Differential Privacy in Intelligent Transportation Systems

Frank Kargl

University of UIm & University of Twente
Ulm, Germany & Enschede, Netherlands
frank.kargl@uni-ulm.de

ABSTRACT

In this paper, we investigate how the concept of differential
privacy can be applied to Intelligent Transportation Systems
(ITS), focusing on protection of Floating Car Data (FCD)
stored and processed in central Traffic Data Centers (TDC).
We illustrate an integration of differential privacy with pri-
vacy policy languages and policy-enforcement frameworks
like the PRECIOSA PeRA architecture. Next, we identify
differential privacy mechanisms to be integrated within the
policy-enforcement framework and provide guidelines for the
calibration of parameters to ensure specific privacy guaran-
tees, while still supporting the level of accuracy required for
ITS applications. We also discuss the challenges that the
support of user-level differential privacy presents and outline
a potential solution. As a result, we show that differential
privacy could be put to practical use in ITS to enable strong
protection of users’ personal data.

Categories and Subject Descriptors

C.2.1 [Computer-Communications Networks|: Network
Architecture and Design— Wireless communication
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1. INTRODUCTION

Intelligent Transportation Systems (ITS), i.e., the intro-
duction of information and communication technology into
transportation systems, and especially vehicles, are gener-
ally considered as means to achieve safer, more efficient, and
greener road traffic. While some approaches like Car-to-Car
communication are still experimental, use of Floating Car
Data (FCD) is a more mature ITS technology that is al-
ready deployed in the field in many (proprietary) applica-
tions. The idea is to turn a vehicle into a mobile sensor that
periodically reports its status to a central backend, like a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’13, April 17-19, 2013, Budapest, Hungary.

Copyright 2013 ACM 978-1-4503-1998-0/13/04 ...$15.00.

107

Arik Friedman, Roksana Boreli

NICTA
Sydney, Australia
givenname.surname@nicta.com.au

Traffic Control Center (TCC), by means of a standardized
data set, the FCD record. FCD data includes at minimum a
timestamp and the vehicle position, but may also include ad-
ditional data like speed or on-board information from ABS
and ESC sensors to detect, e.g., icy roads.

FCD records are used in a variety of applications ranging
from fleet management to insurance and tolling applications.
Early adopters of FCD include taxi fleets, e.g., in the city
of Vienna, where about 2,100 taxis submit FCD records!,
which are then used by the TCC to gain a fine-grained pic-
ture of traffic situation on all major roads.

Despite the benefits of ITS and FCD applications, their
use also brings concerns that drivers’ privacy may be neg-
atively affected. Therefore, FCD records are anonymized
in many applications so that they do not contain informa-
tion that would allow direct identification of specific drivers
or vehicles. While this may be a first step towards pri-
vacy protection, some identifiers (at least pseudonymous)
must still be retained to enable attribution of two successive
FCDs to the same car. Otherwise, car counts will not be
reliable. As was proposed in previous works [9], a privacy
protection mechanism such as k-anonymity may be applied
to prevent disclosure of private information. However, this
protection can be circumvented, and detailed mining of the
FCD database might still reveal a lot of private information
about drivers and driving behavior, as shown, e.g., in [15].

The question we want to investigate in this paper is how
privacy can be protected more reliably and provably in the
context of such data collections in ITS, while still allowing
reasonable use for traffic analysis or dedicated applications
like road tolling. To this end we focus on differential pri-
vacy [6], a formal definition of privacy that allows aggregate
analysis while limiting the influence of any particular record
on the outcome, typically through the introduction of noise.

Throughout the paper we focus on the following motivat-
ing scenarios in ITS. Scenario 1: identification of traf-
fic conditions — assessment of traffic conditions, e.g., by
calculating the average speed of cars in a certain road seg-
ment. Tasks that rely on aggregate information represent
the key scenario we would like to accomplish with differen-
tial privacy. Scenario 2: detection of speeding vehi-
cles — law enforcement agencies who are granted access to
FCD databases may be tempted to leverage this access to
track and monitor individual drivers. However, this could
deter individuals from participating in such schemes. We
will show how differential privacy in ITS can mitigate such

"Mttp://www.wien.gv.at/verkehr/verkehrsmanagement/
verkehrslage/projekt.html



privacy breaches. Scenario 3: eTolling fee calculation
— some applications may nevertheless require access to de-
tailed FCD records, for example, to calculate a road toll
based on tracks of journeys. Such applications could be
addressed by complementing security mechanisms, beyond
differential privacy.

