model-reduce polynomi-
als, and forms the foundation of the rest of our approach. We then
describe how this technique can be combined with a small num-
ber of basic matrix operations in order to reduce a wide range of
non-polynomial functions. Sections 5-9 apply this method to the
simulation of radiosity and fluids.

Notation. In the remainder of the paper, scalars appear in lower
case: x, vectors in bold lower case: x, and matrices and tensors
in bold upper case: X. We write Q ⊗a M to denote tensor multi-
plication of the tensor Q by the matrix or vector M along the axis
with index a, and Q⊗a...b M to denote the repeated tensor product
Q ⊗a M ⊗a+1 M . . . ⊗b M. We number tensor axes starting from
0. For clarity, we sometimes employ the matrix notation BTQ to
denote multiplication along the 0th axis, Q⊗0 B, and the notation
QB to denote multiplication along the 1st axis, Q⊗1 B. We refer
to multiplication of a tensor by a vector as tensor contraction, an
operation which reduces the tensor order by one.

A degree-d polynomial q(x) can be represented as a d+ 1th-order

2

To appear in ACM TOG 32(4).

tensor Q. For example, if some polynomial p(x) has degree 3 and
x is of length n, then we can write the components of p(x) as

pi(x) =

n∑
j=1

n∑
k=1

n∑
`=1

cijk`xjxkx`

where cijk` are the coefficients of the polynomial p(x). The
4th-order tensor P simply consists of the polynomial coefficients:
Pijk` = cijk`, and we can write p(x) = P ⊗1...3 x. Likewise,
we can evaluate the degree-d polynomial q(x) by contracting its
corresponding d+ 1th-order tensor Q:

q(x) = Q⊗1...d x.

To compute the Galerkin projection of the polynomial

y = Q⊗1...d x

we start by substituting the reduced variables:

Byŷ ≈ Q⊗1...d Bxx

(We write ≈ to remind ourselves that ŷ has too few degrees of
freedom to ensure that this equation has an exact solution.) We
then multiply by BT

y :

ŷ = BT
y (Q⊗1...d Bxx) . (1)

We can compute the value of ŷ at runtime quickly as ŷ = Q̂⊗1...d

x̂, where
Q̂ = BT

y Q⊗1...d Bx, (2)

and the product BT
y Q denotes the product of Q with By along the

tensor axis corresponding to the result vector ŷ. Q̂ is called the
Galerkin projection of Q. Intuitively, Q̂ transforms the reduced
input x̂ into the full space using Bx, applies Q, then projects back
into the reduced space using BT

y . The final projection incurs some
accuracy cost, but it unambiguously specifies ŷ, so we can write
Eq. 2 with an equals sign. The projection is fast: evaluating Q̂
takes the same number of contractions as evaluating Q, although
each contraction is now with a vector of length n̂ instead of length
n.

4 Non-Polynomial Galerkin Projection

It is more difficult to see how we can efficiently apply Galerkin
projection to non-polynomial functions. For example, consider the
rational function y = f(x), where x = [x1, x2]T , y = [y1, y2]T ,
and:

y1 =
x1x2 + x22

x21
y2 =

x21
x22

. (3)

We could compute the Galerkin projection of this function by trans-
forming reduced vectors into the full space, applying the full space
equations, and projecting the results back to the reduced space, but
this would yield no speed advantage. Instead, we use two tensors
to express f(x), rewriting it as a matrix-vector product:[

y1
y2

]
=

[
x21 0
0 x22

]-1 [
x1x2 + x22

x21

]
Both the matrix and the vector are polynomial (specifically,
quadratic) in x. Therefore we can evaluate the matrix using a 4th-
order tensor Q1, and the vector using an 3rd-order tensor Q2:[

x21 0
0 x22

]
= Q1 ⊗2 x⊗3 x

[
x1x2 + x22

x21

]
= Q2 ⊗1 x⊗2 x

where Q1 and Q2 are (labeling each tensor slice by its associated
polynomial term):

Q1 ⊗2 x⊗3 x =

[
1 0
0 0

]
x21+

[
0 0
0 0

]
x1x2+[

0 0
0 0

]
x2x1+

[
0 0
0 1

]
x22

and

Q2⊗1x⊗2x =

[
0
1

]
x21+

[
1
1

]
x1x2+

[
0
0

]
x2x1+

[
1
1

]
x22

To evaluate f(x), we contract Q1 and Q2 as shown above, then
invert the matrix Q1 ⊗2 x ⊗3 x, and finally compute the matrix-
vector product. In the form of a single equation:

y = (Q1 ⊗2 x⊗3 x)-1 ⊗1 (Q2 ⊗1 x⊗2 x) (4)

More generally, we reduce a non-polynomial function f(x) by writ-
ing f(x) in terms of a collection of tensors Q1 . . .Qk, to which we
apply a series of tensor contractions and matrix operations. We can
reduce functions expressible using only the following operations:

Name Full Form
(i) Tensor Product Q⊗X

(ii) Matrix Inverse Q-1

(iii) Matrix Root Q
1
n

where Q is a matrix in (ii) and (iii). In (iii), Q is additionally sym-
metric and positive semidefinite, and Q

1
n is uniquely identified as

the positive semidefinite matrix such that (Q
1
n)n = Q.

As we saw in §3, polynomial functions require only one tensor and
repeated applications of operation (i) for evaluation. However, as
we showed in Eq. 3, there are many cases in which it may be nec-
essary to use multiple tensors and operations beyond (i) to evaluate
f(x).

Once we have expressed a function f(x) in terms of tensors
Q1, . . . ,Qk and our allowed matrix operations, we can reduce it.
This requires that we first find bases for every axis of every tensor
Qi. For example, for a polynomial y = qi(x1, . . . ,xd) we require
separate bases for y,x1, . . . ,xd. Once we have found these bases,
we can pre-multiply each tensor by its associated bases, as we did in
Eq. 2. Computing f̂(x̂) then follows exactly the sequence of opera-
tions used to compute f(x), except that we replace each tensor Qi

with its reduced counterpart Q̂i. That is, each operation transforms
as follows:

Full Form Reduced Form
(i) Q⊗k X Q̂⊗k X̂= BT

q Q⊗k BxX̂

(ii) Q-1 Q̂-1 = (BT
q QBq)-1

(iii) Q
1
n Q̂

1
n = (BT

q QBq)
1
n

While each reduction is straightforward, these reductions do have
implications for basis selection, as shown in the last column of the
table. Since we need to reduce every tensor along all of its axes, we
need a basis for each axis of each tensor. Operations (ii) and (iii)
require that Q be reduced using the same basis along both axes.
§4.2 explains this restriction. Q̂ is typically small enough that we
can efficiently compute Q̂

1
n using eigen-decomposition.

3

To appear in ACM TOG 32(4).

4.1 Reduction Example

To reduce our example function (Eq. 3) from the previous section,
we inspect the tensor form (Eq. 4) to see which bases we will need.
Reading from right to left, it appears that we require a basis Bx for
x, a basis Bn for Q2 ⊗1 x ⊗2 x, and a basis By for y. Due to
the restriction that an inverted matrix must be reduced by the same
basis along both axes, By = Bn, and we will refer to both as By .
The reduction of Q1 and Q2 is then:

Q̂1 = BT
y Q1 ⊗1 By ⊗2 Bx ⊗3 Bx

Q̂2 = BT
y Q2 ⊗1 Bx ⊗2 Bx

and to evaluate f̂(x̂) at runtime we perform:

ŷ = (Q̂1 ⊗2 x̂⊗3 x̂)-1 ⊗1 (Q̂2 ⊗1 x̂⊗2 x̂)

The only data we require to perform this computation are the two
reduced tensors Q̂1 and Q̂2. If we wish to display the full space
result of the computation at runtime, then we will we will also need
By to compute y = Byŷ.

4.2 Properties

Our choice of reduction is not the only one we could have used for
non-polynomial functions. We could have chosen to replace each
full-space operation with something more complex than the same
operation performed on reduced tensors. Our method does, how-
ever, have three principal advantages. First, it is simple: once a
function has been expressed in terms of tensors, the reduction con-
sists only in replacing full-dimensional tensors with corresponding
reduced-dimensional tensors. Second, it is efficient: tensor order is
preserved by the reduction, which is important because both ten-
sor storage costs and evaluation time complexity are exponential in
the tensor order. Third, it is optimal: each reduction rule is con-
structed to minimize some measure of error (similar to [Carlberg
et al. 2011]), given a particular decomposition into tensors of the
target function. We discuss the optimality properties of each of our
operations in turn.

