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Abstract

Consider a set P of N random points on the unit sphere of di-

mension d − 1, and the symmetrized set S = P ∪ (−P ). The halving

polyhedron of S is defined as the convex hull of the set of centroids of

N distinct points in S. We prove that after appropriate rescaling this

halving polyhedron is Hausdorff close to the unit ball with high prob-

ability, as soon as the number of points grows like Ω(d log(d)). From

this result, we deduce probabilistic lower bounds on the complexity of

approximations of the distance to the empirical measure on the point

set by distance-like functions.

1 Introduction

The notion of distance to a measure was introduced in order to extend ex-
isting geometric and topological inference results from the usual Hausdorff
sampling condition to a more probabilistic model of noise [CCSM11]. Con-
sider a finite subset P of the Euclidean space R

d and a positive number k in
the range {1, . . . , |P |}, where |P | denotes the cardinality of P . The distance
to the empirical measure on P is given by the following formula:

dP,k(x) :=

(

1

k

[

min
p1,...,pk∈P

k
∑

i=1

‖x− pi‖2
])1/2

, (1.1)

where the minimum is taken over the sets consisting of k distinct points in P .
We will call this function the k-distance to the point set P . Equation (1.1)
allows to compute the value of the k-distance at a certain point x easily,
using a nearest-neighbor data structure. On the other hand, this formula
cannot be used to perform more global computations, such as estimating the
Betti numbers of a sublevel set d−1

P,k(0, r) = {x ∈ R
d; dP,k(x) 6 r}, not to

mention reconstructing a simplicial complex homotopic to this set.
There is another representation of the k-distance that allows to perform

such global operations. It is computational geometry folklore that dP,k can
be rewritten as the square root the minimum of a finite number of quadratic
functions. More precisely dP,k(x)

2 = minp ‖x− p‖2+wp, where the minimum
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is taken over the set of centroids of k distinct points in P , and wp is chosen
adequately (see §2.2). This implies that sublevel sets of dP,k are simply
union of balls, and this allows one to compute their homotopy type using
weighted alpha-complexes or similar constructions [Ede92]. However, since
the number of centroids of k distinct points in P grows exponentially with
the number of points, this formulation is not very practical either.

Fortunately, many geometric and topological inference result continue
to hold if one replaces dP,k in the computation by a “good approximation”
ϕ [CCSM11]. This means that the error ‖ϕ− dP,k‖∞ := maxRd |ϕ− dP,k|
has to be small enough, and that the approximating function ϕ should be
distance-like. For the purpose of this work, ϕ is distance-like if there exists
a finite set of sites Q ⊆ R

d and non-negative weights (wq)q∈Q such that
ϕ = ϕw

Q, where ϕw
Q is defined by

ϕw
Q(x) :=

(

min
q∈Q

‖x− q‖2 + wq

)1/2

, wq > 0. (1.2)

To summarize, in order to estimate the topology of the sublevel set of the
k-distance, it makes sense to try to replace it by a distance-like function that
uses much fewer sites.

Note that one could try to find approximations of the k-distance in a class
of functions F different from the class of distance-like functions. It is indeed
possible that a well chosen class of functions would produce more compact
approximations of the k-distance and of similar functions. However, changing
the class of function would practically forbid to use these approximations for
the purpose of geometric inference, because of the lack of (i) computational
topology tools to compute with the sublevel sets of functions in F and (ii) a
geometric inference theory adapted to this class of function.

Complexity of k-distance The natural formalization of our approxima-
tion problem is as follows. Given a finite point set P in R

d, a number k > 0
and a target approximation error ε, what is the minimum cardinality of a
weighted point set (Q,w) with non-negative weights such that the approxi-

mation error
∥

∥

∥
ϕw
Q − dP,k

∥

∥

∥

∞
is bounded by ε ? We call this cardinality the ε-

complexity of the k-distance function dP,k. When ε is zero, the 0-complexity
of the k-distance function dP,k is equal to the number of order-k Voronoi cell
of P that have non-empty interior. One can then translate lower-bounds on
the number of order-k Voronoi cells into lower bounds for the 0-complexity
of the k-distance. The purpose of this article is to provide lower bounds on
ε-complexity of the k-distance function for a non-zero approximation error
ε, when P is a random point cloud on the unit (d − 1)-dimensional sphere
and k = |P | /2.
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1.1 Prior work

Approximation of the k-distance The question of approximating the
distance to the measure by a distance-like function with few sites has been
originally raised in [GMM12]. In this article, the authors proposed an ap-
proximation of the k-distance, called the witnessed k-distance and denoted
by dwP,k, which involves only a linear number of sites. They also give a prob-
abilistic upper bound on the approximation error ‖dwP,k − dP,k‖∞ under the
hypothesis that the point cloud P is obtained by sampling a ℓ-dimensional
submanifold of the Euclidean space. The upper bound on the approxima-
tion error degrade as the intrinsic dimension ℓ of the underlying submanifold
increases. This suggests that approximating the distance to the uniform
measure on a point cloud drawn from a high-dimensional submanifold might
be difficult.