In this paper, we address the challenges in applying dif-
ferential privacy in practical ITS applications and provide
the following contributions:

1) We propose an architecture that integrates differen-
tial privacy and additional security mechanisms to provide
a comprehensive solution to privacy in ITS.

2) We demonstrate how differentially private mechanisms
can be utilized in ITS applications, addressing the accuracy
requirements of these applications.

3) We investigate how the privacy parameters can be cali-
brated within application accuracy requirements, while also
considering long-term privacy consequences for the end-user.

2. BACKGROUND AND RELATED WORK
2.1 Privacy Enhancing Technologies in ITS

Protection of private data in I'TS has been addressed in the
past, often focusing on singular applications and scenarios.
As one example, Troncoso et. al. [14] addressed the chal-
lenge of privacy-preserving Pay-As-You-Drive (PAYD). In-
stead of submitting FCD records to the insurance company
and having the insurance company calculate the resulting
fee, the PriPAYD scheme foresees a trustworthy hardware
box installed in the vehicle, which calculates the fee and sub-
mits it to the insurance company but without revealing any
FCD data. The FCD records are instead given to the driver
on USB stick in encrypted form together with a share of the
secret key. The second half of the key is given to the insur-
ance company. In case of dispute, both key shares can be
combined and the FCD data can be accessed. This way, the
driver has full control of the data and can explicitly agree
to reveal it to the insurance company.

While many of these approaches achieve the goals of the
individual scenario, they have the drawback that they are
highly specific and cannot easily be generalized to arbitrary
data and arbitrary data processing. Furthermore, the pri-
vacy protection relies on the fact that all data processing
happens in one On-Board Unit (OBU) and that data leak-
ing from this OBU can be controlled and monitored by the
driver. Processing that requires combination of FCD data
from different vehicles (e.g., average speed of all vehicles in
a given road segment) does not fit into this architecture.

The EU FP7 project PRECIOSA proposed a different ap-
proach to privacy preserving data processing in ITS [10,
11]. The PRECIOSA Privacy-enforcing Runtime Architec-
ture (PeRA) foresees protection of personal data by aug-
menting these data with privacy policies and mandatory en-
forcement of these policies in a distributed system. When-
ever personal data are used or communicated, there should
also be a policy expressed in the PRECIOSA Privacy Pol-
icy Language (P3L) that describes the operations allowed
on these data. Applications access the data via a dedicated
query interface using a SQL-like language called PRECIOSA
Privacy aware Query Language (PPQL). The Policy Con-
trol Monitor (PCM) checks the compliance of queries with
policies of affected data and either grants or denies access.
PeRA is designed to work locally or in a distributed sys-
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tem, the latter case creating a policy enforcement perimeter
that can span multiple systems. Within the boundaries of
the perimeter, data subjects can rest assured that their per-
sonal data are only used in a policy compliant way.

In PeRA, a vehicle transmits data like FCD records to-
gether with policies through a confidential communication
channel to the importer of a Traffic Control Center. Both
data and policy are stored in an encrypted way in the repos-
itory and are only accessible via the PCM. PPQL queries
can be issued by applications via the Query-API. This ap-
proach provides a generic solution to support arbitrary I'TS
applications, data formats, and operations. It could easily
be combined with schemes like PriPAYD to ensure policy
compliant data processing in the OBUs and backends.

The concept of differential privacy promises to set hard
limits to privacy loss when contributing personal data to
a database. However, it has not yet been applied to ITS
and its specific applications. In this paper, we will explore
how the concept of differential privacy can practically be
integrated into the PRECIOSA PeRA framework to provide
stronger privacy guarantees for FCD-like applications.

2.2 Differential Privacy

Differential Privacy [6] is a formal definition of privacy
that allows computing fairly accurate statistical queries over
a database while limiting what can be learned about single
records. The privacy protection is obtained by constraining
the effect that any single record could have on the outcome
of the computation.

