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Abstract

We investigate the following problem in the visibility-based discrete-time model of pursuit evasion in
the plane: how many pursuers are needed to capture an evader in a polygonal environment with obstacles
under the minimalist assumption that pursuers and the evader have the same mazimum speed? When the
environment is a simply-connected (hole-free) polygon of n vertices, we show that @(nl/ 2) pursuers are both
necessary and sufficient in the worst-case. When the environment is a polygon with holes, we prove a lower
bound of Q(n?/3) and an upper bound of O(n?/%) for the number of pursuers that are needed in the worst-
case, where n is the total number of vertices including the hole boundaries. More precisely, if the polygon
contains h holes, our upper bound is O(n'/2h'/4), for h < n?/3, and O(n'/3h'/?) otherwise.

We then show with additional assumptions these bounds can be drastically improved. Namely, if the
players’ movement speed is small compared to the “features” of the environment, we give a deterministic
algorithm with a worst case upper bound of O(log n) pursuers for simply-connected n-gons and O(v/h+log n)
for multiply-connected polygons with h holes. Further, if the pursuers are allowed to randomize their strategy,
regardless of the players’ movement speed, we show that O(1) pursuers can capture the evader in a simply
connected n-gon and O(\/E) when there are h holes with high probability.
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1. Introduction

In visibility-based pursuit-evasion, a team of pursuers is tasked with locating and capturing an adversary,
called the evader, within a polygonal environment. The pursuers are equipped with cameras, able to maintain
omni-directional line-of-sight visibility, and must plan and coordinate their moves until some pursuer can
reach the same location as the evader. The problem is motivated by applications in robotics, and has drawn
a significant interest since it was introduced by Suzuki and Yamashita [24], although much of the prior work
has focused on the simpler problem of evader detection, where the pursuers win as soon as the evader is
“seen” by some pursuer [10, 11, 12, 20, 25].

In this paper, we consider the complexity of physically capturing the evader within this visibility-based
framework of pursuit-evasion. For our main results, we make only the minimally necessary assumption that
all players (pursuers and evader) have equal maximum speed, which is normalized to one by appropriate
scaling of the environment. On its turn, each player can move to any position within distance one of its
current location, where the distance is measured using the shortest path (geodesic) distance avoiding the
obstacles in the environment. The game is played in the discrete, alternating turn model: the evader moves
first, and then the pursuers. (One practical reason for adopting the discrete time model is that the differential
equations modeling the continuous time game are intractable for all but the simplest of environments.)

*A preliminary version of this paper was presented at the 29th Annual Symposium on Computational Geometry (SoCG
’13) [16]. Additionally, this work includes results presented at the 26th Annual Conference on Artificial Intelligence (AAAI
'12) [15].
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Our first result gives a tight bound of ©(n'/?) for the number of pursuers needed to capture the evader
when the environment is a simply-connected (hole-free) polygon of n vertices. Generalizing this result, we
show that at least Q(n?/3) pursuers are needed for capture in polygons with holes. Complementing this
lower bound, we prove an upper bound of O(n'/2h'/%), for h < n?/3, and O(n'/3h'/?) otherwise, where
h is the number of holes in the polygon. More simply, the upper bound is O(ns/ 6). We then show with
additional assumptions these bounds can be drastically improved. Namely, if the players’ movement speed
is small compared to the “features” of the environment, we give a deterministic algorithm with a worst case
upper bound of O(logn) pursuers for simply-connected n-gons and O(Vh + log n) for multiply-connected
polygons with h holes. Further, if the pursuers are allowed to randomize their strategy, regardless of the
players’ movement speed, we show that O(1) pursuers can capture the evader in a simply connected n-gon
and O(v/h) when there are h holes with high probability.

Related Work.  The history of pursuit-evasion games in geometric environments is long, and can be traced
to the celebrated “Lion-and-Man” problem, attributed to Rado in 1930s: if a man and a lion are confined
to a closed arena, and both have equal maximum speeds, can the lion catch the man? Surprisingly, the man
can evade the lion indefinitely as shown by Besicovitch [18]—the lion fails to reach the man in any finite
time although it can get arbitrarily close to him [2]. Extending this result to environments with obstacles,
however, has proved difficult, and the only relevant result seems to be a recent work of Karnad-and-Isler [13]
that deals with a single circular obstacle! Pursuit evasion is also studied as a form of differential games
and solved using the Hamilton-Jacobi-Isaacs equation. Unfortunately, the resulting system of differential
equations is intractable for all but the simplest of the environments, and unsuited for the complex, multiply-
connected environments we study in this paper. An interested reader may consult [5, 7, 17, 22] for a general
survey for many variations of the lion-and-man problem. There also exists a substantial body of work on
graph searching and pursuit-evasion in graphs [1, 19, 21], but our focus is on geometric environments.

The most relevant work to our research is the paper by Guibas et al. [11], which introduced a formal
framework and analysis of visibility-based pursuit in complex polygonal environments. In order to make the
problem tractable, however, Guibas et al. make one crucial simplifying assumption: the evader loses if it is
“seen” by any pursuer. That is, the pursuers need to only detect the presence of the evader, and not physically
catch it. With this weaker requirement of “capture,” Guibas et al. manage to prove several interesting
combinatorial bounds, including that ©(logn) pursuers in a simply-connected polygon, and ©(h/? + logn)
pursuers in a polygon with h holes (obstacles), are always sufficient and sometimes necessary. Further
work by Isler et al. [12] provided a randomized algorithm for the pursuers in which a single pursuer can
locate the evader with high probability in a simply connected polygon, and O(\/E) pursuers when there
are h holes. Many other variations of the visibility-based pursuit-evasion have been studied over the years,
including detection by a chain of guards [9] or guards with a limited field of view [10], but their focus remains
detection, not capture.

Indeed, until recently, there had been little progress on extending these detection-of-evader bounds to
physical capture of the evader. About a year ago, independently and simultaneously, two groups [3] and [14]
proved that if the location of the evader is always known to the pursuers, e.g., using an ubiquitous camera
network, then 3 pursuers are enough to win the game.! In a sense, this research suggests that “localization”
of the evader is the more difficult part of the pursuit evasion, and the evader’s power comes from its ability
to “disappear” from the collective sights of all the pursuers.

The results of the current paper seek to compare the bounds on the number of pursuers required to
locate or capture an evader. Indeed, we show that with only the minimal assumption of equal speeds, the
bounds for capture are much worse, for example ©(y/n) vs. ©(logn) pursuers for simply connected polygons.
However, by further assuming the maximum movement speed of the players is bounded by the features of
the environment, upper bounds matching those of Guibas et al. [11] are obtained. Finally, we show that the
minimal condition of equal speeds is enough for a randomized capture algorithm to to match the bounds for
randomized localization of Isler et al. [12].

IThe results of these two papers have since appeared in a joint journal article [4].



2. Capture in Simple Polygons

In this section, we establish the tight bound of ©(n'/?) for the number of pursuers needed to capture the
evader when the environment is a simply-connected (hole-free) polygon of n vertices. We begin with some
definitions and preliminaries that are commonly used throughout the paper.