Tensor product. If we have a single tensor Q of order d+ 1 which
we contract d times by a fixed vector x: y = Q ⊗1...d x, then
minŷ ||Byŷ−Q⊗1...dBxx̂|| is minimized at ŷ = BT

y Q⊗1...d x,
exactly as in Eq. 1.

Matrix inverse. For the matrix inverse, operation (ii), let
y = Q-1x. minŷ ||Bxŷ − Q-1Bxx̂||Q is minimized at ŷ =
(BT

xQBy)-1. Note that this is not the same as the ordinary
Galerkin projection of Q-1, which would be BT

xQ
-1Bx. We could

also allow the bases for x̂ and ŷ to differ, in which case the error
would be minimized at ŷ = (BT

xQBy)-1BT
y Bx. However, we

have found that setting Bx = By has significant benefits in prac-
tice, such as energy conservation in our fluids application (§A.2).

Matrix root. Matrix roots, operation (iii), approximate Q
1
n by first

finding the reduced matrix Q̂ that best approximates
(
Q

1
n

)n
= Q,

computing minQ̂ ||BxQ̂x − QBxx||. This reduced matrix is

Q̂ = BT
xQBx. We then use its nth root, Q̂

1
n , to approximate

Q
1
n . Multiplying Q by the same basis along both axes ensures that

Q̂ is also symmetric and positive semidefinite. Again, our reduc-
tion differs from the ordinary Galerkin projection of Q

1
n , which is

BT
xQ

1
nBx.

Speed-optimality tradeoff. In our optimality discussion for oper-
ation (i), we restricted ourselves to the case where we represent the

function f(x) using a single tensor. However, in many cases we
can choose to represent a polynomial using multiple tensors. This
allows us to exchange optimality for speed by composing polyno-
mials. Suppose q(x) = q1(q2(x)), where q has degree d = ab,
q1 has degree a, and q2 has degree b. We can choose to express
q(x) as either Q ⊗1...d x or Q1 ⊗1...a (Q2 ⊗1...b x). In the
full space, these expressions are identical. When reduced, how-
ever, these expressions become (BT

y Q ⊗1...d Bx) ⊗1...d x̂ and
(BT

y Q1⊗1...aBz)⊗1...a ((BT
z Q2⊗1...b x̂). We can also write the

second case as:

BT
y Q1 ⊗1...e (BzB

T
z Q2 ⊗1...g Bxx̂)

which is equivalent to:

BT
xq1(BzB

T
z q2(Bxx̂)).

Notice that the composition introduces an extra projection BzB
T
z ,

which reduces the accuracy of the reduced result. On the other
hand, the reduced composition is faster to compute than the reduced
original polynomial: the composition replaces one reduced tensor
containing n̂eg+1 elements with two much smaller reduced tensors,
one containing n̂e+1 elements, and the other containing n̂g+1.

4.3 Summary

In this section, we have demonstrated that any function con-
structable from tensor contraction, matrix inversion, and ma-
trix roots can be easily model-reduced using our non-polynomial
Galerkin projection method. To reduce such a function f(x), we
construct it using a collection of tensors Q1, . . . ,Qk, to which
we apply our tensor and matrix operations. The reduced counter-
part f̂(x̂) can then be computed by simply replacing the tensors
Q1, . . . ,Qk with the tensors Q̂1, . . . , Q̂k, and maintaining exactly
the same sequence of operations. Our method is simple, efficient,
and optimal in the sense described in §4.2.

In the remainder of the paper, we demonstrate applying this tech-
nique to two different problems: fluid flow around deforming ob-
jects, and global illumination in the presence of deforming objects.

5 Fluids

As a first example of our non-polynomial Galerkin projection
method, we describe the reduction of fluid flow on a deforming
tetrahedral mesh. In this system, movement of the mesh exerts
force on the fluid, but forces from fluid motion do not cause the
mesh to move. The simulation state consists of fluid velocities u
and fluid momenta p, located at the centroid of each element, and
of fluid fluxes f through each face. (Ordinarily, one would use only
one of these descriptions of fluid flow. As we shall see however,
non-polynomial Galerkin projection demands that we treat these
quantities separately.) We require that the mesh topology remains
constant, but allow continuous deformation of the positions of the
mesh vertices denoted g (Fig. 3).

We begin from the incompressible Navier-Stokes momentum equa-
tion:

u̇ = −(u · ∇)u− ν∇2u +∇p+ e, (5)

where p denotes pressure, ν viscosity, and e external forces. We
discretize this equation using the residual distribution scheme of
Dobes, Deconinck, and Ricchiuto [2006; 2007], which is essen-
tially a finite-differencing method applied to tetrahedral meshes.
We use operator splitting [Stam 1999] to divide the velocity update

4

To appear in ACM TOG 32(4).

begin fullSimStep(ut, ft, gt, gt+1): begin reducedSimStep(ût, f̂t, ĝt, ĝt+1)

flux combination ġ← gt+1 − gt

f ′ ← ft − h(ġ) f̂ ′ ← f̂t −BT
f Bhĥt

advection (§5.1)
diffusion (§5.2) u′ ← ut +

∫ t+1

t
[V-1(gt)(A⊗2 f

′ − µ∆)]ut û′ ← exp[∆tV̂-1(ĝt)(Â⊗2 f̂
′ − µ∆̂)]ût

pressure projection
(§5.3)

ft+1 ← min ‖u′−V-1(gt+1)(P⊗2 gt+1)f‖V(gt+1)

s. t. Df −Dh(ġ) = 0 and∇ · f = 0

f̂t+1 ← minf̂ ‖û
′−V̂-1(ĝt+1)(P̂⊗2ĝt+1)f̂‖V̂(ĝt+1)

s. t. D̂f̂ − D̂hĥt = 0
convert to velocity ut+1 ← V-1(gt+1)(P⊗2 gt+1)ft+1 ût+1 ← V̂-1(ĝt+1)(P̂⊗2 ĝt+1)f̂t+1

end end

Figure 2: Algorithmic summary of the full-dimensional and reduced time steps. Note the close correspondence.

into advection, diffusion, and pressure projection steps. The algo-
rithm is summarized in Fig. 2, where we integrate the full-space
equations using a 4th order Runge-Kutta integrator. We now de-
scribe each step in detail.

velocity (u)
momentum (p)

flux (f)

geometry (g)

geometry (g)

geometry (g)

geometry (g)

flux (f)

flux (f)

flux (f)

Figure 3: Geometric layout of the simulation variables on a tetra-
hedral element.

5.1 Advection

The advection step transports quantities through the mesh. We treat
each of the x, y, and z components of velocity separately, and trans-
port them between mesh elements according to the flux f . This
transport is described by the advection tensor A, which interpolates
velocities onto the mesh faces, multiplies the interpolated velocities
by f to find the rate of momentum transport over each face, and fi-
nally sums the momentum transported over a cell’s faces to find the
momentum derivative at that cell as ṗ = (A ⊗2 f)u. For a cell i,
A computes:

ṗi =
∑
e

ffie
1

2
(ue + ui), (6)

where the sum index e runs over the four face-adjacent cells to i,
and fie denotes the index of the (oriented) face between i and e.

However, we are not primarily interested in momentum ṗ, but in
velocity u̇. We assume a constant density (incompressible) fluid1,
so u and p are related by the 5th-order volume tensor V, which
we use to compute a matrix-valued cubic polynomial in the vertex
locations:

V ⊗2...4 g =

 v1(g)
. . .

vn(g)

 (7)

where vk(g) is the volume of cell k as a function of the vertex
positions. For clarity, we will write V(g) in place of V ⊗2...4 g.

1Specifically, we assume the density is 1.

Given V, we can compute momentum: p = V(g)u. This gives us
the advection equation:

u̇ = V-1(g)(A⊗2 f)u. (8)

Note that this equation depends on the geometry g. If g were con-
stant, V would simply be a constant matrix, and we could precom-
pute V-1 and absorb it into A. Because we want to simulate the
fluid behavior in the presence of changing geometry, we must ex-
plicitly represent V as a tensor which we can contract to a matrix
and invert. This requires our non-polynomial Galerkin projection
technique.

