
Towards a Monitoring Feedback Loop for Cloud
Applications

Piotr Bar, Rudy Benfredj, Jonathon Marks, Deyan Ulevinov,
Bartosz Wozniak, Giuliano Casale, William J. Knottenbelt∗

Department of Computing, Imperial College London, U.K.
{firstname.lastname10, g.casale, wjk}@imperial.ac.uk

ABSTRACT
Performance monitoring is fundamental to track cloud ap-
plication health and service-level agreement compliance, but
with the emergence of multi-cloud deployments, it may be-
come increasingly important also to create a feedback loop
between runtime operation in multi-clouds and design-time
reasoning. This is because the developer needs to acquire
more information on the specific performance features of a
cloud platform to better leverage its specificities.

To support this goal, we have developed a set of open
source components that extract quality-of-service (QoS) data
from a target Java application using JMX, aggregate it in
a time-series database, and finally deliver it in a prototype
Java dashboard that may be integrated in a development en-
vironment, such as Eclipse, to display either live or historical
QoS data. The architecture is not only limited to collection,
aggregation, and display of QoS data, but it also allows the
evaluation of hierarchical queries expressed using the Per-
formance Trees graphical language. It is our intention that
this will provide a cloud-independent uniform interface for
developers to specify monitoring queries. Initial evaluation
suggests that Cube on MongoDB provides appropriate scal-
ability for this application.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance Mea-
sures

General Terms
Measurement, Performance

Keywords
Monitoring, cloud computing, QoS, performance trees

1. INTRODUCTION
In recent years, there has been a major trend for deploying

enterprise applications on public clouds in order to improve
resource management and reduce operational costs. The
lack of full control over cloud services, along with the ever-
increasing complexity of applications deployed on the cloud,
exposes a need for monitoring tools to help not just system

∗Giuliano Casale and William Knottenbelt are partially sup-
ported by the EU project MODAClouds (FP7-318484).

Copyright is held by the author/owner(s).
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
ACM 978-1-4503-2050-4/13/04.

administrators, but also software engineers, to better under-
stand the performance implications of their decisions. This
may be helpful, for example, to verify in the early stages
of the design of a new application, how architectural choices
interact with service-level agreements. We shall refer to such
as system as the monitoring feedback loop system.

In general, the requirements for an effective monitoring
feedback loop are multiple: (i) one expects the ability to
acquire and report to the developer basic performance met-
rics for a cloud application over a time horizon; (ii) since
multi-cloud environments may impose different choices of
programming language and monitoring technology, e.g., in-
ability to use JMX monitoring in Google App Engine, one
needs to rely on lightweight platform-independent open data
formats (e.g., JSON) for monitoring data exchange; (iii) the
designer should have the ability to express arbitrarily com-
plex monitoring queries in a language independent of the
way this data will be acquired; (iv) the feedback system
should have the ability to support persistence of the moni-
toring data in the developer working space, for example by
maintaining a small database local to the development en-
vironment; (v) finally, the underlying database technology
should be scalable enough to support queries on thousands
of data points in few seconds across multiple time windows,
for example to use this data for state space exploration. To
address point (iii) in particular, we propose the Performance
Trees (PT) language as a simple mechanism for non-experts
to express monitoring queries in a graphical manner [8]. This
approach is abstract with respect to the target cloud, there-
fore it can help in developing a feedback loop that adapt to
multi-cloud applications. In fact, our implementation sup-
ports an arbitrary number of cloud monitoring sources.

To deal with these requirements we describe an architec-
ture capable of extracting performance data for any Java
application and present it to the user in an intuitive way.
Our frontend allows for the creation of custom PTs to evalu-
ate arbitrarily complex queries. Together our modules allow
for the analysis of both live and historical data as well as
ensuring the reliability and consistency of data in the sys-
tem. Lastly, the platform is designed to support multiple
applications and multiple clouds. Among the monitoring
metrics, we are able to dynamically record offered response
times of a complex application such as Apache OFBiz. We
use Cube [1] as a time series database implementation to
enhance performance of querying time-stamped data. The
components of our architecture communicate over a publish-
subscribe system, which has a significant impact on the scal-



ability of our system. The solution we present is open to
extension by adding support for offline alerts, more compre-
hensive statistical measures and actions executed based on
certain performance conditions being met by the system.

Related work. In [8] a performance-tree based monitoring
architecture is proposed, based on client side agents that re-
trieve statistical data. This data would then be stored in
a database and used to generate a compliance report when
evaluating the performance tree. Our architecture follows a
similar idea, although rather than generating a compliance
report, our front end will dynamically show the evaluation
of a performance tree, as well as being able to plot live in-
dividual sub-graphs of the performance tree.