We use e and p;, respectively, to denote the evader and the ith pursuer. We will often use this notation
to denote their positions as well. The players’ sensing model is wvisibility-based: two players see each other
only when they are in line of sight. The pursuit occurs in discrete-time but continuous-space: the players
move in alternate turns (with the evader making the first move), and are allowed to move anywhere within
the polygon subject only to the speed constraint. On their turn, all the pursuers can move simultaneously,
and independently. They can also freely communicate among themselves, to coordinate their moves and
share their knowledge of the evader’s position. All the players also know the geometry of the environment.

Without loss of generality, and with an appropriate scaling of the environment, we assume that the
players’ maximum speed is 1. Therefore, on its turn a player can move to any point that is within distance
one of its current position, using the shortest path metric in the polygon. During the evader’s turn, pursuers
can see any portion of the evader’s path that is within their line of sight. In the spirit of worst-case analysis,
we assume that the evader has full knowledge of the pursuers’ positions (even if they are not in its line
of sight) and can even guess their future moves. All of our upper bounds hold even against such a strong
evader.

We say that pursuers win the game if they can capture the evader in a finite number of moves irrespective
of the latter’s strategy. Conversely, the evader wins the game if it can elude the pursuers indefinitely. Our
first theorem shows that, in the worst-case, at least Q(nl/ 2) pursuers are needed to capture the evader in
n-vertex polygons.

2.1. The Lower Bound Construction
Theorem 1. In an n-vertex simple polygon, at least Q(nl/z) pursuers are needed in the worst-case to capture
an equally fast evader.

Proof. We give a construction of a polygon and the evader’s strategy that forces Q(n'/?) pursuers for a win.
The polygon consists of a long corridor acting as a “base,” of length B, with n — 1 equally spaced “notches,”
and n long “channel corridors,” interleaved with the notches. See Figure 2.1. Each channel corridor also has
a notch at one end, and the length of each such corridor is C', chosen so that C' > B. The players’ maximum
speed is set to 2C' + B, ensuring that players can move between the notches of two arbitrary channels in
a single move, but pursuers cannot search more than two channels in one move: searching three or more
channels requires speed of at least 4C, which is strictly larger than 2C' + B. (The channel lengths take into
account the notches, and we can scale the polygon as necessary to normalize the speed to unit speed.)

We now argue that capturing the evader in this polygon requires at least %nl/ 2 pursuers. Given any
placement of fewer than %nl/ 2 pursuers, there exists a consecutive block of n'/2 channel corridors and the
section of base between them that does not have any pursuers. If the evader moves to a channel in this block,
pursuers cannot determine the identity of the channel because the notches in the base block their visibility.
Since each pursuer can search at most two corridors on its move, collectively these fewer than %nl/ 2 pursuers
cannot search all the n'/2 corridors, leaving at least one safe corridor for the evader to hide. The evader
can, therefore, continue to elude the pursuers indefinitely by repeatedly moving into such a “safe” corridor
on its turn. This completes the proof. O

The rest of this section presents a matching upper bound, by giving an algorithm that guarantees a win
for O(n'/?) pursuers in all simply-connected polygons of n vertices. The next few subsections describe the
geometric preliminaries and constructions that form the basis for our proof.

2.2. A k-block Partition

We begin by describing a partition of the polygon P into subpolygons, called k-blocks, that plays an
important role in our pursuit strategy. Each k-block is just a connected subpolygon of at most &k vertices,
and the partition satisfies the following properties:



Figure 1: Construction for the proof of Theorem 1.

Figure 2: A block partition of a polygon (k = 8).

1. the number of k-blocks in the partition is O(n/k),
2. the edges common to adjacent k-blocks are polygon diagonals, and
3. the adjacency graph of the partition, called the block graph, is a binary tree.

Specifically, our k-block partition is an “unrefinement” of a triangulation of P: a triangulation partitions

P into (n — 2) triangles, using (n — 3) diagonals; our partition retains O(n/k) carefully chosen diagonals so
that the resulting subdivision has the k-block partition properties. See Figure 2.2 for an example. In fact,
the degree bound of the adjacency graph is the only non-trivial property—a naive partition can easily lead
to unbounded fanout. We call the diagonals separating the k-blocks cut edges. The following lemma shows
constructively that a k-block partition always exists.

Lemma 1. FEvery simply-connected polygon on n vertices admits a k-block partition for any 3 < k <mn.

Proof. Let T be a triangulation of P. The dual graph of the triangulation is a binary tree; the nodes of
the graph are the triangles and its edges connect adjacent triangles. We describe a recursive algorithm to
identify the cut edges that define the desired k-block partition. Since a subtree of size k corresponds to a
subpolygon with k + 2 vertices, we choose cut edges to break the tree into components of at most k& — 2
nodes, which form k-blocks.

We inductively assume that the tree is rooted at a degree one node r, which can initially be an arbitrary
leaf node. For any node w in the tree, let s(u) denote the size of the subtree rooted at u, including the node
u itself. If s(r) < k — 2, then we are done. Otherwise, we choose any node u such that s(r) — s(u) < k — 2
but s(r) — s(x) > k — 2 for any child x of u, and cut the edge between w and its parent. Next, if u has only
one child z, then we simply recurse on the subtree T,,, but if u has both its children x and y, then we also
cut the edges (u, z), (u,y) and then recurse on the subtrees T, \ (u,y) and T, \ (u,z). (During the recursive
call, the size fields of the root nodes are recomputed for the new subtrees.)

For the correctness of the algorithm, we first note that the partition clearly creates valid k-blocks. Second,
by construction, each block is bounded by at most three cut edges, thus ensuring that the block graph is a
binary tree. Finally, to show that the total number of cuts made is O(n/k), observe that in the block graph,
any node of degree 1 or 2 is adjacent to a block so that the union of the neighboring blocks contains more
than k vertices—otherwise, our algorithm will not have made the cut between the blocks. Since the number
of degree 3 nodes is at most the number of leaves, the graph has size O(n/k), and the proof is finished. [



After an initial search to localize the evader to a block, a placement of one pursuer per cut edge is
sufficient to maintain the identity of the current block containing the evader. In particular, let B(e) denote
the current block containing the evader. Then the following lemma is straightforward.

Lemma 2. Suppose a pursuer is placed on each cut edge of a k-block partition of the polygon. Then, after
any move of the evader that crosses a block boundary, the pursuers know the identity of B(e), the block
containing the evader.

The initial search can be performed using the following result of Guibas et al. [11]. We use the notation
diam(P) for the diameter of the polygon under the shortest path metric.

Lemma 3 ([11]). Given a simply connected n vertex polygon P, O(logn) pursuers can locate the evader in
O(n - diam(P)) moves.

2.83. Critical Moves

We begin with a simple sufficient condition to trigger the end-game: an immediate capture of the evader.
Specifically, we say that an evader’s move from its current position e to the new position €’ is critical with
respect to a pursuer p if there exists a point e, on the evader’s path that is both visible to p and closer to
p’s current position than to the evader’s start position. Mathematically, a move from e to €’ is critical for
pursuer p at point e. if (1) e, lies on the path from e to €', (2) e. is visible to p, and (3) d(p,e.) < d(e, e.).
If the evader’s move is critical with respect to k pursuers, we call it a k-critical move. Figure 3(i) shows a
k-critical event for k = 4, with f serving as the critical point. The following lemma shows the important
connection between a k-block partition and a k-critical move.