5.2 Diffusion

We discretize viscosity as follows:

u̇ = −µV-1(g)4u, (9)

where µ is a viscosity coefficient, 4 is the graph Laplacian
(4u)i = −|Ni|ui +

∑
j∈Ni

uj , Ni are the (usually four) tetra-
hedra neighboring tetrahedron i, and V is the volume tensor. We
have found that this simple, geometric approximation to diffusion
is sufficient in both the full and reduced spaces. After computing
the contribution of both advection and diffusion to u̇, we use an
explicit time integration scheme to update the velocity.

5.3 Projection

Given a velocity u, the projection step first generates a flux f that is
close to u and satisfies the incompressibility constraint ∇ · f = 0.
We can then convert f back to a velocity that corresponds exactly
to the incompressible flux.

To perform the conversion from flux to velocity, we introduce the
tensor P, which sums the volume-weighted directed fluxes of a cell
to obtain the momentum of the cell: p = (P ⊗2 g)f . Thus, the
velocity corresponding to f is given by u = V-1(g)(P ⊗2 g)f .
Note that this relation only holds if the fluxes f are divergence-free.

Using the flux-to-velocity conversion and a velocity field u, we can
find the flux field f that fulfills our incompressibility constraint∇ ·
f = 0, while minimizing the energy of the difference between its
corresponding velocity V-1(g)(P⊗2 g)f and u. The energy to be
minimized is

1

2
||u−V-1(g)(P⊗2 g)f ||2V(g), (10)

where ‖x‖2M = xTMx. We solve the minimization using Uzawa’s
method as described in [Benzi et al. 2005].

Again, since we need to perform flux-to-velocity conversions, we
have to perform divisions by cell volumes V(g). In this case, these
divisions appear in the objective of our optimization.

5

To appear in ACM TOG 32(4).

Figure 4: A cutaway view of a tetrahedral mesh used in our fluid
simulation application.

5.4 Fluid-Geometry Coupling

To allow deforming objects to exert forces on the fluid around them,
we modify both the advection and projection steps of our simula-
tion. To model the effect of the moving mesh on advection, we
compute and then subtract the flow h induced by the motion of the
mesh. This ensures that velocities do not translate simply because
their discretization element moves through space. We also mod-
ify the projection step to ensure that we never advect fluid across a
moving domain boundary.

The movement of face i induces a flux hi(ġ) through that face equal
to

hi = Aiċi · ni, (11)

where Ai is the area of the face, ni its normal, and ċi the velocity
of its centroid. To compensate for mesh movement, we can simply
subtract h(ġ) wherever we use f .

In particular, in the advection step we subtract the effect of advec-
tion due to induced fluxes from the effect of advection due to fluid
fluxes: ṗ = A ⊗2 f − A ⊗2 h. In the projection step, we en-
force that there is no flow across the boundary by adding constraints
Df + Dh = 0 to the projection, where D is an operator which se-
lects the boundary faces. These modifications ensure that the flow
inside of the domain is independent of the movement of the mesh,
and that there is no flow across (possibly moving) domain bound-
aries.

6 Reduced Fluids

We construct the reduced simulation by applying our non-
polynomial reduction rules (§4) to the fluid simulation method from
the previous section.

In order to reduce the governing equations, we have to reduce the
tensors V, P, A, 4, and D. Because we require bases for each
axis of each of these tensors (last paragraph before §4.1), we will
need a flux basis Bf , velocity basis Bu, and momentum basis Bp.
Since V and P depend on the geometry, we need a geometry basis
Bg . We also need a basis Bh for the fluxes induced by mesh motion
and a basis Bd for boundary fluxes.

6.1 Basis Construction

The quality of the runtime simulation depends significantly on our
choice of bases. We build Bf , Bh, Bu, and Bp using a method
similar to [Treuille et al. 2006]. We run a set of full-dimensional

simulations and collect snapshots of simulation quantities into large
matrices, where each column represents a simulation frame. We
create bases by running out-of-core Singular Value Decomposition
(SVD) on these matrices using the method of James and Fatahalian
[2003]. After computing the momentum and velocity bases inde-
pendently, we concatenate these bases and re-orthonomalize. This
process ensures that Bu = Bp, which ensures energy preservation
in the reduced space (§A.2) and complies with the requirements of
matrix inversion reduction (§4).

Creating the geometry basis Bg is more difficult. We begin with
a sequence of triangle meshes animating changes to the boundary
conditions, such as the flapping wings of a bird. We select an in-
termediate pose for the boundary mesh and construct a tetrahedral
base mesh discretizing the simulation domain. For each deformed
state of the surface model, we then use Laplacian deformation trans-
fer [Sorkine 2006] to deform the base mesh so that the embed-
ded surface matches the deformed surface model. Unfortunately,
this step can lead to inverted elements, which would be fatal to
the simulation. To fix inversions, we interleave the following two
steps. First, we increase the weights around inverted elements to
increase rigidity during Laplacian deformation and thus avoid in-
version. Second, we improve the quality of the mesh by running
Stellar [Klingner and Shewchuk 2007], which we modified to leave
surface vertices unchanged. Unfortunately, the latter step can lead
to discontinuities in the animation sequence, where the configura-
tion of internal vertices rapidly changes between simulation frames.
This popping artifact, which can be seen in our example video, is
not fatal, but removing it would likely improve simulation qual-
ity and is an open question for future research. Once we have an
inversion-free tetrahedral mesh animation, we run SVD to create
Bg .

6.2 Tensor Reduction

Using these bases, we follow the procedure described in §4, turning
the full space tensors into their reduced equivalents:

Tensor Galerkin Projection
Advection A Â = BT

p A⊗1 Bu ⊗2 Bf

Induced Advection Ah Âh = BT
p A⊗1 Bu ⊗2 Bh

Diffusion 4 4̂ = BT
u4Bu

Flux to momentum P P̂ = BT
p P⊗1 Bf ⊗2 Bg

Volume V V̂ = BT
p V ⊗1 Bu ⊗2...4 Bg

Boundary D D̂ = BT
d DBf

Induced Boundary Dh D̂h = BT
d DhBh

The reduced space simulation procedure is nearly identical to the
full space one (Fig. 2), although we do make several small changes.
First, we store values of ĥ along deformation trajectories that we
will use at runtime and replay these trajectories to find ĥ, rather
than computing h from ˆ̇g. Second, we integrate advection and dif-
fusion by matrix exponentiation, instead of explicitly as we do in
the full space [Treuille et al. 2006]. In the full space, integration by
exponentiation would make sure that the simulation is stable for any
time step (§A.1). The fact that Bu = Bp ensures that this stability
result can be carried over into the reduced space (§A.2).

6.3 Constraints

Fluid simulation requires that we maintain full-dimensional con-
straints exactly in the reduced-dimensional simulation. In partic-
ular, we must maintain a hard incompressibility constraint in the
reduced simulation. As in [Treuille et al. 2006], all basis vectors of
Bf are divergence-free by construction. They remain divergence-
free under geometric deformation, since the units of flux are volume

6

To appear in ACM TOG 32(4).

per unit time, which are independent of the geometry. However, un-
like earlier work, we have multiple bases whose relationships may
change with the mesh geometry. In particular, the velocity and mo-
mentum bases are not necessarily divergence-free. A reduced pro-
jection step is therefore necessary. Reducing the full-dimensional
projection (Eq. 10), we obtain:

1

2
||û− (V̂-1(ĝ)(P̂⊗2 ĝ)f̂ ||V̂(ĝ). (12)

Since the flux basis guarantees ∇ · Bf f̂ = 0T , we can omit the
constraint in the reduced projection.

6.4 Fluid-Geometry Coupling

To make the flow independent of the changes in the geometry, we
proceed as in the full space. We subtract the induced fluxes from
the fluxes when computing advection, which, since Bf and Bh are
different, requires us to generate two reduced advection tensors Â
and Âh (§6.2); boundary constraints D̂f̂ + D̂hĥ = 0 are added to
the projection. While the constraints are in the reduced space, we
apply constraint reduction [Wicke et al. 2009] to ensure that fulfill-
ing the reduced constraints entails fulfilling the corresponding full
space constraints exactly; this process also gives us our boundary
flux basis Bd.