It is possible to build data structures that allow to compute approximate
pointwise values of the k-distance in time that is logarithmic in the number
of points — but exponential in the ambient dimension [HPK12]. The same
data structure can be used to compute generalizations of the k-distance, such
as the sum of the pth power to the k-nearest neighbors for an exponent p
larger than one.

Complexity of order-k Voronoi As mentioned earlier, there exists upper
and lower bounds for the number of cells in an order-k Voronoi diagrams, and
those bounds can be translated into bounds on the number of sites that one
needs to use in order to get an exact representation of the k-distance function
by a distance-like function. When k is half the cardinality of the point cloud
P , we will speak of halving Voronoi diagram. A halving hyperplane for P
is a hyperplane that separates P into two sets with equal cardinality. The
number of halving hyperplanes yielding different partitions of P is a lower
bound on the number of infinite halving Voronoi cells. The best lower bound
on the number of halving hyperplanes, that holds for an arbitrary ambient
dimension d, is given by Nd−1eΩ(

√
logN), where N is the cardinality in the

point set [Tót01]. This bound improves on previous lower bounds by several
authors, e.g. [ELSS73, EW85, Sei87].

In [BS94], the authors study the expectation of the number of k-sets of a
point cloud P obtained by sampling independent random point on the sphere.
Recall that a k-set is a subset of k points in P that can be separated from
other points in P by a hyperplane; in particular, each k-set corresponds to an
infinite order-k Voronoi cell. The authors prove that the expected number
of k-sets in a random point cloud P on the sphere is upper bounded by
O(|P |d−1).

In order to obtain our lower bounds on the number of sites needed to
approximate dP,k, we will use the notion of k-set polyhedron, originally in-
troduced in [EVW97]. This polyhedron is the convex hull of the set of

3



centroids of k distinct points in P . The relation between this polyhedron
and the notion of k-set is that the number of extreme points of the k-set
polyhedron is equal to the number of k-sets in the point set. When k is half
the cardinality of P , we will call this polyhedron the halving polyhedron.

1.2 Contributions

The main result of this work concerns the geometry of halving polyhedra of
finite point sets on the unit sphere. Our theorem shows that even with rela-
tively few points, the halving polyhedron of a certain random point set S on
the unit (d−1)-dimensional sphere is Hausdorff-close to a ball with high prob-
ability. The random point set S is obtained by picking N random, indepen-
dent and uniformly distributed points p1, . . . , pN on the (d− 1)-dimensional
unit sphere, and by letting S = {±pi}16i6N . The halving polyhedron of S is
a by definition a random convex polyhedron, which we denote by Ld

N . The
statement and proof of this theorem are inspired by the main theorem of
[AAFM06]. We use the quantity

md := E(|X · u|) ≃
(

2

πd

)1/2

,

where X is a uniformly distributed random vector on the unit (d−1)-sphere,
and u is an arbitrary unit vector. Note that this quantity turns out not to
depend on u.

Theorem 3.1. There exists an absolute constants c > 0 such that for every
positive number η, the inequality

dH

(

1

md
Ld
N ,B(0, 1)

)

6 η

holds with probability at least 1 − 2 exp
[

c ·
(

d log(1/δ) −Nη2
)]

, where δ =

min(η, 1/
√
d).

In Section 4, we deduce from this theorem a probabilistic lower bound
on the ε-complexity of the dS,N , where S is the point set defined in the
previous paragraph. The exact statement of the lower bound can be found
in Theorem 4.1.

2 Traces at infinity and k-set polyhedra

Background: support function The support function of a convex subset
K of Rd is a function x 7→ h(K,x) from the unit sphere to R. It is defined
by the following formula:

h(K,u) := max {x · u; x ∈ K} . (2.3)
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The application that maps a convex set to its support function on the sphere
satisfies the following isometry property:

‖h(K, .)− h(L, .)‖∞,Sd−1 = dH(K,L). (2.4)

where ‖f‖∞,Sd−1 = maxSd−1 |f | is the infinity norm on the unit sphere,
and where dH denotes the Hausdorff distance. The proof of this equality is
given in Theorem 1.8.11 in [Sch93]. All the elementary facts about support
functions that we will need can be found in the first chapter of this book.