DEFINITION 2.1 ((€,d)-DIFFERENTIAL PRIVACY [5]). A
randomized computation M maintains (e, d)-differential pri-
vacy if for any two multisets A and B with symmetric dif-
ference of a single record (i.e., |AAB| = 1), and for any
possible set of outcomes S C Range(M),

Pr{M(A) e S] < Pr[M(B) € S]-exp(e) +6 ,

where the probabilities are taken over the randomness of M.

Setting 6 = 0 amounts to e-differential privacy.

The e parameter controls the privacy/accuracy tradeoff, as
it determines the influence that any particular record in the
input could have on the outcome. The § parameter allows
e-differential privacy to be breached in some rare cases.

Differentially private computations can be composed, as
shown in [5]: a series of n computations, where computation
i is (e, 0;)-differentially private, will result in the worst case
in a computation that is (3 €;, > d;)-differentially private.
Therefore, when records enter and leave the database fre-
quently, it is possible to ensure (e, §)-differential privacy for
each record by monitoring the computations performed over
the database while the record was in it, and ensuring that
the sum of privacy parameters for these computations does
not exceed the € and § bounds.

In this work we focus on event-level privacy [8], where
the privacy protection is with respect to single records in
the database, as in Definition 2.1. In contrast, user-level
privacy [8] considers the combined effect of all records in the
database that pertain to a specific user (or vehicle, in our
case). When the number of these records is bounded by ¢,
e-differential event-level privacy amounts to c - e-differential
user-level privacy due to composability. In Section 4 we
further discuss the user-level privacy.



2.2.1 Privacy Through Perturbation

One of the prevalent methods to achieve differential pri-
vacy is the Laplace mechanism [6], in which noise sampled
from Laplace distribution is added to the value of a com-
puted function. The probability density function of the
Laplace distribution with zero mean and scale b is f(x)

|z]
1 -1z
1 1
25 ¢

, and its variance is 2b%. The noise is calibrated to
the global sensitivity of the function, which is the maximal
possible change in the value of the function when a record
is added to the database or removed from it.

THEOREM 2.1 (LAPLACE MECHANISM [6]). Let f: D —
R? be a function over an arbitrary domain D. Then the
computation M(X) = f(X) + (Laplace(Sc(f)/€))¢, where
Sa(f) = maxaap=1|f(A) — f(B)||,, maintains e-differential
privacy.

ExAMPLE 2.1. Consider a database of FCD records, where
each record includes the speed of a car in km/h. The speed is
a number between 0 and 120, and any reported speed outside
this range is clamped. Then the following approximations
maintain e-differential privacy: 1) Calculating the number
of FCD records in the database: Count (*) + Laplace(1/€);
2) Calculating the sum of reported speeds: Sum(speed) +

Laplace(120/€); 3) Calculating the average speed of cars:
Sum(speed)+Laplace(240/e
Count (*)+Laplace(2/¢€)
queries, where each query maintains

). In the last example, we combine two
differential privacy.

£_
2

3. CHALLENGES IN THE APPLICATION
OF DIFFERENTIAL PRIVACY TO ITS

While differential privacy allows to reason formally on the
privacy guarantees, it also poses some challenges that may
hinder its application in practical systems like ITS.

Computing global-sensitive functions: The Count,
Sum and Average functions capture many of the calculations
utilized in ITS, and can be evaluated accurately with dif-
ferential privacy, enabling, e.g., Scenario 1. However, Max
and Min are also valuable functions (e.g., evaluate the speed
of the slowest and fastest vehicles in a road section), but
have high global sensitivity. Consequently, applying the
Laplace mechanism as in Theorem 2.1 to evaluate these func-
tions would provide useless results. We discuss in Section
4.2.1 how techniques relying on local sensitivity [13] can be
adapted to overcome this limitation in typical scenarios.

Supporting applications that require precise infor-
mation: Some applications of ITS require access to precise
information. For example, calculating eTolling fees (Sce-
nario 3) is an application, where introduction of noise may
be unacceptable as it may result in wrong bills?>. Noise
may also be unacceptable in other applications, such as
some safety applications that may have life-and-death con-
sequences. In the scope of this work we focus mainly on ap-
plications where noise is acceptable, and even desirable for
privacy protection. Other scenarios may be handled through
the Controlled Application Environment (CAE), which is
part of the existing PRECIOSA framework [4].