6.5 Runtime Visualization

To visualize the flow field, we advect massless marker particles with
the flow. Each particle can be advected separately. Because the
velocity state is not necessarily divergence free, we reconstruct ad-
vection velocities from the flux field. We assume that the velocity
is constant in each cell. Whenever we need to evaluate a velocity in
a cell i, we locally compute

ui =
(
V-1(Bgĝ)(P⊗2 Bgĝ)Bf f̂

)
i
. (13)

Using this technique, we never need to expand the full representa-
tion of the geometry or flux. Instead, for each particle we remem-
ber the cell i that currently contains it. We then evaluate only those
parts of the geometry that are necessary to compute ui. We only
have to compute the positions of vertices incident to the current el-
ement and its neighbors, as well as the fluxes across the faces of
the current element. We can then advect the particle with the com-
puted velocity. A particle may leave its current cell, either because
the particle is moved by advection, or because the mesh deforms.
In that case, we walk across the mesh starting at the particle’s last
known position, and moving in the direction of the particle’s new
position. We evaluate the mesh geometry only locally, and continue
the walk until we have found an element that contains the particle.
For advection, we use explicit Euler integration, with ten substeps
per frame for the examples shown in the accompanying video.

7 Fluid Results

We evaluate our reduced fluid simulation in two ways: evaluating
its numerical error in a 2D wind tunnel domain containing a simple
obstacle, and demonstrating its qualitative behavior in two different
3D domains with complex boundary motion.

7.1 Numerical Error Analysis

To assess the accuracy of our method, we measure deviation
from a full-dimensional ground truth simulation for a simple two-
dimensional example. We ran full simulations in a domain consist-

 0.0001

 0.001

 0.01

 0.1

 0 200 400 600 800 1000

Re
la

tiv
e

O
ne

-s
te

p
Er

ro
r

Timestep
8 vectors

16 vectors
32 vectors
64 vectors

128 vectors
384 vectors

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

8 vectors

16 vectors

32 vectors

64 vectors

128 vectors

192 vectors

256 vectors

384 vectors

To
ta

l E
rr

or
 E

ne
rg

y

10-1

10-2

10-3

10-4
Re

la
tiv

e
O

ne
-S

te
p

Er
ro

r

(a)

(b)

(d)

(c)

(e)

Frame 0 Frame 333 Frame 666 Frame 999

Frame 0 Frame 333 Frame 666 Frame 999

Vector 1 Vector 2 Vector 8 Vector 32

Figure 5: The results of our fluid application error analysis. (a)
Frames from the two training simulations: one with a large obsta-
cle, and one with a small obstacle. (b) The corresponding frames
from a reduced test simulation in a domain with a medium-sized ob-
stacle. (c) Selected vectors for the velocity basis trained from part
(a) and used to run part (b). (d) Relative one-step error over the
course of 1000 frames for reduced models with different size bases.
(e) Integrated one-step error for models with different size bases.
The time-averaged integrated error monotonically decreases with
basis size.

7

To appear in ACM TOG 32(4).

Figure 6: Our method simulates this deformable mixing chamber
at 70 frames per second (3 frames per second with rendering).

ing of a 2D periodic tunnel-shaped domain containing a single tri-
angular obstacle, and used the simulation frames to compute bases
of different sizes. We show some example frames and basis vectors
in Fig. 5(a-c).

To give a clear picture of how accurately a reduced model built with
velocity basis Bu captures the simulation dynamics over a range of
states, we use a one-step error measurement. To find the one-step
error, we begin with a sequence of velocity snapshots u1, . . . ,uT

from a full-dimensional simulation and project them into Bu us-
ing an energy-conserving projection2 to find reduced coordinates
r̂1, . . . , r̂T . From each reduced coordinate, we take a full timestep
to obtain uground and we take a reduced timestep to obtain utest.
Let the energy E(u) of a velocity field u be E(u) = 1

2
uTV(g)u.

The one-step error is then E(uground − utest)/E(uground).

Fig. 5(d) plots the one-step error over the evolution of a simulation
for a range of basis sizes. Fig. 5(e) plots this same error integrated
over the entire simulation. In both Fig. 5(d) and Fig. 5(e), we see
that the error tends to decrease as we add more basis vectors. This
reassures us that our method converges to the ground truth as the
number of basis vectors grows to the dimension of the full simula-
tion. While the decline in error with basis size is monotonic when
the error is averaged over time (e), it is not necessarily so instanta-
neously (d). Our one-step error measure ensures that each simula-
tion begins each step from as close an approximation to the same
full state as possible, however, simulations with different basis sizes
will start from slightly different initial states due to differences in
basis expressivity. Therefore, some deviation from a monotonic de-
crease in error at some timesteps should be expected.

7.2 3D Results

In these results, we used a 110-node cluster with 2.2 GHz SMT
quad-core AMD Opteron processors for precomputation, and a 2.6
GHz 8-core Intel Xeon processor with 24GB of memory for real-
time simulation, rendering and timing comparison. Our precompu-
tation wall-clock timing results include both PCA and tensor pre-
multiplication time. We used a serial PCA implementation to com-

2The projection is the minimization minr̂t ||ut −Bur̂t||V(gt).

pute each basis, so only the tensor premultiplication was fully par-
allelized across the cluster. Our runtime timing results (Table 1)
include both simulation and particle advection runtime.

Deforming cavity. The cavity model (Fig. 6) consists of a large
central cavity and three adjacent smaller ones, connected with thin
tunnels. Each of the small cavities can be individually compressed,
causing the fluid inside them to flow into the central cavity, which
changes its volume accordingly. We designed the cavity using sim-
ple level set primitives, and then tetrahedralized the interior of the
isosurface using CGAL [CGAL].3 We generated a sequence of ex-
ample deformations by analytically compressing the outer cavities
while renormalizing the volume and used these deformations to
generate 14 full-space simulations, each capturing the compres-
sion and re-inflation of one or two small cavities. Not all defor-
mations seen in the video are part of the original training set (for
instance, the training set contains no examples where one cavity
expands while another remains compressed). Precomputation for
this example took 12 hours of wall-clock time, of which approxi-
mately the last half hour consisted of tensor premultiplication. At
runtime, we can simulate at 70 frames per second, however, due
to the dense coverage of particles in the simulation, advecting and
rendering particles decreases the frame rate to 3 frames per second.
Various forms of optimization which we have not pursued, such as
parallelization, could certainly increase the frame rate further.

Eagle. Our eagle example (Fig. 1, Fig. 4) shows a different use
case. Here we started with a 601 frame triangle mesh animation
of a flying eagle flapping its wings and soaring left and right. We
built a deformable tetrahedral mesh as described in §6.1, generating
the base mesh by using Tetgen [Si 2007] to tetrahedralize the space
around the eagle with fully extended wings. We computed a single
266 frame full-dimensional simulation to use for snapshots. Pre-
computation for this example took approximately 4 hours of wall-
clock time, of which again approximately the last half hour con-
sisted of tensor premultiplication.

Note that the specific deformation sequence need not be preor-
dained; in principle, this method could be extended to model the
deformations in an entire motion graph, with the actual character
motion determined at runtime. The accompanying video presents
these simulations, which were simulated interactively but rendered
off-line with pbrt [Pharr and Humphreys 2004], along with compar-
isons to a full simulation.

8 Reduced Radiosity

We now apply our model reduction technique to real time computa-
tion of global illumination (radiosity) on diffuse deformable objects
under varying lighting. As before, we first reformulate the radiosity
equation in terms of tensor contractions and matrix operations, and
then apply the projection rules in §4 to obtain a reduced model. We
use this reduced model to interactively explore illumination design
in architectural environments.

Following Goral et al. [1984], we divide the scene into discrete
patches, and compute radiosity as:

b = (I− ρF)-1 e (14)

where b is a vector of total face radiosity, ρ is a diagonal matrix of
albedos, e is a vector of incident lighting intensities, and F is a ma-
trix of form factors: Fij describes the fraction of light incident on
face j that is reflected to face i. Notice that, unlike fluid simulation,

3Due to the regular shape of the domain, we were able to use a simpler
method than the one described in §6.1 for generating the tetrahedral mesh.