Lemma 4. Suppose each cut edge of the k-block partition is guarded by a pursuer, and a group of pursuers
P1,P2,---, Pk GTe SO positioned that an evader’s move becomes k-critical with respect to these k pursuers.
Then, one of the pursuers p; can capture the evader on its next move.

Proof. By definition of a k-critical move, for each pursuer p;, there is a critical point, say, e.,, on the evader’s
path, closer to p; than to the evader’s start position. That is, d(p;,e.;) < d(e, e, ), for all i. (The critical
points for different pursuers need not be the same.) By triangle inequality, we also have that

d(piv 6/) < d(pi7 eci) + d(eci’ el) < d(ev 661‘) + d(eCi’el)
< dlee) <1

where the second inequality follows from the definition of a critical move and the last inequality from
the unit maximum speed assumption. Thus, if the terminal position €’ of the evader is visible from any of
the critical points e.,, then the corresponding pursuer can capture the evader by first moving to its (visible)
critical point and then to ¢’. Therefore, assume that none of the critical points are visible from the evader’s
position ¢’. In this case, we first move all the pursuers to a carefully chosen waypoint f, defined as follows.
The waypoint f is the last location at which the evader is seen by any pursuer during its move from e to ¢e’.
After moving to the waypoint, each pursuer p; still has 1 — d(p;, f) > d(f, e’) amount of remainder distance
in its current move because d(p;, f) < d(e, f). If the evader’s terminal position e’ is visible from f, the
evader can be captured by any of the pursuers.

Thus, assume that the evader’s location ¢’ is invisible from the waypoint also. Suppose B(e’) is the
block containing the evader, which the pursuer know by Lemma 2, and by construction B(e’) has at most k
vertices. We first observe that the waypoint f must lie in B(e’): the evader’s entry into B(e’) was seen by a
cut edge pursuer. Consider the shortest path in B(e’) from f to the evader’s final position e’—necessarily,
this path cannot be longer than the portion of the evader’s path between f and €', and because the two end
positions are mutually invisible, the shortest path must contain at least one polygon vertex. Without loss
of generality, let z be the last (closest to e’) vertex on the path from f to €. The vertex z is necessarily
in B(e’), and is visible from e’. Since there are at most k choices for the vertex z, each of our k pursuers
follows a shortest path from the waypoint f to one of these vertices (see Figure 3(i) for illustration), and the
one reaching z can successfully capture the evader. This completes the proof. O



(ii)

Figure 3: In (i) illustration of proof of Lemma 4. In (ii) an example crossing sequence.

2.4. Forcing a Critical Move

The main problem now is to devise a pursuer strategy that forces a k-critical move in a finite number
of steps. Unfortunately, the cut edges can be arbitrarily longer than the normalized speed of the players,
and thus even if we position k pursuers on an edge of length L > k, the evader can cross the edge without
triggering a critical event. We, therefore, resort to a more complex structure and search strategy, which is
motivated by the following simple observation: If the evader crosses a square-shaped region of the environment
with pursuers at its corners, then it is a critical move.

In order to make this idea more precise, we first define a crossing sequence. Let R be a square contained
entirely within the polygon P. A crossing sequence for R is a sequence of moves in which the evader enters
and exits the square through distinct boundary edges. Figure 3(ii) shows an example. (We note that an
evader path is not a crossing sequence if it enters and exits the square through the same edge.)

Lemma 5. Consider a square R fully contained in the polygon P, and let p, and py, respectively, be two
pursuers located at the corners a and b of R. Then, any crossing sequence in which the evader exits R
through the edge (a,b) forces a critical event with respect to p, or py.

Proof. First, consider the simpler case when the crossing sequence consists of a single evader move: that is,
the evader, originally outside the square, crosses it in a single move, exiting through the edge (a,b), say, at
a point z. In this case, elementary geometry shows that min{d(p,, ), d(py,z)} < d(e,z), ensuring a critical
event.

The case when the crossing sequence consists of multiple moves requires more tedious, but still elementary,
argument. See Figure 4 for an illustration. We first introduce the idea of a projection. Given the evader’s
position e inside the square, its projection on an edge (a,b), denoted 7.(a,b), is the point on (a,b) that
is closest to e. (In other words, the projection is the foot of the perpendicular from e to (a,b).) The key
observation is that a pursuer located at the projection 7. (a,b) is closer to any point of (a,b) than the evader,
and so any evader move crossing the edge (a,b) is critical for that pursuer. If the evader enters R through
an edge adjacent to (a,b), namely, (a,d) or (b,c), then p, or p, can easily maintain their position on the
evader’s projection on (a,b): because the “horizontal projection” of the evader’s position can change by at
most one in a move, the pursuers p, or p, can reposition themselves at the evader’s projection on the edge
(a,b).

Thus, it remains only to consider the evader’s entrance through the edge (¢,d), which is the opposite
side of the square from (a,b). In this case, clearly, both p, and p, can be arbitrarily far from the projection
me(a, b)—the side length of R can be much larger than 1, the players’ speed, and the evader may enter in
the middle of the edge (¢, d). However, in this case, the evader is also far away from the edge (a,b), and we
ensure that a crossing sequence has a critical event for at least one of the pursuers. In order to track the
pursuers’ progress, let us introduce A = d(e, m(c, d)), the distance between the evader’s current position
and its projection on the entrance edge (c,d).



Figure 4: Illustrating the proof of Lemma 5

The pursuer p, now aims for the point that is
min{A, d(a, m.(a, b))} away from a along the edge (a,b), while p, aims for an analogous point measured from
b. (See Figure 4.) Each move of the evader can increase A by at most one, and so p, and p, can both reach
their targets each turn. Once p, or p, reaches the projection, the claim of the lemma is clearly satisfied.
Otherwise, both the pursuers are as close to the projection as is the evader, and together they guarantee that
any move of the evader that causes it to exit through (a,b) is critical for both the pursuers. In particular, for
any position of p, in the interval between a and . (a,b), the pursuer p, guarantees a critical event, while py
guarantees a critical event for any position in the interval from 7. (a,b) to b. This completes the proof. [

An easy consequence of Lemma 5 is that by placing two pursuers at each vertex of R, for a total of eight,
we can guarantee that any crossing sequence through the square R is critical move. (We could, in fact,
reduce the number of pursuers to just four, one per corner but for convenience and a future simplicity, we
choose to keep all eight pursuers.) One subtle point, however, is that the evader can exit through the same
side it entered, therefore, without completing a crossing sequence, but in the process force pursuers to move
off their desired corner positions! Our next lemma shows that the pursuers can immediately recover their
initial positions, following any such “fake” move by the evader.

Lemma 6. If the evader enters and exits the square R through the same side, without completing a crossing
sequence, then all eight corner pursuers can recover their initial positions on the next move after the evader’s
exit.