Processing time-series data: Differential privacy lim-
its the privacy loss in each query. However, as additional
queries are answered by the database, the privacy loss may

2Though Danezis et. al. [3] proposed a private method for
billing, where rebates are issued periodically to compensate
for billing errors introduced by differentially private noise.
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accumulate. Since differential privacy maintains compos-
ability, it is possible to monitor the overall privacy loss (a
worst-case evaluation) and bound it. To address the risk
incurred by continuous queries, we describe in Section 4.3.2
an expiry mechanism that ensures that FCD records are
removed from the database after participating in a certain
amount of queries.

Obtaining user-level privacy: While the privacy loss
per FCD record can be monitored and bounded, and thus
event-level privacy can be obtained, ensuring user-level pri-
vacy is a much more difficult problem. At any point in
time, it is possible that multiple FCD records pertaining to
the same vehicle (and driver) would be retained in the sys-
tem and new records that correspond to the same vehicle
may be added to the database. Consequently, while differ-
ential privacy may prevent an adversary from learning of
a specific FCD record that indicates speeding, it does not
necessarily prevent from learning that a specific vehicle is
frequently speeding. There are theoretical bounds [7] that
indicate that such leaks cannot be prevented while still keep-
ing the system usable. However, we use similar arguments
in Section 4.3.4 to motivate the choice of € in a way that
would quantify this inherent risk.

4. DIFFERENTIAL PRIVACY FOR ITS

In this section, we detail our proposal for a system that
enables differentially private use of FCD data for selected
ITS applications and services, through an extension of the
PRECIOSA PeRA policy enforcement framework.

4.1 System Architecture

The proposed Differential Privacy-enhanced PeRA archi-
tecture is shown in Figure 1. For the sake of clarity, we only
show the main components relevant to this discussion.

Traffic Law Online
Control Enforcement|| Navigation
Center Agency System

Vehicle

Policy DP-enhanced Secure ]
‘i Enforcement PCM Data/Me?adata 3
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' f

@ Traffic i
- - Importer Data ||
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Figure 1: Architecture for enabling the differentially
private aggregation of data collected from vehicles
in ITS applications.

In line with the existing PeRA architecture, the collec-
tion of users’ FCD records from the corresponding vehicles
is done using a confidential communication channel between
the vehicle and the Traffic Data Center (TDC). Collected
records are stored in the secure data repository within the
TDC. All applications access the FCD data via the Query
interface using a set of PPQL queries. As discussed in Sec-
tion 2, the PRECIOSA P3L policy language already includes
the means for expressing, e.g., k-anonymity as a require-
ment. PPQL enables the formulation of data access queries



and the Policy-Control-Monitor (PCM) acts as an enforce-
ment point for privacy control.

The enhancements required to enable differential privacy
include the introduction of a DP-Enhanced Policy Control
Monitor (DP-enhanced PCM in Figure 1) and the exten-
sion of the P3L policy language to enable specifying a set
of selected differential privacy parameters, for every FCD
or other data record (or set of data records referring to the
same event, e.g., position)®. These would reflect the level of
privacy loss acceptable to the data subject, or as defined by
the applicable data protection regulation.

4.2 The Differential-Privacy-enhanced PCM

Differential privacy is suitable for applications that oper-
ate on aggregated data, such as the task of assessing traffic
conditions outlined in Scenario 1. Such applications access
the Traffic Data Center through the Query-API.

In a simple solution, the PCM can use the Laplace mech-
anism to estimate Count, Sum and Average queries based on
their global sensitivity, as was described in Section 2.2. In
the next section we demonstrate how additional techniques
from the differential privacy literature [13] can be leveraged
to evaluate with reasonable accuracy also functions such as
Max and Min, which are frequently used in ITS applications.

4.2.1 Smooth Sensitivity

For some differentially-private computations, the global
sensitivity may be too large, and consequently, introducing
noise proportional to the global sensitivity would destroy the
utility of the computation. For example, the global sensitiv-
ity of the max and min functions, computed over values in
the range [0, A], is A, and the Laplace mechanism would re-
quire adding noise of magnitude A/e, consequently destroy-
ing utility. To counter this problem, Nissim et. al. [13]
proposed adding data-dependent noise. To this end, they
defined the local sensitivity of a function.