2.1 Traces at infinity of distance-like functions.

We call distance-like a non-negative function whose square can be written
as the minimum of a family of unit paraboloids ‖x− q‖2 +wq, with wq > 0.
Note that this definition is equivalent to the one given in [CCSM11], thanks
to the remark following Proposition 3.1 in this article.

Given a finite subsetQ of the Euclidean space and non-negative weights w,
we let ϕ := ϕw

Q be the distance-like function defined by (1.2). We call trace
at infinity of ϕ and denote by K(ϕ) the convex polyhedra obtained by taking
the convex hull of the set of sites Q used to define ϕ.

The name trace at infinity is explained by the following asymptotic de-
velopment of the values of ϕ, along a unit-speed ray starting at the origin,
i.e. γt := tu with ‖u‖ = 1:

ϕ(γt) = min
q∈Q

(

‖tu− q‖2 + wq

)1/2

= min
q∈Q

t

(

1− 2

t
u · q + wq + ‖q‖2

t2

)1/2

= t−max
q∈Q

u · q +O(1/t) (2.5)

= t− h(K(ϕ), u) + O(1/t) (2.6)

The last equality follows from the fact that the support function of the convex
hull of a set Q is given by maxq∈Q u · q. Using these computations, we get
the following lemma. This lemma implies in particular that if two functions
ϕ := ϕw

Q and ψ := ϕw
P coincide on R

d, then K(ϕ) = K(ψ).

Lemma 2.1. Given two distance-like functions ϕ := ϕw
Q and ψ := ϕv

P as in
(1.2),

dH(K(ϕ),K(ψ)) 6 ‖ϕ− ψ‖∞ . (2.7)

Proof. The asymptotic developments for ϕ and ψ given in equation (2.6) im-
ply the following inequality for every unit direction u: |h(K(ϕ), u) − h(K(ψ), u)| 6
‖ϕ− ψ‖∞. With Equation (2.4), this yields the desired bound on the Haus-
dorff distance between K(ϕ) and K(ψ).
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The power diagram of a weighted point set (Q,w) is a decomposition of
the space into convex polyhedra, one per point in Q, defined by

Poww
Q(q) = {x ∈ R

d; ∀p ∈ Q, ‖x− q‖2 + wq 6 ‖x− p‖2 + wp}.

The following lemma shows the relation between the vertices of the trace at
infinity of ϕw

Q and unbounded cells in the power diagram of (Q,w).

Lemma 2.2. Consider a finite weighted point set (Q,w):

(i) if the power cell of a point q in Q is unbounded, then q lies on the
boundary of the polyhedron K(ϕw

Q);

(i) conversely, if q is an extreme point in K(ϕw
Q), then the power cell of q

is unbounded.

Note that there might exist point q that lie on the boundary of the
trace at infinity and whose power cell is empty. For instance, consider Q =
{q−1, q0, q1} in R

2 with qi = (0, i), and weights w−1 = w1 = 0 and w0 > 1.
Then q0 lies on the boundary of the convex hull while its power cell is empty.

Proof. Being convex, the power cell of a point q is unbounded if and only it
contains a ray γt := r + tu, where u is a unit vector. By definition of the
power cell, we have ‖q − γt‖2+wq 6 ‖p− γt‖2+wp for all point p in the set
Q. Expanding both sides expressions and simplifying, we get:

‖q − r‖2 − ‖p− r‖2 + 2tu · (p− q) + wq − wp 6 0

This inequality holds for t → +∞, thus implying u · p 6 u · q. Thus, q lies
on the boundary of K(ϕ), and u is an exterior normal vector to K(ϕ) at q.

Conversely, if q is an extreme point of the convex polyhedron K(ϕ), there
must exist a unit vector u, such that u · (p− q) 6 −ε < 0 for any point p in
Q distinct from q. Tracing back the above inequalities, and using the strict
bound, one can show that for any point r, the ray γt := r + tu belongs to
the power cell of q for t large enough.