Proof. Without loss of generality, assume that the evader enters and exits R through the side (¢, d), and
that the exit move occurs at time ¢. By the projection invariant maintained by the pursuers, each of them is
within distance 1 of its initial corner at time ¢, and therefore can recover its initial state on its next move. It
is worth pointing out that if the evader exits through (¢, d) but immediately reenters R through a different
edge in the same move, then a crossing sequence is completed, immediately leading to capture—this follows
from the projection invariant maintained by the pursuers. O

The idea of crossing sequence through a square extends easily to squares “truncated” by intersection
with the polygonal environment. The intersection R N P between the square R and the polygon P consists
of possibly many (connected) cells. Consider one such cell F' that does not contain any vertex of P, and call
it empty. It is easy to see that F' has a constant number of boundary edges—at worst, each of its corners
can be lopped off by a polygon edge, resulting in an 8-sided cell. Thus, there are at most four sides of F'
inherited from R, each possibly truncated by a polygon edge, and at most four sides defined by polygon
edges. Since the polygon edges are impenetrable by either the evader or the pursuers, it is easy to see that
the critical move claim of the preceding lemma holds also for such a truncated cell F' of the square R. In
particular, we have the following easy corollary of Lemma 5.

Corollary 1. Given a square R = (a,b,c,d), let F' be an empty cell of the common intersection RN P, let
(a’,b') be a non-polygon edge of F, and let py,py be two pursuers placed at o’ and b'. Then, any crossing
sequence by the evader exiting F through the edge (a’,V') is a critical move for one of these pursuers.



2.5. Edge Covers and the Constrained Delaunay Triangulation

We mentioned earlier that no bounded number of pursuers on a cut edge can prevent the evader from
crossing it. Instead we build a geometric “cover” around each cut edge in such a way that the evader cannot
cross the cover without being captured. We begin with the following technical lemma that forms the basis
of such a cover.

Lemma 7. Consider a circle C and a chord (a,b) in it. Then, there always exist two squares Ri, Ry
contained in C so that (a,b) lies in the union Ry U Rs.

Proof. Let r be the radius of the circle C. Let h and h’' be the lengths of two segments into which (a,b)
divides the circle’s diametric chord that is perpendicular to (a,b). Without loss of generality, assume that
h < K, which implies that h < 7. It is now easy to see that the two squares, each with side length
¢ = ((Jab|/2)? + |n|?)Y/? < r\/2, satisfy the conditions of our lemma, as illustrated in Figure 5(i). Since
every circle of radius 7 admits a contained square of side length /2, these squares lie within C. O

Figure 5: (i) illustrates the proof of Lemma 7 and (ii) shows an example triangle from a CDT.

Our idea is to cover each cut edge with the union of two squares as in Lemma 7, but use a particular
kind of underlying triangulation to achieve the necessary empty-cell condition (cf. Corollary 1). Specifically,
we use the Constrained Delaunay Triangulation of P [6, 23] as the basis for our partition. The constrained
Delaunay triangulation has the following properties: (1) each edge of the polygon appears as an edge of the
triangulation, and (2) each triangle’s circumcircle encloses no vertex that is visible from the interior of the
triangle. Figure 5(ii) shows an example.

Consider a cut edge (a, b) of the constrained Delaunay triangulation, which by definition has a circumcircle
C empty of any visible vertices of P. By Lemma 7, we can find two squares R;, Ry that “cover” (a,b) and
lie entirely within C. These squares may intersect the boundary of the polygon P but, by definition of CDT,
the cells containing the edge (a,b) are empty of any visible vertices. We define the cover(a, b) as the union
of these two “truncated squares.” These edge covers are utilized in the following way in our pursuit strategy.

Let B be a k-block partition, and B; a k-block of B. Define B;” = B;\{U,cover(a;,b;)} as the contracted
block corresponding to B;, where (a;,b;) are the (at most three) cut edges bounding B;. Similarly, we define
B;" = B, U; {cover(a;,b;)} as the extended block corresponding to B;. Since each edge cover has a constant
number of vertices, all contracted or extended blocks clearly have size O(k). We call two blocks (contracted
or extended) neighbors if their original blocks share a common cut edge. We have the following lemma.

Lemma 8. Any evader move between two neighboring contracted blocks is a crossing sequence.

Proof. Let By and By be two contracted blocks neighboring the cut edge (a,b). Any move by the evader
from By to Bj , or vice versa, must cross at least one of the truncated squares of cover(a,b). O

We say that a cut edge is k-covered if we replace each pursuer in cover(a,b) by k co-located pursuers.
Clearly, any evader move that crosses a k-covered edge is k-critical, and results in capture on pursuers’ next
move (cf. Lemma 4). At a high level our capture algorithm has the following form.

Algorithm HoleFreeCapture



1. Construct a k-block partition of P, using the Constrained Delaunay Triangulation. Place one pursuer
on each cut edge to track B(e), the current k-block containing the evader.

2. Perform a sweep of the block graph until the evader is trapped in an extended block B (e) whose
adjacent cut edges are all k-covered. With the pursuers in this position, any move by the evader
exiting B (e) is a k-critical move, leading to capture.

3. With the evader confined to an extended k-block, we use an additional set of O(k) pursuers to find
and capture the evader in B*(e).

By choosing k = n'/2, this leads to a search and capture strategy using O(nl/z) pursuers: there are
O(n/k) = O(n'/?) cut edges, each requiring one pursuer, and at most 3 groups of O(n'/?) pursuers needed
to sweep the block graph. It only remains to describe the details of Steps 2—3, which is the focus of the next
two lemmas.

Lemma 9. With O(k) pursuers, we can confine the evader to an extended block.

Proof. We use the fact that the block graph is a binary tree, whose nodes correspond to the k-blocks and
whose edges correspond to cut edges, and that pursuers always know B(e), the block containing the evader,
by Lemma 2. Inductively, assume that B(e) belongs to the subtree rooted at a node u, and the cut edge
between u and its parent is k-covered; if u is root, then the parent is null. Let x and y be the two children of
u, one of them may be null. For notational convenience, we use U, X,Y to denote the blocks corresponding
to u, x and y, respectively.

We begin by repositioning two groups of O(k) pursuers each to form k-covers of the cut edges (u,x)
and (u,y), and then use a constant number of pursuers to search the constant-size subpolygons cover(u, x)
and cover(u,y). By the end-game algorithm (cf. Lemma 10), if the evader is in these subpolygons, it is
either captured or forced to exit it. The key observation is that once the evader has exited cover(u,x) and
cover(u,y), the pursuers in the cover prevent the evader from crossing between the neighboring contracted
blocks. Thus, after leaving the covers if the evader remains in U™, then it is confined: moving to a neighboring
contracted block forces a k-critical event (cf. Lemma 8). Because all three neighboring cut edges of U™
are k-covered, the claim follows in this case. Otherwise, the evader must have moved outside the extended
block UT. Without loss of generality, assume that the evader is either in the extended block X or in a
descendant node of x. In either case, the evader cannot enter U~ because of the k-covering of (u,x). We
can therefore free up the k-covering pursuers from edges (u,v) and (u,y), and recursively search the subtree
rooted at x. The search terminates within O(n/k) such steps. O

2.6. The End Game

The last step of our algorithm deals with capturing the evader when it is confined to an extended k-
block, using O(k) pursuers. At a superficial glance, it may appear that this can be done by combining
the localization algorithm of Guibas et al. [11] with a modified lion-and-man algorithm of Isler et al. [12].
Unfortunately, this strategy fails due a technical subtlety: the lion-and-man algorithm of [12] relies on a
small step size assumption, which precludes the arbitrary speed with which the evader is allowed to move in
our problem. However, since we have O(k) pursuers available to us, we can design a simple direct algorithm
for this end game.