8

To appear in ACM TOG 32(4).

full simulation reduced simulation

Cavity
Eagle

88671

dimensions runtime basis dimensions #particles memory runtime speedup

300217 149903
13339 17823

28613
2.17s
2.92s

18.4s
18.9s

220s
82.0s

64
70

128
193

5
7

10000 29.7MB
131MB

0.0145s
0.0469s

0.308s
0.0381s

16565⇥
2252⇥

td ta tp mf mu mg ts tpa#cells #faces #vertices

⇠ 9500

Table 1: Runtimes and statistics for our examples: The table shows timings for full dimensional deformation td, advection ta and projection
tp, as well as reduced simulation ts and particle advection tpa. It also contains the number of cells, faces and edges determining the
dimension of the full simulation, and the reduced basis dimensions of the flux, velocity, and geometry bases, mf , mu, and mg , respectively.

radiosity requires modeling dense interactions between scene com-
ponents, which increases the computational complexity in a scene
with n faces to O(n2).

8.1 Tensor Formulation of Radiosity

Ordinarily, Eq. 14 describes a straightforward linear relationship
between direct lighting and radiosity. However, if objects in the
scene move or deform, this equation becomes highly nonlinear. The
crucial term in Eq. 14 is the form factor matrix F, which we sample
at the centroid of each face to obtain

Fij =
(ni · (cj − ci)) (nj · (ci − cj)) Vis (i, j)

π (ci − cj)
4Ai

, (15)

where Vis(i, j) is 1 if faces i and j are visible to each other and 0
otherwise, Ai is the area of face i, ci is the centroid of triangle i,
and ni is computed as the vector cross product of two of i’s edges.

In order to model reduce this equation using our non-polynomial
Galerkin projection method, we need to represent it as a compo-
sition of tensor products, matrix inverses, and matrix roots. This
composition requires more tensors than our fluids application, how-
ever, the use of each tensor tends to be simpler. Our tensor repre-
sentation requires that we be able to unroll F ∈ Rn×n into a vector
p ∈ Rn2

by re-indexing: pk = Fij , where k = ni + j and n is
the number of faces in the mesh. We also need the transpose index
kT = nj + i, so that pkT = Fji. We summarize the necessary
bases and tensors in Table 2; interested readers may refer to §B in
the supplemental material for a full derivation.

We can then evaluate b by evaluating each row of Table 2 in order.
The tensor form of the radiosity equation (Eq. 14) is given in the
final row of Table 2:

b = (I−E⊗2 p)-1e, (16)

where E is the 3rd-order tensor that transforms the unrolled form
factor vector p back into the form factor matrix F and left-
multiplies F by the face albedos ρ.

8.2 Reducing the Radiosity Equation

We begin with a set of mesh deformations G = {g1, . . . ,gm}
and for each deformation compute the intermediate vector quanti-
ties described in columns 2 and 3 of Table 2. We run PCA on each
of these vector quantities to obtain the corresponding 10 bases (col-
umn 4). Using these bases, we apply our non-polynomial Galerkin
projection technique §4 to compute reduced form factors p̂. This
reduction consists of replacing every tensor in column 3 of Table 2
with its reduced equivalent in column 5.

8.3 Reduced Visibility

It is not clear how to write a binary discontinuous function like
visibility using our tensor formulation, so we handle it separately.
Note that computing the visibility of a new deformation at runtime
is too slow and would defeat the purpose of model reduction. In-
stead, we use the following strategy: first, we compute the visibil-
ities V = {v1, . . . ,vm} corresponding to the deformation set G,
and run PCA on them to form the visibility basis Bv . Then, we
determine the reduced visibility v̂test of a new deformation ĝtest

as a convex combination of the visibilities in the training set. We
find the convex combination x of training deformations that best
predicts ĝtest:

arg min
x

||ĝtest −BT
g Gx|| (17)

v̂test = BT
v Vx is the convex combination of reduced visibility

vectors with the same coefficients. Note that BT
g G and BT

v V can
be precomputed and that their sizes do not depend on the number of
vertices in the mesh. This is a reasonable strategy, since two defor-
mations with similar reduced geometry will have similar full-space
geometry, and therefore will also have similar visibilities and we
are primarily concerned with low-frequency interreflections under
area lighting.

9 Radiosity Results

We demonstrate our reduced radiosity method by demonstrating
an interactive method for exploring a space of architectural de-
signs in order to achieve certain desired lighting conditions, sim-
ilar to [Dorsey et al. 1991]. Creating a pleasingly-illuminated space
requires careful selection of room arrangements, room sizes, win-
dow placements, orientation of the space relative to natural lighting
sources, and so forth.

We modeled a scene with a living room and bedroom, consisting
of 5012 faces. The living room is brightly-lit with light colored
walls, and the bedroom is more dimly-lit with darker walls. In the
scene, the sizes of the skylight, windows, and doors can be changed
interactively, and the living room ceiling can be tilted.

Our training set for this scene consists of 540 samples, including
extremal positions along the axes of the configuration space and
samples drawn from the space’s interior. We ran PCA on the exam-
ples to select basis vectors capturing 99.9% of the variance of each
intermediate quantity (Table 2, column 4), up to a maximum of 60
vectors. The visibility basis Bv , the area-free form factor basis Bd,
and the form factor basis Bp reached the 60 vector cap; all of the
others were able to capture 99.9% of the variance using fewer than
60 vectors. As with fluid simulation, we merged and orthogonal-
ized pairs of bases to comply with our matrix inverse and matrix
root basis requirements. The basis pairs we merged are Bs and
Bh, and Bd and Bp. We used identical 120-vector bases for Be

and Bb. We ran the basis selection and precomputation on a 8-node
Amazon EC2 cluster composed of 8-core 2.67GHz Intel processors

9

To appear in ACM TOG 32(4).

Intermediate Component Full Space Full Space Result Galerkin Projection
Element Notation Tensor Notation Basis

Geometry (vertex positions) g Bg

Normals ni = (gi,1 − gi,0)× (gi,2 − gi,0) n= N⊗1...2 g Bn N̂= BT
nN⊗1...2 Bg

Scaled Cosines sk = ni · (cj − ci) s = S⊗1 n⊗2 g Bs Ŝ = BT
s S⊗1 Bn ⊗2 Bg

Squared Distances rk = (ci − cj)
T (ci − cj) r = R⊗1...2 g Br R̂ = BT

r R⊗1...2 Bg

Half Form Factors hk = sk/rk h= (H⊗2 r)-1s Bh Ĥ= BT
s H⊗1 Bh ⊗2 Br

Visibility-Free Form Factors ck = hkhkT c = C⊗1...2 h Bc Ĉ = BT
c C⊗1...2 Bh

Visibility vk = Vis(i, j) v= v(g) Bv Learned model: see §8.3.
Area-Free Form Factors dk = dkvk d= D⊗1 c⊗2 v Bd D̂= BT

d D⊗1 Bc ⊗2 Bv

Squared Areas ai = ni · ni a = A⊗1...2 n Ba Â= BT
aA⊗1...2 Bn

Form Factor Vector pk = dk/
√
ai p= (P⊗2 a)−

1
2d Bp P̂ = BT

d P⊗1 Bp ⊗2 Ba

Incident Illumination e Be

Radiosity bi =
∑n

j=0 (I− ρF)-1
ij ej b= (I−E⊗2 p)-1e Bb Ê = BT

e F⊗1 Bb ⊗2 Bp

Table 2: Bases, operators, and Galerkin projections used in our reduced form factor implementation. Radiosity rendering consists of
computing this table from top to bottom, either in the full space (columns 2 and 3) or the reduced space (column 5). Note that while the fluids
application required only 4 bases, computing the radiosity form factors requires 9 (there are 12 bases listed here, but we constrain Bs = Bh,
Bd = Bp, and Bb = Be). For a detailed derivation and an explanation of the notation, please see §B in the supplementary material.