Similar to the workload in [4, 7], our architecture offers
ease of deployment and configurability by means of dis-
tributed configuration files. We have also evaluated the
Amazon CloudWatch monitoring solution. While our archi-
tecture has common functionality for plotting performance
data and registering custom metrics, the use of PTs in our
architecture allows for more comprehensive performance queries
to be defined and custom granularity for the measurements.

2. TECHNICAL ARCHITECTURE
The monitoring architecture we have developed is com-

posed of a back-end layer, which includes the extractor, the
collector and the database, and a presentation layer.

Communication. All components of our architecture com-
municate using a publish-subscribe model. This is imple-
mented with the Java Messaging System (JMS) [2] and open-
JMS [5] as the JMS provider. The use of a publish-subscribe
mechanism allows for easy scaling and extensibility.

Extractor. The Extractor module is responsible for ex-
tracting performance metrics for applications deployed on
the cloud. As we rely on the Java monitoring extensions
(JMX) to extract performance data, the tool is currently
only capable of monitoring Java applications. The Extrac-
tor is implemented as a publisher in the messaging system.

Collector. The Collector is responsible for aggregating all
the performance data published by applications running on
monitored hosts and writing this data to permanent storage.
It is implemented as a subscriber in the messaging system.
The Collector is also responsible for verifying if the received
data conforms to type restrictions.

Database. A database is necessary to provide historical
data. We used NoSQL technology due to its scalability as
we have predicted a large amount of data in a real-world
use-case. For example, a system administrator monitoring
five metrics of one application distributed over 3 clouds, re-
ceiving data values at a rate of one per second will collect ap-
proximately 1.3M data points each day. We then considered
a time series database (TSDB) to optimize the performance
when querying time-stamped data. We used Cube, a sim-
ple JavaScript wrapper on top of MongoDB [3], to provide
the desired TSDB functionality. Cube exposes the under-
lying datastore through external data collectors to which
the receiver posts statistics, and evaluators which can effi-
ciently compute derived measures on the data, and stream
it to clients [6]. Unlike OpenTSDB, Cube evaluators and
data collectors operate fully in JSON which greatly simpli-
fies interfacing the PT dashboard with it. Cube provides a
simple query language to retrieve events by only specifying
the time range and an expression to filter events by type and
field values. An additional advantage of using Cube was its

Figure 1: Performance Tree query specification editor.

The query computes the 90th percentile of a response

time histogram and compares it with a threshold of 50

seconds. Leave nodes specify the input metric.

in-built functionality to derive metrics and statistics from
our underlying dataset, for example averages and sums.

Analyser. The analyser is the evaluation engine for the
PTs. It uses the database for retrieval of historical data and
subscribes to the live performance data stream for continu-
ous re-evaluation.

User Interface. The user interface contains a Performance
Tree dashboard, see Figure 1. The user can create PTs of ar-
bitrary complexity. A graphs panel, not shown in the figure,
is used to display values of performance metrics over time,
history of performance query evaluation and histograms rep-
resenting distributions of performance data.

3. EVALUATION AND FUTURE WORK
We have described a modular architecture which allows

for comprehensive monitoring of cloud-based Java applica-
tions. We have presented how we were able to incorporate
PTs as means for defining performance queries. Our initial
tests suggest that the architecture scales well. For example,
we have considered queries involving computing percentiles
of a week of a CPU metric collected at 5 seconds resolution
(approx. 200,000 data points). Updating a query on such
dataset to include a new monitoring point with our archi-
tecture took, on average, just 0.584ms ± 0.07ms when the
query is executed alone, and 1.90ms ± 0.12ms when it is
run with other 6 identical queries on a 4 CPU virtual ma-
chine with 4GB of RAM hosted by Flexiscale. Future work
will focus on integration with Eclipse and with tools for of-
fline performance data analysis, for example service demand
estimation that is needed for the definition of software per-
formance models.

4. REFERENCES
[1] Cube. http://square.github.com/cube/.

[2] Java Message Service Concepts.
http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html.

[3] MongoDB. http://www.mongodb.org/.

[4] New relic: Web app. perf. management. http://newrelic.com/.

[5] OpenJMS. http://openjms.sourceforge.net/.

[6] https://github.com/square/cube/wiki/Evaluator.

[7] Yahoo Finance. New relic to bring SaaS-based app performance
monitoring to windows Azure developer portal.
http://finance.yahoo.com/news/relic-bring-saas-based-app-
160000220.html.

[8] W.J. Knottenbelt, N.J. Dingle and T. Suto. Performance Trees:
A Query Specification Formalism for Quantitative Performance
Analysis. Parallel, Distributed and Grid Computing for
Engineering, Chap. 9, Saxe-Coburg, Apr 2009, 165-198.


	Introduction
	Technical Architecture
	Evaluation and Future work
	References