Lemma 10. Let P be a k-vertex simple polygon. Then, in O(diam(P)?) steps O(k) pursuers can capture
an equally fast evader.

Proof. The algorithm operates in two phases: a preparation phase followed by an attack phase. The prepara-
tion phase begins by triangulating P. We then assign one pursuer to each edge of the triangulation, including
the polygon boundary edges, which positions itself at the projection of the evader. We define the projection
me(a,b) of the evader for an edge (a,b) as the closest point on the edge to the evader measured by direct
FEuclidean distance ignoring the polygonal boundary—this is either the foot of the perpendicular from the
evader’s position or an endpoint a or b. Since the evader cannot leave P, and moves at most distance one in
each move, each pursuer can arrive at its projection in O(diam(P)) moves, which completes the preparation
phase.



Figure 6: The end game: shrinking the triangle during the attack phase.

With each pursuer at the projection of its designated edge, the attack phase starts. Any move by the
evader crossing a triangle is a critical move for some pursuer. Let p be a pursuer for whom this is a critical
move. Since the entire polygon is collectively visible to the pursuers, the end position of the evader after the
move is also known to p, and therefore p can capture the evader on its next move.

Thus, to avoid capture, the evader must remain confined to a single triangle, say, A(a,b,c). In this
case, the three pursuers assigned to the triangle progressively “shrink” the area within which the evader lies,
leading to eventual capture, as follows. Imagine sliding one of the edges of the triangle, say, (a,b) toward ¢
by distance one, creating a “shrunken” triangle A(a’, V', ¢). Position a new pursuer p’ on the edge (a’,b’) at
the projection 7. (a’,t’) in O(diam(P)) moves. Now, if the evader lies in the strip between (a, b) and (a’, '),
then a single pursuer can eventually capture the evader by sweeping this strip—the width of the strip is one,
and the evader cannot cross the strip boundaries because they contain pursuers on projection points. If,
however, the evader is in the triangle A(a’,b’, ¢), then we have successfully reduced the height of the triangle
by one, which must lead to capture in O(diam(P)?) steps. This completes the proof. O

This completes our discussion of the algorithm HoleFreeCapture. As discussed earlier, by choosing
k = n'/?, we achieve the following theorem, which is the main result of this section.

Theorem 2. O(n1/2) pursuers are always sufficient to capture an equally fast evader in any simple polygon
of n vertices in O(n - diam(P) + v/n - diam(P)?) moves.

Proof. As the capture will clearly occur, we need only analyze the worst case number of moves. By invoking
Lemma 3 the pursuers can determine the initial k-block containing the evader in O(n - diam(P)) moves.
Additionally, the pursuers will guard at most O(y/n) triangles, taking at most O(y/n-diam(P)?) moves due to
invocations of the end-game algorithm (Lemma 10) to force the evader out of guarded squares. Finally, when
the evader is captured in a k-block it takes O(diam(P)?) moves for a total of O(n-diam(P) ++/n - diam(P)?)
moves. O

3. Capture in Polygons With Holes

In this section, we extend our results to polygonal environments with holes, also called multiply-connected
polygons. We assume that the polygon contains h disjoint polygonal holes, and the total number of vertices
including the holes is n.

3.1. An Q(n?/3) Lower Bound Construction

We begin with a construction showing that in the worst-case at least Q(n?/?) pursuers are needed to
capture the evader. The proof follows the basic outline of Theorem 1, but requires a more complicated
construction.

Theorem 3. In the worst-case, at least Q(nz/S) pursuers are needed to capture an equally fast evader in a
multiply-connected polygon with n vertices.
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Proof. Our construction is based on a rectangular grid of r rows and ¢ columns (see Figure 7). We convert
this into a polygon by making each edge of the grid into a narrow corridor, so that the resulting polygon
has r - ¢ (rectangular) holes. Place a small notch in the middle of each corridor to block visibility across
the notch. Next, at the top boundary of the grid, place the “comb” construction of Theorem 1, uniformly
spaced so that there are n/c channel corridors in each of the ¢ columns of the grid. We associate each group
of n/c channel corridors with the grid column immediately preceding it. The height C' of the comb corridors
is chosen such that C' > W H, where W and H, respectively, are the width and the height of the grid (taking
into account the notch detours). Finally, the movement speed of the players is set to 2C' + W H, which is
strictly smaller than 4C'. This speed allows the evader to move between any two channel corridors in a single
move but no pursuer can search more than two such corridors.
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Figure 7: The lower bound construction for capture in polygon with holes (r = 2 and ¢ = 4). An extended column is shown
with an ellipse around it.

Define an extended column as the subpolygon consisting of the chain of r notched corridors associated
with a grid column together with its n/c channel columns. See Figure 7. Given any placement of pursuers
in the polygon, we call an extended column uncovered if no point of the extended column is visible to any
pursuer. We claim that given any placement of ¢/4 pursuers in the polygon, (1) there are at least 3c¢/4
uncovered extended columns, and (2) if r = /¢, there is a group of 1/c¢/2 uncovered extended columns such
that the evader can move between any two of them undetected.

The first claim follows from the fact that corridor notches limit a pursuer’s visibility to at most one
extended column. Since there are ¢/4 pursuers and ¢ extended columns, at least 3¢/4 are uncovered. We
prove the second claim by contradiction: assume the claim is false, and partition the uncovered extended
columns into equivalence classes (groups) g1, g2, - - - , g¢ such that the evader can move between two columns
of the same group undetected but not between two columns of different groups. Because we have 3c/4
uncovered extended columns, and by assumption each group g¢; has fewer than /c/2 columns, the number of
equivalence classes is £ > (3¢/4)/(v/¢/2) = 3y/c¢/2. We can order these groups in their natural left-to-right
order: all columns of one group must precede columns of the next group. We now claim that there must be
at least one pursuer in every row between two consecutive groups: otherwise the evader can sneak between
columns of two different groups, violating the equivalence class partition. Because the number of rows is
r = 4/c, this implies there are at least 31/¢/2 - /¢ = 3¢/2 pursuers, contradicting our initial assumption of
at most ¢/4 pursuers. Thus, claims (1) and (2) are both true.

Thus, there is a group of 1/c/2 uncovered extended columns for any placement of ¢/4 pursuers. The
evader’s strategy is to always move into one of these columns. Each of these columns contains n/c channel

corridors for a total of QL\E channel corridors. If we choose 7 = n'/3 and ¢ = n?/3, then r = /¢, and we
2/3

have 1n?/3 channel corridors for the evader to hide on its turn. Thus, if there are fewer than c/4 = in
pursuers, the evader can indefinitely avoid capture by repeatedly moving into ones of the uncovered channel
corridors that is not searched by pursuers on their turn. The entire polygonal environment, with holes, has
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O(n) vertices, and this completes the proof that Q(n?/3) pursuers are required in the worst-case. O

In the rest of the section, we present an upper bound for the number of pursuers needed to capture the
evader in a polygon with holes.