DEFINITION 4.1
R? be a function over an arbitrary domain D. The local sen-
sitivity of f at point x is

LSy(X) = &) = F s

where d(X,Y’) is the distance between datasets.

(1)

max
Y:d

Unfortunately, adding noise calibrated to the local sensitiv-
ity may still compromise privacy — since the magnitude of
noise depends on the data, it becomes a leak channel. To
ensure that the magnitude of noise also maintains differen-
tial privacy, the concept of smooth sensitivity is introduced.
While local sensitivity may vary significantly between neig-
boring datasets, smooth sensitivity changes gradually, and
the difference in sensitivity between neighboring datasets is
controlled by a parameter 5.

DEFINITION 4.2 (SMOOTH SENSITIVITY [13]).
0, the B-smooth sensitivity of f at point x is

S7,5(X) = max (LS;(Y) - exp(=f - d(X,Y))

For 8 >

2)
EXAMPLE 4.1. Let X = {z1,...,2n}, where 0 < 1 <
- < xn < A. The local sensitivity of the function fmin(X) =
min(z1,...,2n) at point X is LSy_; (X) = max(z1,x2—21).
3For readability, we will continue our discussion referring

just to one FCD record, however other data records or sets
of records could be treated the same way.

(LocAL SENSITIVITY [13]). Let f: D —
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Nissim et. al. [13] show that the B-smooth sensitivity of
Smin at point X is:

a8 (X) = _max

=0,1,...,n

[exp(—kp) - max(Tky1, Thre — 1))

®3)
9 xn}’
> xn > 0, the B-smooth sensitivity of

where x, = A for k > n. Similarly, for X = {z1,...
where A > x1 > ---
fmax at point X 1is:
SJ*‘H.ax,/B(X) = n[eXP(—kﬁ)'maX(A—mkﬂy$k+2—$1)] s

(4)

where x, = 0 for k > n.

Given the -smooth sensitivity of a function, it is possible
to calibrate the noise to obtain a (¢, ¢)-differentially private
output. The following theorem follows from [13]:

THEOREM 4.1  ([13]). Given € and 0, set o = €/2 and
B=5 ~ln(%). Then the computation:
S75(X
M(X) = f(X) + Laplace <$> (5)

maintains (e, 0)-differential privacy.

EXAMPLE 4.2. Assume that siz cars are stuck in a traffic
jam in a road segment, where the speed limit is 90 km/h.
Speeds in the FCD database are in the range [0,120]. The
cars report the speeds {3,6,10,13,16,17}. FEvaluating mini-
mum speed with the Laplace mechanism for 1-differential pri-
vacy, would require computing min’(X) = 3 + Laplace(120).
In contrast, relaxing the privacy requirement with § = 0.01,
for (1,0.01)-differential privacy we set a = 0.5 and = 2.3.
According to Eq. 3, S} . 53 = 3, hence min'(X) = 3 +
Laplace(6) would still com}ey that the speed of the slowest
car is much lower than expected.

4.3 Calibrating Privacy Parameters

In this section, we address the calibration of the differen-
tial privacy parameters and tracking of privacy loss.

4.3.1 Factors in Parameter Calibration

When a query is executed against the FCD repository,
the PCM is required to enforce the privacy policies stated
for the affected records. In this process, the following factors
should be considered.

Per-application accuracy requirements: ITS appli-
cations typically have defined accuracy standards for report-
ing of selected values. E.g., the Data Quality White Paper
[1] published by the U.S. Department of Transport defines
the required accuracy of speed reporting for traveller in-
formation applications to be in the range of 5-20%. The
application requirements represent an upper bound on the
variance of the noise introduced by the privacy mechanism
for each query, and consequently a lower bound to accept-
able values for € and 4.

User-driven privacy settings: The privacy policy at-
tached to each FCD record implies an upper bound on the
privacy loss that could be incurred due to participation in
queries and correspondingly on the acceptable values for e
and §. As privacy requirements are subjective, acceptable
levels of privacy may vary between users. Moreover, future
ITS regulations could mandate the default values applicable
to all users and all uses of FCD data, e.g., within a specific
geographical region.