2.2 Trace at infinity of the k-distance.

Given a set of points P in R
d and an integer k between one and |P |, the

k-distance to P is defined by equation (1.1). The fact that this function
is distance-like can be seen in the following equivalent formulation, whose
proof can be found for instance in Proposition 3.1 of [GMM12]:

dP,k(x) =

(

min
p

k
∑

i=1

‖x− p‖2 + wp

)1/2

, (2.8)

where the minimum is taken over the centroids p of k distinct points in P , i.e.
p = 1

k

∑

16i6k pi and where the weight is given by wp :=
1
k

∑

16i6k ‖p− pi‖2.
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Definition 2.1. We denote Kd
k(P ) the convex hull of the set of centroids of

k distinct points in P . The support function of this polyhedron is given by
the following formula:

h(Kd
k(P ), u) := max

p1,...,pk∈P
1

k

k
∑

i=1

u · pi (2.9)

This polyhedron has been introduced first in [EVW97] under the name of
k-set polyhedron of the point set P . Equations (2.8)–(2.9) above imply that
this polyhedron is the trace at infinity of the k-distance to P . Moreover, the
number of infinite order-k Voronoi of P is at least equal to the number of
extreme points in Kd

k(P ).

Halving distance When the number of points in P is even and k is equal
to half this number, we rename the k-distance the halving distance. Similarly,
we will refer to the order-k Voronoi diagram as the halving Voronoi diagram
and to the k-set polyhedron as the halving polyhedron.

3 Approximating the sphere by halving polyhedra

In this section, we consider a family of random polyhedra constructed as
halving polyhedron of symmetric point sets on the unit sphere. More pre-
cisely, we define:

Definition 3.1. Given a set P of N points on the unit (d − 1)-sphere, we
define Ld

N (P ) as the halving polyhedron of the symmetrization of P , i.e.

Ld
N (P ) := Kd

N (P ∪ (−P ))
We obtain a (random) convex polyhedron Ld

N := Ld
N (P ), by letting P be an

independent random sampling of N points on the unit (d− 1)-sphere.

Our main theorem consists in a lower bound on the probability of the
halving polyhedron Ld

N to be Hausdorff-close to a ball centered at the origin.

Theorem 3.1. There exists an absolute constants c > 0 such that for every
positive number η, the inequality

dH

(

1

md
Ld
N ,B(0, 1)

)

6 η

holds with probability at least 1 − 2 exp
[

c ·
(

d log(1/δ) −Nη2
)]

, where δ =

min(η, 1/
√
d).

The proof of this theorem is postponed to Section 5. As a first corollary,
one can show that the random polyhedron Ld

N is approximately round with
high probability as soon as the cardinality of the set of points sampled on
the sphere grows faster than d log d, where d is the ambient dimension.
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Corollary 3.2. For any κ > 0, there is a constant Cκ such that for η > 0,
d > 1/η2 and N >

d
η2
(log(d) + Cκ) the following inequality

dH

(

1

md
Ld
N ,B(0, 1)

)

6 η

holds with probability at least 1− exp(−κd).

Proof. From Theorem 3.1 the probability bound in the statement holds if
−κd > c(d log(1/δ) − Nη2). Since δ is equal to 1/

√
d, this is the case if

Nη2 > d
(

log(d) + 2κ
c

)

.

4 Application: approximation of distance-to-measures

The results of the previous section can be used to obtain a probabilistic
statement on the complexity of the halving distance to a random point set
on a high-dimensional sphere. We call ε-complexity of a distance-like function
ϕ : Rd → R the minimum number of sites that one needs in order to be able
to construct a distance-like function ψ such that the infinity norm ‖ϕ− ψ‖∞
is at most ε, i.e.

N (ϕ, ε) := min
{

|Q| ;
∥

∥ϕ− ϕw
Q

∥

∥

∞ 6 ε, ϕw
Q as in (1.2)

}

.

The following theorem provides a probabilistic lower bound on the ε-complexity
of a family of distance-like functions.

Theorem 4.1. For any constant κ > 0 there exists a constant C(κ) such
that the following hold. Let η > 0, d > 1/η2, and S be the symmetrization
of an random point cloud of cardinality N = d

η2
(log(d) + Cκ) on the unit

sphere. Then, the inequality

N (dS,N ,mdη) > 2
√
d

(

N

64d(log(d) +Cκ)

)
d−1

4

holds with probability at least 1− exp(−κd).