3.2. A k-block Partition of Polygons with Holes

We first extend the earlier notion of a k-block partition to polygons with holes. Our new partition has
the structure of a planar graph, instead of a tree, and consists of two types of regions: triangles and k-block
subpolygons (possibly with holes). The key property is that no two k-blocks are adjacent—they are adjacent
only to triangles of the partition. More specifically, our partition satisfies the following properties:

1. the number of triangles (and blocks) in the partition is O(n/k) if h < n/k, and O(y/nh/k) otherwise,
2. the adjacency graph of the partition is planar, and is called the block graph, and
3. every k-block of the partition has only triangles of the partition as its neighbors.

We construct such a partition through recursive calls to the well-known planar separator theorem.

Lemma 11. [8] Every planar graph G = (V, E) on n nodes admits a partition of the nodes into three sets
A, S, and B, such that neither A nor B has more than 2n/3 nodes, S has at most v/6n nodes, and there are
no edges with one endpoint in A and the other endpoint in B. The set of nodes S is called a separator of G.

The only non-trivial part is that we want our separators to be of size O(v/h), and not O(y/n), but still
want the two parts to be balanced in n. We do this by a suitable contraction of the triangulation graph of
the polygon, and a recursive use of the separator theorem to achieve the balanced partition. We first need
the following lemma as an intermediate result.

Lemma 12. Given a triangulation of a polygon P with n vertices and h holes, we can find a set of O(\/E)
triangles whose removal partitions P into two (possibly disconnected) sub-polygons, each containing at most
2h/3 holes and 2n/3 vertices.

Proof. The graph-theoretic dual of the triangulation is an O(n) size planar graph, with a vertex for each
triangle and an edge between two nodes if those triangles have a common boundary edge. In this graph,
there is a cycle surrounding each of the h holes, and it is the structure of those cycles that is important to
us. We reduce this triangulation graph to an O(h) size planar graph, by repeatedly contracting vertices of
degree 2, and deleting vertices of degree one, until all vertices have degree three. The resulting graph G has
h faces, each vertex has degree 3, and so by Euler’s formula, it has O(h) vertices and edges as well.

By the planar separation theorem, we can find a separator of size O(\/E) that splits the graph into
two parts, each containing at most 2h/3 nodes, as well as 2/3 of the faces of G. In the primal space of
triangulation, the separator corresponds to O(\/E) triangles, splitting the polygon into two pieces, each
containing at most 2h/3 holes. However, the split does not guarantee any balance for the number of polygon
vertices. Thus, if either piece contains more than 2n/3 vertices, we apply the algorithm recursively until
no piece has more than 2n/3 vertices. The total number of triangles used to achieve the desired partition
follows the recurrence T'(h) = T(2h/3) + O(v/h), with T(1) = 1, which solves to T((h) = O(v/h). In the base
case, the subpolygon contains no holes, and a single triangle is sufficient to split the polygon into two pieces,
each of size at most 2n/3. This completes the proof. O

We repeatedly apply Lemma 12 to construct our k-block partition.

Lemma 13. Every multiply-connected polygon with n vertices and h holes admits a k-block partition for any
3<k<n.
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Proof. We apply Lemma 12 recursively to our polygon P until each piece is a subpolygon of k vertices,
possibly with holes. The recursive partition naturally corresponds to a binary tree, called the partition tree,
whose leaves are the k-blocks and non-leaves correspond to the separators. The blocks corresponding to any
two leaves necessarily are on opposite sides of a separator, and thus the partition has the desired adjacency
property. It only remains to bound the total number of triangles and blocks. Each triangle is part of a
separator, so the number of triangles equals the total size of all the separators used in the partition. The
number of blocks (leaves of the partition tree) is upper bounded by the number of non-leaf nodes, which in
turn is upper-bounded by the number of triangles.

Let us consider the case when h > n/k; the other case h < n/k is similar. Consider an intermediate sub-
polygon P; with n; vertices and h; holes. We call the sub-polygon i-big if either (2/3)*1h < h; < (2/3)%h
or (2/3)1n < n; < (2/3)'n. (Intuitively, a subpolygon is i-big if either its number of holes or its number
of vertices is large enough to force a split to the next level.) We claim that there are at most 2(3/2)+!
subpolygons that are i-big. This holds because all subproblems at any level of the partition tree are pairwise
disjoint, and at most h/(2/3)"*1h = (3/2)**! polygons arise due to the condition on the number of holes, and
at most n/(2/3)""n = (3/2)"! due to the condition on the number of vertices. Since (2/3)1083/2("/F)p — k.
each non-leaf sub-polygon created during recursive partitioning is i-big for some ¢ where 0 < 4 < log, /2(n /k).

Since the separator of an i-big polygon has size O(4/(2/3)?h), we can bound the total size of all the separators
created during the partition tree as

log n/k . .
gsi/ g <3>2+1 c <2>h
— 2 3
for some constant ¢. One can easily verify that this sums to O(y/nh/k), which completes the proof. O

The following lemma is straightforward.

Lemma 14. Suppose a pursuer is placed in each triangle of a k-block partition of the polygon. Then, after
any move of the evader that crosses a block or triangle boundary, the pursuers know the identity of B(e),
the block or triangle containing the evader.

3.83. Analysis of Capture in Polygons with Holes

We now have all the pieces in place to describe the outline of the capture strategy and derive our main
result. Following our scheme for the polygons without holes, we construct the k-block partition using the
constrained Delaunay triangulation of P so that any diagonal (edge of a triangle) can be covered using the
construction of Lemma 7. In particular, we can k-cover all three edges of a triangle so that a k-critical evader
move immediately leads to capture. At a high level, our capture algorithm has the following form.

Algorithm PolygonWithHolesCapture

1. Construct a k-block partition of P, using the Constrained Delaunay Triangulation. Place one pursuer
in each separating triangle to track the current block, or the triangle, B(e) containing the evader.

2. Position pursuers at nodes of the partition tree until the evader is trapped in an extended block B (e),
whose adjacent triangles are all k-covered. With the pursuers in this position, any move by the evader
exiting BT (e) is a k-critical move, leading to capture.

3. With the evader confined to an extended k-block, we use an additional set of O(k + \/E) pursuers to
find and capture the evader in B (e).

Only Steps 2 and 3 require explanation—the k-block partition is already described by Lemma 13. Step
3, in fact, is also easy because the end-game algorithm of Lemma 10 works even with holes: a polygon with
k vertices, including holes, can always be triangulated using O(k) triangles, and our end-game algorithm
requires a constant number of pursuers per triangle. We note that B(e)™ has O(k + v/h) vertices because in
the worst-case, a block may neighbor O(\/E) separating triangles. Thus, the only remaining part is Step 2,
which is analyzed in the following lemma.
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Lemma 15. With O(kv'h) pursuers, we can confine the evader to an extended block.

Proof. We first position pursuers to achieve k-covering of each of the O(\/E) triangles for the separator at
the root node of the partition tree. We then search the O(v/h) covers, which either leads to the capture
or evicts the evader from these covers. The important observation is that once the evader is outside all
the covers associated with the root’s separator, it is confined to the (extended) blocks of one side of the
separator—any crossing of the separator causes a k-critical event and leads to immediate capture.2 Once the
root, node is covered, we recursively apply the algorithm to the child node whose subtree contains the block
B(e) with the evader, which the pursuers know by Lemma 14. The recursion stops when we reach a leaf
node at which point the evader is confined to an extended k-block. Let us now examine the total number of
pursuers needed in this search. Because the number of holes in a subproblem shrinks by factor 2/3 at each
level, the number of pursuers needed to k-cover all the separators along a root-to-leaf path has the following
recurrence: T'(h) = T'(2h/3) 4+ O(k+v/h), which solves to O(kv/h). O

We can now prove our main result.