Affected records: In many functions, the amount of
Laplace noise depends only on the privacy parameters, and
is not affected by the number of records in the database.
Consequently, the relative error may vary depending on the
number of queried records. Therefore, to guarantee the re-
quired level of data accuracy, the PCM should first verify
that enough records participate in the query. In scenarios
where a limited number of FCD records are available and / or
a lot of queries are issued by applications, there are a number
of possible strategies to avoid service disruption due to un-
availability of relevant records. These include adapting € to
the number of records and based on accuracy demands [16].
In Section 4.3.3 we describe a different approach based on
sampling, which is suitable for evaluating average queries.

4.3.2 Managing FCD Lifetimes

The FCD record is the elementary piece of information
to which a privacy policy is attached. As noted in Section
2.2, the differential privacy parameter € is composable. If an
FCD record participates in a series of queries, where each
query gq; is €;-differentially private, then the overall privacy
loss for the FCD record is constrained by > ¢;. While ac-
curacy requirements imply the acceptable value for ¢; in a
single query ¢;, user-driven privacy settings set a limit on
the overall privacy loss € = > €; over a period of time.

We assume that FCD records are generated at a constant
rate for all vehicles, as is the case with today’s systems [1],
and that queries are issued at random intervals. We further
assume that there is only a limited number of queries during
an update interval. To maintain differential privacy for any
FCD record in this setting, we rely on two FCD retention
parameters: privacy budget and expiration time.

Privacy budget: monitoring a privacy budget is an easy
way to ensure that differential privacy requirements are main-
tained, and was used in frameworks such as PINQ [12] and
PDDP [2]. In our architecture, the DP-PCM monitors the
privacy budget at the FCD level. Each FCD j has a privacy
budget b;, initially set in the privacy policy attached to the
record. For each query g¢;, which incurs a privacy loss of
at most ¢;, the FCD record would participate in the query
only if ¢; < bj, and consequently the budget will be updated
to bj < (bj — €;). If the privacy budget of an FCD record
reaches 0, it is removed from the repository.

Expiration time: the privacy policy attached to the
FCD record can also state an expiration time, after which
the FCD is removed from the repository. Since each vehicle
generates new FCD records at a constant rate, the expira-
tion time is critical to ensure that only a limited number of
FCD records that originated from the same vehicle reside in
the repository at the same time. We will discuss the impact
of expiration time on user-level privacy in section 4.3.4.

4.3.3 Example: Evaluating Traffic Conditions

To demonstrate how the PCM can address the accuracy
requirements of an ITS application while maintaining pri-
vacy constraints, we focus on Scenario 1.

Consider a route guidance application that queries FCD
records to determine the average speed on a stretch of road,
and accepts a 10% deviation in the resulting speed. The
PCM can use the Laplace mechanism as described in Sec-
tion 2.2.1, adding Laplace noise to the result up to the ac-
ceptable inaccuracy. In addition, the application could also
specify a minimum set size for a query. E.g., FCD records
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from at least n = 50 vehicles on a 1km road segment would
be sufficient to represent the average speed in an accurate
way. Then, the PCM can verify before executing the query
that enough records are available to answer the query.

Evaluating the number of records: Given a posi-
tive number «, sampling a Laplace distribution with scale
b would return a number —a or lower with probability at
most 0.5exp(—a/b) (one-sided error). Therefore, to verify
that the number of FCD records in a differentially-private
count query is at least n, we can set a safety margin a., and
set €. = 1 ln s=. With probability at least 1—(, if the noisy
count returns a number greater than n + a., then there are
at least n records in the dataset.

EXAMPLE 4.3. Assume a safety margin of a. = 10, and
set ¢ = 0.05. Then, executing a differentially private query
with €. = 1 lni = 0.23, and obtaining a result of 60 or
greater, guamntees with probability at least 0.95 that there
are at least 50 FCD records in the database. If any smaller

number of records is returned, we abort the query evaluation.

Executing the average query: Once the PCM veri-
fies that there are enough records in the dataset, the actual
query can be issued, based on a sample of records with the
required size?. With probability at most ¢, the two-sided er-
ror induced by the Laplace noise with scale b is bounded by
bln L. Therefore, the accuracy requirement and the records
num(ber bound can be used to derive a bound on the €5 used
to evaluate the average speed.