Radiosity Direct Illumination Indirect Illumination

(a) Model Reduction

Radiosity Difference Image Indirect Illumination

(b) Ground Truth

Figure 7: Results from our architectural rendering example. The scene consists of two rooms, a brightly-lit living room with light colored
walls linked by a door to a dimmer bedroom with darker-colored walls. The scene is illuminated by an overcast sky through two windows
and a skylight. The scene mesh consists of 5012 faces, and the sizes of the skylights, windows, and doors can be changed interactively. In
addition, the living room ceiling can be tilted. (a) Results generated by our model reduced radiosity implementation. (b) Results generated
by a full space radiosity implementation. Notice the qualitative similarity between the ground truth and model reduced renderings. Notice
the bright spots near the cubes and the foot of the bed, as well as below the windows. There are artifacts in both the reduced and full space
renderings due to the coarse meshing near the edges.

10

To appear in ACM TOG 32(4).

Figure 8: Relative error over the course of the two radiosity anima-
tion sequences for direct illumination included and excluded from
the model reduction process. Our radiosity basis computation sam-
pled brighter scenes more heavily than dimly lit scenes, so brighter
scenes are represented more accurately in the final results.

with 67.5GB RAM4, however, both stages were primarily limited
by cluster I/O bandwidth. Precomputation took 5 hours 1 minute
wall-clock time for PCA, and 1 hour 36 minutes wall-clock time for
tensor premultiplication. We rendered two simulation sequences, of
420 and 500 frames, using our reduced model, and compared them
with full-space renderings (Fig. 7). We rendered each sequence
twice, using two different methods for computing the direct illu-
mination. The first method was to compute the direct illumination
outside of our reduced radiosity at runtime using physically-based
sky model; the second was to compute direct illumination inside of
our model by placing area lights in the windows. Fig. 8 shows the
relative error of these results, which varies from 3% to 11% over
the course of the test animations for both methods.

A comprehensive analysis of the space and time requirements for
full-space and reduced methods for radiosity depends on the partic-
ular algorithm and implementation used. We only discuss relative
benefits with respect to classical radiosity for an interactive applica-
tion. Our full-space radiosity implementation requires no precom-
putation time, runs at 0.2 frames per second and requires 200 MB
of memory. Our reduced radiosity implementation requires 6 hours
and 37 minutes of precomputation time, runs at 22.7 frames per
second, and requires only 50 MB of memory. In this setting, our
method achieves a runtime speedup of 113 times. If we precom-
pute the form factors, we can load them from disk at 0.4 frames
per second, reducing the speedup to 57 times, but at the cost of
substantial precomputation time and required storage which, un-
like for our reduced method, will grow with the number of frames
viewed. Much of the execution time (around 80%) of our method
is devoted to computing visibility, which we do not perform using
our non-polynomial Galerkin projection technique. We expect that
improved methods for computing visibility could dramatically im-
prove our reduced radiosity implementation’s performance.

4Instance type m2.4xlarge.

10 Limitations

Like all model reduction techniques, the success of non-polynomial
Galerkin projection is limited by the representational power of the
precomputed subspaces. If these subspaces do not capture the un-
derlying dynamics well, then the reduced results will likely diverge
from the full space results. Both of our applications are particularly
susceptible to this form of error, since evaluating our model reduced
system at each timestep involves multiple matrix inverses (Fig. 2,
Table 2), each of which minimizes error using a scaled norm that
can vary over time and may or may not be well suited to the appli-
cation at hand (§4.2). On the other hand, non-polynomial Galerkin
projection is more widely applicable than previous methods, and
our results demonstrate that our technique captures complex flow
structures and lighting effects in real time. Moreover, error can
always be decreased by increasing the size of the basis, at a corre-
sponding polynomial runtime cost.

Our fluid simulation method can compensate for changes in the ge-
ometry of the underlying discretization, and therefore can compute
flow through deforming meshes. However, the topology of the dis-
cretization must remain fixed. This requires finding a single mesh
topology which can accommodate all deformations experienced by
the contained geometry. In our experience, using mesh improve-
ment [Klingner and Shewchuk 2007] to create a good base mesh,
and applying optimization-based smoothing to obtain good meshes
after deformation, works well. For extreme deformations, con-
structing a usable mesh becomes difficult. In particular, we have
noticed that at particular points in the eagle animation sequence,
large numbers of tetrahedra will suddenly “pop” into new config-
urations. While our mesh construction methods usually avoid in-
verting any tetrahedra during this popping, the existence of this be-
havior suggests that it may not be always be possible to represent
every desired deformation using a single mesh topology. An excit-
ing avenue for future work would be to break up the deformation
into shorter deformation sequences and use meshes with different
topology for each sequence. This might allow us to capture even
more drastic deformation, but would require reduced resampling
operators to convert the fluid from one geometry basis to another
at runtime. Meshing is much easier in the radiosity case, since that
application only requires triangle meshes.

We select bases using PCA because it provides good representa-
tional fidelity and reasonable results in practice. Unfortunately,
PCA bases do not allow us to provide any explicit guarantees about
long-term simulation error generated by Galerkin projection, nor er-
ror arising from polynomial composition. In the fluids case, using
modal bases derived from the simulation operators, as in [de Witt
et al. 2012], which uses the modes of the Laplacian as a simulation
basis, could allow us to more specifically describe the characteris-
tics of the error.

11 Conclusion

We have shown that Galerkin projection can be extended from poly-
nomials to the much broader class of compositions of elementary
algebraic operations, enabling the analytic approximation of func-
tions containing addition, subtraction, multiplication, division, and
roots, all in closed form. Unlike standard Galerkin projection, our
non-polynomial Galerkin projection is guaranteed to preserve poly-
nomial degree, essentially bounding the computational complexity
of the approximation. Because of the widespread use of dimension
reduction in graphics, we present non-polynomial Galerkin projec-
tion in general mathematical terms without specific reference to
physical simulation. We believe that our approach can be broadly
applied to Galerkin-project functions which previously could not be
efficiently approximated.

11

To appear in ACM TOG 32(4).

We showed two different examples of such non-polynomial sys-
tems: global illumination of deformable objects, and fluid flow on
deforming meshes. Standard Galerkin projection cannot be ap-
plied to these phenomena. We demonstrated that non-polynomial
Galerkin projection can be applied to both of these phenomena. We
also showed that non-polynomial Galerkin projection enables, for
the first time, interactive simulations of high-resolution fluid flow
around deforming geometry, such as a flying bird, as well as inter-
active radiosity for lighting design. We believe that this technique
could also find use in design and engineering to give interactive
feedback about the dynamic effects of geometric changes.

We are also excited to apply non-polynomial Galerkin projection
to entire classes of new phenomena which cannot be modeled with
previous approaches. For example, n-body gravitational systems
and atomic-scale Lennard-Jones interactions can now be model re-
duced. The existence of non-polynomial Galerkin projection also
encourages us to search for further methods to analytically capture,
simulate and render the many complex, high-dimensional phenom-
ena in the world around us.

Acknowledgements. This work was supported by an NSF Grad-
uate Research Fellowship, an NSF Career Award (IIS-0953985),
an NSF AIR Award (IIP 1127777), NSF Grant IIS-0964562, ONR
Grant N00014-11-1-0295, and by generous gifts from Google,
Qualcomm, Adobe, Intel, and the Okawa Foundation. We would
like to thank Yiling Tay for her help in generating fluid simulation
meshes and the anonymous reviewers for their valuable comments.

References

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cu-
bature for efficient integration of subspace deformations. ACM
Transactions on Graphics 27, 5 (Dec.), 165:1–165:10.

AUSSEUR, J., PINIER, J., GLAUSER, M., AND HIGUCHI, H.
2004. Predicting the dynamics of the flow over a NACA 4412
using POD. APS Meeting Abstracts, D8.

BARBIČ, J., AND JAMES, D. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. In Proc. SIG-
GRAPH ’05.

BARBIČ, J., AND POPOVIĆ, J. 2008. Real-time control of physi-
cally based simulations using gentle forces. ACM Transactions
on Graphics 27, 5.

BENZI, M., GOLUB, G. H., AND LIESEN, J. 2005. Numerical
solution of saddle point problems. Acta Numerica 14, 1–137.

CARLBERG, K., BOU-MOSLEH, C., AND FARHAT, C. 2011.
Efficient non-linear model reduction via a least-squares Petrov-
Galerkin projection and compressive tensor approximations. In-
ternational Journal for Numerical Methods in Engineering 86,
2, 155–181.

CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

CHADWICK, J., AN, S. S., AND JAMES, D. L. 2009. Har-
monic shells: A practical nonlinear sound model for near-rigid
thin shells. ACM Transactions on Graphics 28, 5 (Dec.), 119:1–
119:10.

CHAHLAOUI, Y., AND VAN DOOREN, P. 2005. Model reduction
of time-varying systems. In Dimension Reduction of Large-Scale
Systems. Springer, 131–148.

DE WITT, T., LESSIG, C., AND FIUME, E. 2012. Fluid simulation

using Laplacian eigenfunctions. ACM Transactions on Graphics
31, 1 (Jan.).

DEBUSSCHERE, B. J., NAJM, H. N., PEBAY, P. P., KNIO, O. M.,
GHANEM, R. G., AND MAITRE, O. P. L. 2004. Numerical
challenges in the use of polynomial chaos representations for
stochastic processes. SIAM J. Sci. Comp. 26, 2, 698–719.

DECONINCK, H., AND RICCHIUTO, M. 2007. Residual distri-
bution schemes : foundation and analysis. In Encyclopedia of
Computational Mechanics, E. Stein, E. de Borst, and T. Hughes,
Eds., vol. 3. John Wiley and Sons, Ltd.

DOBES, J., AND DECONINCK, H. 2006. An ALE formulation of
the multidimensional residual distribution scheme for computa-
tions on moving meshes. In Proc. Int. Conf. CFD.

DORSEY, J., SILLION, F., AND GREENBERG, D. 1991. Design
and simulation of opera lighting and projection effects. In Com-
puter Graphics (Proceedings of SIGGRAPH 91), 41–50.

DRETTAKIS, G., AND SILLION, F. 1997. Interactive update of
global illumination using a line-space hierarchy. In Proceed-
ings of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, 57–64.

EBERT, F., AND STYKEL, T. 2007. Rational interpolation, mini-
mal realization and model reduction. Tech. rep., DFG Research
Center Matheon.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial flu-
ids. ACM Transactions on Graphics 26, 1 (Jan.).

FARHOOD, M., AND DULLERUD, G. E. 2007. Model reduction
of nonstationary LPV systems. IEEE Transactions on Automatic
Control 52, 2, 181–196.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M. 2005.
Animating gases with hybrid meshes. In Proc. SIGGRAPH ’05.

FELDMAN, B. E., O’BRIEN, J. F., KLINGNER, B. M., AND GOK-
TEKIN, T. G. 2005. Fluids in deforming meshes. In 2005 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
255–260.

FOGLEMAN, M., LUMLEY, J., REMPFER, D., AND HAWORTH,
D. 2004. Application of the proper orthogonal decomposition to
datasets of internal combustion engine flows. Journal of Turbu-
lence 5, 23 (June).

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graphical Models and Image Processing 58, 5.

GALLIVAN, K., GRIMME, E., AND DOOREN, P. V. 1996. A
rational Lanczos algorithm for model reduction. Numerical Al-
gorithms 12, 33–63.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. Computer Graphics 18, 3 (July), 213–222.

GRIMME, E. J. 1997. Krylov Projection Methods For Model Re-
duction. PhD thesis, Ohio State University.

GUGERCIN, S., AND ANTOULAS, A. 2004. A survey of model
reduction by balanced truncation and some new results. Interna-
tional Journal of Control 77, 8, 748–766.

GUGERCIN, S., ANTOULAS, A., AND BEATTIE, C. A. 2006. A
rational Krylov iteration for optimal H2 model reduction. In Intl.
Symposium on Mathematical Theory of Networks and Systems.

12

To appear in ACM TOG 32(4).

GUPTA, M., AND NARASIMHAN, S. G. 2007. Legendre fluids:
A unified framework for analytic reduced space modeling and
rendering of participating media. In 2007 ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 17–26.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A
rapid hierarchical radiosity algorithm. In Proc of SIGGRAPH.

HAUSER, K. K., SHEN, C., AND O’BRIEN, J. F. 2003. Interactive
deformation using modal analysis with constraints. In Graphics
Interface, CIPS, Canadian Human-Computer Commnication So-
ciety, 247–256.

HOSSAIN, M.-S., AND BENNER, P. 2008. Projection-based
model reduction for time-varying descriptor systems using re-
cycled Krylov subspaces. Proceedings in Applied Mathematics
and Mechanics 8, 1, 10081–10084.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing inter-
active dynamic deformable scenes. In Proc. SIGGRAPH ’03.

JAMES, D. L., AND PAI, D. K. 2002. DyRT: Dynamic response
textures for real time deformation simulation with graphics hard-
ware. ACM Transactions on Graphics 21, 3 (July), 582–585.

JAMES, D. L., BARBIC, J., AND PAI, D. K. 2006. Precomputed
acoustic transfer: output-sensitive, accurate sound generation for
geometrically complex vibration sources. ACM Transactions on
Graphics 25, 3 (July), 987–995.

KIM, T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Transactions on Graphics 32, 4.

KIM, T., AND JAMES, D. L. 2009. Skipping steps in deformable
simulation with online model reduction. ACM Transactions on
Graphics 28, 5 (Dec.), 123:1–123:9.

KIM, T., AND JAMES, D. L. 2011. Physics-based character skin-
ning using multi-domain subspace deformations. In Proc. SCA
’11.

KLINGNER, B. M., AND SHEWCHUK, J. R. 2007. Agressive
tetrahedral mesh improvement. In Proceedings of the 16th Inter-
national Meshing Roundtable, 3–23.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes.
ACM Transactions on Graphics 25, 3 (July), 820–825.

LI, J.-R. 2000. Model Reduction of Large Linear Systems. PhD
thesis, Massachusetts Institute of Techology.

LIUA, C., YUAN, X., MULLAGURU, A., AND FAN, J. 2008.
Model order reduction via rational transfer function fitting and
eigenmode analysis. In International Conference on Modeling,
Identification and Control.

LOOS, B. J., ANTANI, L., MITCHELL, K., NOWROUZEZAHRAI,
D., JAROSZ, W., AND SLOAN, P.-P. 2011. Modular radiance
transfer. ACM Transactions on Graphics 30, 6 (Dec.).

LOOS, B. J., NOWROUZEZAHRAI, D., JAROSZ, W., AND SLOAN,
P.-P. 2012. Delta radiance transfer. In Proceedings of the 2012
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ACM, New York, NY, USA, I3D 2012.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DES-
BRUN, M. 2009. Energy-preserving integrators for fluid anima-
tion. ACM Transactions on Graphics 28, 3 (July), 38:1–38:8.

OLSSEN, K. H. A. 2005. Model Order Reduction with Rational
Krylov Methods. PhD thesis, KTH Stockholm.

PAVLOV, D., MULLEN, P., TONG, Y., KANSO, E., MARSDEN, J.,
AND DESBRUN, M. 2011. Structure-preserving discretization
of incompressible fluids. Physica D: Nonlinear Phenomena 240,
6, 443 – 458.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
Modal dynamics for graphics and animation. Computer Graph-
ics (SIGGRAPH 89) 23, 3 (July), 215–222. Held in Boston, Mas-
sachusetts.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

PHILLIPS, J. R. 1998. Model reduction of time-varying linear sys-
tems using approximate multipoint Krylov-subspace projectors.
Computer Aided Design, 96–102.

ROWLEY, C. W., AND MARSDEN, J. E. 2000. Reconstruction
equations and the Karhunen-Loéve expansion for systems with
symmetry. Phys. D 142, 1-2, 1–19.

ROWLEY, C. W., KEVREKIDIS, I. G., MARSDEN, J. E., AND
LUST, K. 2003. Reduction and reconstruction for self-similar
dynamical systems. Nonlinearity 16 (July), 1257–1275.

SANDBERG, H., AND RANTZER, A. 2004. Balanced truncation
of linear time-varying systems. IEEE Transactions on Automatic
Control 49, 2, 217–229.

SAVAS, B., AND ELDÉN, L. 2009. Krylov subspace methods
for tensor computations. Tech. Rep. LITH-MAT-R-2009-02-SE,
Department of Mathematics, Linköpings Universitet.