Theorem 4. Let f(n,h) be the number of pursuers needed to capture an equally fast evader in a polygon of
n vertices and h holes. Then,

_ [ O mhy i<
f(n,h) = { O(hY/%2-n!/3)  otherwise

Proof. By Lemma 15, we can confine the evader to a single extended k-block using O(k\/ﬁ) pursuers, and
then use the end-game algorithm to complete the capture with O(k + \/E) additional pursuers. We choose
the appropriate value of k, depending on the number of holes, to prove the result.

When h < n?/3, then we choose k = n'/?/h'/*. In this case, we have h < n/k. The block partition
has O(n/k) = O(n'/? - h'/4) triangles, each requiring one pursuer. The k-covering of triangles requires
O(kv'h) = O(n'/? - h*/*) pursuers. Thus, the total number of pursuers is O(n'/? - h/4).

When h > n?/3, then we choose k = n'/3. 1In this case, h > n/k, and the block partition has
O(y/nh/k) = O(n'/? - h'/2) triangles, each requiring a single pursuer. The k-covering of triangles needs
additional O(kv/h) = O(n'/3-h1/2) pursuers, for the total of O(n'/?-h'/2). This completes the theorem. [J

The bounds of the preceding theorem can be combined into a single upper bound of O(n®/9), giving the
following Theorem.

Theorem 5. Suppose P is a n vertex polygon with h holes, where n includes the vertices of the holes. Then
O(n®/®) pursuers can capture an equally fast evader in O(n - diam(P) + log(n) - diam(P)?) moves.

Proof. The worst case number of pursuers is given as a corollary of Theorem 4, thus we concern ourselves
with the duration of the capture. By invoking Lemma 3 the pursuers can determine the initial k-block
containing the evader in O(n - diam(P)) moves. Additionally, before confining the evader to obstacle free
k-block at most O(logn) sets of triangles must be guarded, each taking O(diam(P)?) time by Lemma 10.
Thus, with the final invocation of the End Game algorithm to capture the evader in a k-block, the worst
case number of moves is O(n - diam(P) + log(n) - diam(P)?). O

4. Minimum Feature Size Assumption

We now show that a minimum feature size property of the environment is sufficient to yield significantly
better upper bounds for the capture problem. Specifically, we show that O(logn) pursuers are always
sufficient to catch the evader in a simply-connected polygon of n vertices, and O(\/E + logn) if there are
h holes. The pursuers’ winning strategy is deterministic, and succeeds in polynomial time. The minimum
feature size of a polygonal environment is defined as follows.

2The evader may exit all the covers but remain within a triangle. In that case, we treat the triangle as a trivial block.
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Definition 1. Minimum Feature Size (MFS): The minimum feature size of a (multiply-connected)
polygon P is the minimum distance between any two vertices, where the distance is measured by the shortest
path within the polygon.

We assume that the minimum feature size of the environment is lower bounded by the maximum speed of
the players: i.e., the environment has minimum feature size of at least one. One can check that the polygon
used in our lower bound (Figure 2.1) violates the minimum feature size: the players’ maximum speed is 1
but there are pairs of vertices that are within 1/y/n of one another.

The primary reason that the minimum feature size allows a large reduction in the number of required
pursuers is that a 1-critical move by the evader will result in its capture, regardless of knowledge of which
k-block contains the evader. Meaning, a square can be guarded with eight pursuers, even if no additional
pursuers are deployed in P. The following Lemma proves this fact.

Lemma 16. Suppose that the minimum feature size of P is at least one. Then if the an evader’s move
becomes critical with respect to a pursuer p, then p can capture the evader on its next mowve.

Proof. As shown in Lemma 4, if e’s move to €’ is critical for p at some point e, then it must be the case
that d(p,e’) < d(e,e’) < 1. Thus, if the terminal position e’ of the evader is visible to p, then p can capture
the evader.

Figure 8: The proof of Lemma 16.

Let e, be the last position during e’s move where the evader is visible to p. Using the triangle inequality
and the assumption d(p,e.) < d(e,e.), we conclude that d(p,e,) < d(e,e,). Notice then that the line
segment (p, e,) must contain a vertex of the environment, call it v, blocking p’s visibility past the point e,
(see Figure 8). We claim that the shortest path homotopic to (p,e,,€’) is (p,v,€e’), that is, it consists of a
single vertex v. Since the path (p,e,,€’) has length at most 1, the shortest path of the same homotopy also
has length at most one, and the minimum feature size forbids two vertices with shortest path distance less
than one. Thus, v is visible from both p and €, and d(p,v) + d(v,e’) < 1. The pursuer p, therefore, can
capture by first moving to v and then to ¢’ in a single move. O

We now apply our previous simply connected capture algorithm to a 3-block partition, where the block
graph is simply the dual graph a constrained Delaunay triangulation. However, the preceding Lemma shows
that we no longer need to place pursuers on the cut edges to capture the evader after a critical move. As
a result, when sweeping the block graph the pursuers will not know which subtree rooted at the current
guarded node contains the evader. When this occurs, we invoke Lemma 3 to find the evader, and determine
which subtree to search, and thus our algorithm will eventually confine the evader to an extended 3-block, at
which point O(1) pursuers can capture the evader using the end game algorithm, and we obtain the following
Theorem.

Theorem 6. Suppose P is a simply connected n vertex polygon with MFS at least 1. Then O(logn) pursuer
can capture an equally fast evader in O(n? - diam(P) + n - diam(P)?) moves.
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Proof. Over the course of the algorithm at most three cut edges are guarded at any one time, each using
O(1) pursuers. An additional O(logn) pursuers are reused to search for the evader at most n times, and
thus O(log n) pursuers suffice to capture the evader.

The n searches each have duration O(n - diam(P)) by Lemma 3 taking a total of O(n? - diam(P)) moves.
Additionally the end game algorithm may be invoked n times to force the evader out of guarded triangles
taking O(n-diam(P)?) moves, thus the evader will be captured in O(n?-diam(P) +n-diam(P)?) moves. [

When P contains holes, we set a block size of 3 and will confine the evader to a single block. Once
again, due to the absence of pursuers on each cut edge, when sweeping the partition tree it is necessary to
search each of the subtrees to determine which one the evader is in. In this case, we invoke Guibas et al.’s
localization algorithm for polygons with holes [11].

Lemma 17 ([11]). Given an n vertex polygon P with h holes, O(v/h +logn) pursuers can locate the evader
in O(n - diam(P)) moves.

The following Theorem bounds the total number of pursuers needed to capture the evader.

Theorem 7. Suppose P n wvertex polygon with h holes and MFS at least 1. Then O(\/EJr logn) pursuer
can capture an equally fast evader in O(n? - diam(P) + n - diam(P)?) moves.