EXAMPLE 4.4. Assume that there are more than 50 FCD
records in the repository, and we would like to evaluate the
average speed within 10 % deviation based on a sample of
50 records, where each record holds a wvalue in the range
[0,120]. A differentially-private sum query would require
Laplace noise of scale 120/¢es, and over 50 records, the mag-
nitude of moise added to the sum query should be at most
500. Therefore the PCM should set es = 1201h L For ex-
ample, to ensure the bounded deviation with proba%zlzty 0.95,
€s should be set to at least 0.72.

Algorithm 1 summarizes the process. For the count evalu-
ation, we take a safety margin o that amounts to 10% of the
minimum required record-set size, and the same probability
bound (¢ as the one used for speed accuracy, but any other
reasonable values could be used instead.

4.3.4 Implications for User-Level Privacy Loss

User level privacy, as discussed in Section 2.2, is in general
difficult to guarantee when many records are associated with
each user, due to the level of noise that would be required
in the differentially private functions. However, possible pri-
vacy threats can be considered when determining the privacy
budget for each FCD record.

As an example, in line with Scenario 2, assume that the
police tries to use the system to track down reckless drivers
who consistently drive 20km/h over the speed limit, and

“In the low-probability case where the noisy evaluation de-
termines there are enough records although their number is
below the limit, the query can either be executed on the
smaller set, or dummy records with random values can be
generated to reach the limit. In either case accuracy will
suffer, but privacy would still be maintained.



Algorithm 1: AverageSpeed(P, A, n, as, ¢)

Input
P — a road segment for which the average speed
should be evaluated,
A — upper bound for speed values,
n — lower bound on number of vehicles to aggregate,
as — accuracy bound for speed,
¢ — probability bound for accuracy.

1: ac=0.1n; € = C%CIDQ—IC. ;€5 = aisln%.

2: Let RS be the set of all FCD records (one record per
vehicle) reported in road segment P, such that for each
record r; with privacy budget b;, we have b; > €. + €s.
count + |RS| 4 Laplace(1/e.).

Vi S RS: bz <— bl — €.

if count < n + a. then abort query.

Let RS, be a sample of n records from RS.

avg < (SumSpeed(RS,) + Laplace(A/es)) /n.

Vi € RSy: b < b; — €s.

return avg.

© ® N > q hw

that 2 % of the drivers fall into this category®. By querying
the system the police aims to conclude that a certain driver
is reckless with probability 0.99. From a user u’s perspec-
tive, it may be desirable to stay “below the radar.” Denoting
the predicate “u is a reckless driver” with R, in differential
privacy terms, this could be formulated as follows:

Pr(R.|DB UFCD,) < Pr(R.|DB) - exp(e) . (6)

For any series of queries that maintains e-differential privacy

. Pr(R.|DBUFCD,,)
with € < In “ErRLDE)

detected by the police.

With respect to this benchmark, it is now possible to in-
terpret the implications of the privacy parameters in terms
of the susceptibility of the user to such inferences. For exam-
ple, if the e per query is 0.01, a new FCD record is generated
every 5 minutes and deleted after 5 minutes (so at any time
there is only one FCD record in the database per vehicle), an
average driving time of one hour each day means that the
police would need to monitor the FCD database for more
than a month (5525 = 32.5 days) before it can infer that a
certain driver is reckless with high level of confidence. How-
ever, the interpretation of the privacy settings in terms of
“monitoring period prior to breach” should serve only as a
way to roughly judge the implications of different privacy
settings in a very restricted scenario, and should not be as-
sumed to reflect a privacy guarantee for a concrete user.

~ 3.9, the user can avoid being

5. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the application of dif-
ferential privacy to the field of Intelligent Transportation
Systems, especially considering the protection of Floating
Car Data. As we have shown, event-level differential pri-
vacy can be integrated into a policy-enforcement framework

®According to a report from the U.S. Department of
Transport (http://www.nhtsa.gov/staticfiles/nti/pdf/
811647 .pdf), on limited access highways in the U.S., 20%
of drivers exceed the speed limit by more than 10 mph. Al-
though we are not aware of numbers reflecting consistent
severe speeding, for the sake of the example we believe our
assumptions to be reasonable.
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like PRECIOSA PeRA in a straightforward way. We have il-
lustrated how policies could be extended by expiration time
and privacy budget parameters to specify and enforce a cer-
tain level of differential privacy. Implementing user-level
privacy is more challenging and may involve limits to how
much data can be stored about any specific vehicle at any
time.
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