SCHMIT, R., AND GLASUER, M. 2002. Low dimensional tools
for flow-structure interaction problems: Application to micro air
vehicles. APS Meeting Abstracts (Nov.), D1+.

SEWALL, J., MECKLENBURG, P., MITRAN, S., AND LIN, M.
2007. Fast fluid simulation using residual distribution schemes.
In Proc. Eurographics Workshop on Natural Phenomena.

SI, H. 2007. A quality tetrahedral mesh generator and 3-
dimensional Delaunay triangulator. http://tetgen.berlios.de/ .

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proc. SIGGRAPH ’02.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. ACM Transactions on
Graphics 24, 3 (Aug.), 1216–1224.

SORKINE, O. 2006. Differential representations for mesh process-
ing. Computer Graphics Forum 25, 4, 789–807.

STAM, J. 1999. Stable fluids. In Computer Graphics (SIGGRAPH
99).

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. In Proc. SIGGRAPH ’06.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Transactions on Graphics 28, 3.

ZATZ, H. R. 1993. Galerkin radiosity: a higher order solution
method for global illumination. In Proc. SIGGRAPH ’93, ACM.

ZHOU, Y. 2002. Numerical Methods for Large Scale Matrix Equa-
tions with Applications in LTI System Model Reduction. PhD
thesis, Rice University.

13

To appear in ACM TOG 32(4).

A Fluid Stability

In this section, we provide a detailed discussion of the stability of
our fluid simulation model in both the full and reduced spaces.

A.1 Full Space

Our discretization of the fluid equations in §5 is stable, meaning
that the discrete versions of the partial differential equation do not
inherently gain energy. To see why, let us consider the advec-
tion, diffusion, and projection steps separately. Energy is given by
E(u) = 1

2
||u||2V(g) and its time derivative is Ė = uTV(g)u̇. Not-

ing that we use oriented fluxes in (6), it is easy to see that the advec-
tion matrix A ⊗2 f is antisymmetric. Substituting for u̇ according
to (8), we can see that the advection step exactly conserves energy.

Ė = uT (A⊗2 f)u = 0 (A.1)

The graph Laplacian4 has only positive eigenvalues, so substitut-
ing (9) for u̇ gives us

Ė = uT
(
− µV-1(g)4

)
u < 0. (A.2)

Finally, in the projection step, we minimize the energy difference
between the current velocities and the velocities corresponding to
new, divergence free fluxes. Let u be the velocities before pro-
jection, u′ = V-1(g)(P ⊗2 g)f be the divergence-free velocities
after projection, and u⊥ be their difference: u = u′+u⊥. (This is
known as the Helmholtz-Hodge decomposition [Stam 1999].) We
use ‖ · ‖V(g) in our objective function (10), meaning u′ and u⊥
are orthogonal in energy space. So the triangle inequality is tight:
E(u) = E(u′) + E(u⊥), which implies E(u) ≥ E(u′), ensuring
that the projection never gains energy.

Note that this does not mean that the method is unconditionally sta-
ble independent of the time integration method and time step cho-
sen. However, we now use the above arguments to show that for
our choice of integrator, the reduced simulation is in fact uncondi-
tionally stable.

A.2 Reduced Space

The definition of energy in the full space E(u) = ||u||2V(g) leads
naturally to a definition of reduced energy Ê(û) = ||û||2

V̂(ĝ)
, and

all our stability arguments from §A.1 carry over directly with one
exception: advection. In order to ensure energy-preserving advec-
tion, we must be careful in basis selection. Constructing the re-
duced equivalent of Eq. A.1, we see that the derivative in energy
due to reduced-space advection is given by

Ė = ûTBT
p

(
(A⊗2 Bf)⊗2 f̂

)
Buû. (A.3)

If we set Bu = Bp, then ûTBT
p = (Buû)T , and since the full

space matrix (A⊗2Bf)⊗2 f̂ itself is antisymmetric, we once again
are in possession of an energy-conserving discretization. Com-
bined with analytic integration using matrix exponentiation, this
basis choice results in an unconditionally stable system. To achieve
Bu = Bp, we first compute the momentum and velocity bases in-
dependently. We then concatenate them and re-orthogonalize the
result. We use this combined basis for both Bu and Bp in our fluid
simulations, which guarantees that the simulations will preserve en-
ergy.

angle (�j)

normal (ni) normal (nj)

centroid (cj)

angle (�i)

area (Aj)
centroid (ci)
area (Ai)

Figure B.1: Geometric layout of the illumination variables on two
triangles.

B Radiosity Derivation

They key step in the model reduction of radiosity using our tech-
nique is the reduction of the form factor equation (Eq. 15). To
model reduce this equation, we follow the process described in §4:
we represent it as a collection of tensors, composed using tensor
products, matrix inversion, and matrix roots. In this section we pro-
vide a detailed derivation of the tensors and sequence of operations
shown in Table 2. We arrive at this sequence of operations by de-
composing the radiosity equation (Eq. 14), so we will be describing
the tensors and operations in Table 2 from bottom to top.

To evaluate the radiosity equation, we need to compute the matrix
I−ρF. As described in §8.1, we begin by unrolling F ∈ Rn×n into
a vector p ∈ Rn2

by re-indexing: pk = Fi,j , where k = ni+j and
n is the number of faces in the mesh. We also need the transpose
index kT = nj + i, so that pkT = Fj,i. The tensor form of the
radiosity equation (Eq. 14) is then:

b = (I−E⊗2 p)-1e, (B.1)

where E is the 3rd-order tensor that transforms the unrolled form
factor vector p back into the form factor matrix F and left-
multiplies F by the face albedos ρ.

Our task is now to compute p, the vector of form factors. At this
stage, we choose to separate the factor of area in the denominator
of Eq. 15, making this stage a division of area-free form factors,
denoted by d, by the square roots of squared areas, where we denote
squared areas by a:

pk = dk/
√
ai. (B.2)

We implement this division using a tensor P:

p = (P⊗2 a)−
1
2d. (B.3)

a is a simple function of the normals n: ak = ni · ni. (Recall that
ni is the normal of the ith face, making it a 3-vector.) We define a
tensor N to implement these dot products:

a = N⊗1...2 n. (B.4)

Returning to d, the next factor we separate is visibility, which gives
us the expression

dk = ckVis(i, j), (B.5)

where c are visibility-free form factors. We define the visibility
vector v such that vk = Vis(i, j). We treat v(g) as a function of
geometry directly, and reduce the computation of Vis(i, j) using a
non-Galerkin method which we describe in more detail in §8.3.

14

To appear in ACM TOG 32(4).

Now we can write c as an element-wise product of two vectors:

ck =
1

π
hkhkT , (B.6)

where

hk =
ni · (cj − ci)

||ci − cj ||2
. (B.7)

We call h half form-factors, and define a tensor C implementing
Eq. B.6:

c = C⊗1...2 h. (B.8)

Next, we rewrite both parts of the quotient in Eq. B.7:

hk =
sk
rk
, (B.9)

where
rk = ||ci − cj ||2 (B.10)

and
sk = ni · (cj − ci). (B.11)

r is a vector of squared distances between face centroids. s is a
vector of scaled cosines: sk is the cosine of the angle between ni

and cj − ci, multiplied by face area and the distance between face
centroids. We use a tensor H to construct a diagonal matrix, with r
as its entries, which we invert to find h:

h = (H⊗2 r)-1s. (B.12)

While s is polynomial in g, and so it would be possible to compute
it directly as a from g by contracting a single tensor, we can reduce
the polynomial degree of this system from 3 to 2 (and the maximum
tensor order from 4 to 3) by decomposing s one step further. Note
that Eq. B.11 is bilinear in n and c, the latter of which is linear in
g. Therefore, we can define a tensor S such that

s = S⊗1 n⊗2 g. (B.13)

This leaves us with only n to compute. The normals are given by

ni = (gi,2 − gi,0)× (gi,1 − gi,0), (B.14)

where gi,` is the `th vertex of face i and× is the vector cross prod-
uct. This expression is a low-degree (quadratic, in fact) polynomial
in geometry, and so we can complete the decomposition with a final
tensor N such that

n = N⊗1...2 g (B.15)

With the tensors defined above, we can now compute radiosity as
described in Table 2 given only the scene geometry g and the inci-
dent illumination e.

15