Proof. We make one slight modification to our algorithm used in Theorem 4; when the pursuit reaches a
point where the evader has been confined to a simply connected polygon, stop guarding separators and apply
Theorem 6. Notice, that the total number of triangles guarded before reaching the simply connected polygon
is T(h) = T(2h/3) + O(vh) = O(Vh), thus O(vh) pursuers guard the partitions. Further, O(vh + logn)
pursuers are reused to locate the evader at most n times, and O(logn) are used to capture the evader in a
simply connected subpolygon for a total of O(\/ﬁ + logn) pursuers.

The n searches each have duration O(n - diam(P)) by Lemma 17 for a total of O(n? - diam(P)) moves.
Additionally the end game algorithm may be invoked n times to force the evader out of guarded triangles
taking O(n - diam(P)?) moves. Finally invoking Theorem 6 takes O(n? - diam(P) + n - diam(P)?) moves.
Thus the evader will be capture in O(n? - diam(P) + n - diam(P)?) moves.

O

5. A Randomized Pursuit Strategy

In our upper bounds so far, we’ve assumed an evader whom can always predict the deterministic strategy
of the pursuers. However, suppose the pursuers have access to a source of randomness which the evader
cannot predict. If they use this to randomize their movements, even without the minimum feature size
assumption® they can capture the evader in simply connected polygons with O(1) pursuers, and O(v/h)
when there are h holes.

The first step to achieving these bounds is the following Lemma which shows that a 1-critical move is
sufficient for a pursuer to capture the evader with probability 1/n.

Lemma 18. If the evader’s move is critical with respect to a pursuer p, then p can capture the evader on
its next move with probability 1/n.

Proof. As e’s move to ¢’ is critical with respect to p, we know that d(p,e’) < 1. Thus, if €’ is visible to p, it is
captured. Otherwise, there is at least one vertex on the shortest path from p to ¢’. Thus, suppose there are
m vertices within distance one of p. The pursuer uniformly at random chooses and moves along the shortest
path to one of those m vertices. With probability 1/m > 1/n p gains visibility of e and has moved along the
shortest path to e. Thus p can use to remainder of its move to capture the evader. O

3 Applying the minimum feature size assumption reduces the expected time to capture by a factor of n, but does not change
the number of required pursuers.
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Suppose now that we run our algorithm for simply connected polygons on using a 3-block partition, using
the O(logn) pursuers to search for the evader. Then, if the evader never performed a critical move it would
be captured. Otherwise, the evader would have a 1/n chance of being captured. When the evader avoids
capture after a critical move, the pursuers simply restart the algorithm. Thus, the evader is expected to be
captured in n rounds of the algorithm.

In order to actually reduce the number of pursuers required to capture the evader, we replace the O(logn)
pursuers with a single pursuer using the following randomized strategy of Isler et al. [12].

Lemma 19. Given a simply connected n-gon, a single pursuer has a randomized strategy which can locate
the evader in diam(P) moves with probability 1/n.

Using the preceding Lemma, we are able to prove the following Theorem.

Theorem 8. Suppose P is a simply connected n vertex polygon. Then, O(1) pursuers can capture the evader
in O(n® - In(n) - diam(P) + n? - diam(P)?) expected moves with probability 1 — L

n’

Proof. There are n expected rounds of the algorithm before the evader is captured. In the worst case, the
evader must be located n times per round, for a total of n? localizations. When locating the evader, the
probability of success of a single trial is 1/n. Using the inequality (1 + z) < e®, one can easily show that
after 3nlIn(n) trials of Lemma 19, the probability of not locating the evader is 1/n®. Then, by the union
bound, the probability of failure in any of the n? localizations, is at most n? - 1/n% = 1/n.

Thus, the n? localizations finish in O(n?-In(n)-diam(P)) moves, with probability 1—1/n. The remainder
of the algorithm is deterministic, and its repetition n times takes at most O(n? - diam(P)?) moves. Finally,
O(1) pursuers are used to guard the three cut edges, and one pursuer is reused to locate the evader, for a
total of O(1) pursuers. O

If P contains holes, we again execute our algorithm from the preceding section an expected n times, and
replace the O(v/h 4 logn) pursuer deterministic algorithm of Guibas et al. with the following randomized
strategy of Isler et al. [12].

Lemma 20. Given a multiply-connected n-gon with h holes, O(v/h) pursuers have a randomized strategy
which can locate the evader in O(n - diam(P)) moves with probability 1/n?.

Using the preceding Lemma, we are able to prove the following Theorem.

Theorem 9. Suppose P is a multiply connected n vertex polygon with h holes. Then, O(\/E) puUTrsSuers can
capture the evader in O(n® - In(n) - diam(P) + n? - diam(P)) expected moves with probability 1 — +.

Proof. There are n expected rounds of the algorithm before the evader is captured. In the worst case, the
evader must be located n times per round, for a total of n? localizations. During one localization, the
probability of success of a O(n - diam(P)) move trial is 5. Using the inequality (1 + x) < e”, one can easily
show that after 3n?In(n) trials of Lemma 19, the probability of not locating the evader is 1/n3. Then, by
the union bound, the probability of failure in any of the n? localizations, is at most n? - 1/n® = 1/n.

Thus, the n? localizations finish in O(n® - In(n) - diam(P)), with probability 1 — L. The remainder of the
algorithm is deterministic, and its repetition n times takes at most O(n? - diam(P)?) moves. Finally, O(v/h)
pursuers are used to guard the separating triangles, O(\/E) are reused to locate the evader, and O(1) to
capture the evader in a simply connected sub-polygon, for a total of O(ﬂ) pursuers. O

6. Conclusion

In this paper, we studied a geometric pursuit-evasion problem in polygonal environments, and derived
bounds on the number of visibility-guided pursuers needed to capture an equally capable adversarial evader.
We proved a tight bound of ©(n'/2) when the environment is a simply-connected polygon (no holes) with n
vertices. When the environment has h holes, we showed a lower bound of Q(n2/ 3), and two different upper
bounds depending on the relative sizes of h and n. In particular, for h < n?/3, we gave an upper bound
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of O(n'/? - h*/*), and for h > n?/3 an upper bound of O(n'/3h!/?). Taken together, these can be simply
expressed as a common upper bound of O(n°/%).

Our results show that the visibility-based pursuit-evasion has a surprising and unexpected complexity.
For instance, while O(logn) pursuers are always sufficient for the evader detection in simple polygons even
if the evader is arbitrarily faster than the pursuers [11], @(nl/ 2) pursuers, each as fast as the evader, are
needed for the evader capture. Similarly, while the bound for evader detection in polygons with holes is
O(Vh + logn), we show a lower bound of Q(n?/3) for evader capture in the same setting. On the other
hand, if the players’ speed is small relative to the environment, formalized as a lower bound on the minimum
feature size condition, then we have shown in that the capture bounds can be lowered to match the detection
bounds. Further, even without this assumption, allowing the pursuers to make randomized moves the evader
cannot predict can match Isler et al.’s [12] bounds for localization using a randomized algorithm.

Several open questions are naturally suggested by our work. The first and foremost is to close the gap
between the upper and lower bounds for the polygons with holes. Additionally, finding a non-trivial lower
bound for polygons subject to the minimum feature size constraint remains open.
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