Taking κ = 1 and d = 1/η2, this implies:

Corollary 4.2. There exists a sequence of point clouds Sd of cardinality
d2(log(d) + C1) on the sphere Sd−1 such that

N
(

dSd,
1

2
|Sd|,

√

2/π

d

)

> 2
√
d

(

d

64

)
d−1

4

.
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Proofof Theorem 4.1. The halving polyhedron Ld
N (S) is by definition equal

to the trace at infinity of the halving distance K(dS,N). Therefore, we can
apply Corollary 3.2: there exist a constant Cκ such that for a random point
set S distributed as in the statement of the theorem, the following inequality
holds:

dH

(

1

md
K(dS,N),B(0, 1)

)

6 η. (4.10)

with probability at least 1 − exp(−κd). We now consider a deterministic
point set S on the sphere that satisfies the above inequality, and we con-
sider a distance-like function ψ : x 7→ minq∈Q ‖x− q‖2 + wq such that the
approximation error ‖ψ − dS,N‖∞ is bounded by mdη. By definition of the
complexity of dS,N , our goal is to prove a lower bound on the cardinality of
the point set Q. Using the triangular inequality for the Hausdorff distance
first, and then Lemma 2.1.(ii), we get the following inequalities:

dH

(

1

md
K(ψ),B(0, 1)

)

6
1

md
dH(K(ψ),K(dS,N )) + dH

(

1

md
K(dS,N),B(0, 1)

)

6
1

md
‖ψ − dS,N‖∞ + η 6 2η

Now, recall that K(ψ) is equal to the convex hull of the point set Q. If
we define R as the rescaled set {m−1

d q; q ∈ Q}, the above inequality reads
dH(conv(R),B(0, 1)) 6 2η.

We have thus constructed a polyhedron that is within Hausdorff dis-
tance 2η of the d-dimensional unit ball. The last remark of [BI75] gives the
following lower bound on the number of vertices of such a polyhedron:

|Q| = |R| > 2
√
d(8η)−

d−1

2

To conclude the proof, we simply replace η by its expression in term of the
number of points N and the dimension d, i.e. η2 := d(log(d) + Cκ)/N to
obtain

|Q| > 2
√
d

(

N

64d(log(d) + Cκ)

)
d−1

4

5 Proof of the main theorem

We start this section by showing a simple expression for the support function
of the halving polyhedra of a symmetric point set. For a point set P , and
N := |P |, one has:

h(Ld
N (P ), u) =

∑

p∈P
|p · u| . (5.11)
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Proofof Equation (5.11). Let S = P ∪ {−P} and recall that by definition,
the support function h(Ld

N(P ), u) is equal to max
∑N

i=1 u · pi, where the
maximum is taken on sets of N distinct points in S. Choosing ε(p) = ±1
such that for every point in p in P , ε(p)u · p > 0, one easily sees that this
maximum is attained for {p1, . . . , pN} = {ε(p)p; p ∈ P}.

This computation motivates the following definition.

Definition 5.1. We let λd1,u be the measure on [0, 1] given by the distribution
of |u ·X| where X is a uniformly distributed random vector on the (d− 1)-
dimensional unit sphere, and u is a fixed unit vector. This measure turns
out not to depend on u, so we will denote it by λd1.

The random polyhedron Ld
N is defined as Ld

N (P ) where the point set P
is obtained by drawing N independent points on the unit sphere. Equa-
tion (5.11) implies that for any unit vector u the distribution of values of
h(Ld

N , u) is given by the formula:

1

N

N
∑

i=1

Yi, (5.12)

where the (Yi) are N independent random variables with distribution λd1.

Lemma 5.1. The measure λd1 has the following properties:

(i) λd1 is absolutely continuous with respect to the Lebesgue measure, with
density

fd(t) := cd(1− t2)
d−2

2

the constant cd being chosen so that fd is the density of a probability

measure, i.e. cd
∫ 1
0 (1− t2)

d−2

2 dt = 1.

(ii) the mean of λd1 is given by md := cd
d . Moreover, md is equivalent to

√

2/(πd) as d→ ∞.

(iii) The variance σ2d of λd1 is equivalent to (1− 2/π)/d as d→ ∞.

Proof. (i) Using Pythagoras theorem, one checks that the intersection of the
hyperplane {x ∈ R

d; u · x = t} with the unit sphere is a (d− 2)-dimensional
sphere with squared radius (1 − t2). This implies the formula for fd, for a
certain constant cd. To compute this constant one uses the fact that λd1 has
unit mass, i.e.

cd

∫ 1

0
(1− t2)

d−2

2 dt = 1.

Note that a formula of Wallis asserts that

lim
d→∞

√
d

∫ 1

0
(1− t2)

d
2 =

√

π/2.
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This implies that cd ∼
√

2d/π.
(ii) The function t 7→ tfd(t) admits an explicit primitive:

gd(t) := −cd
d
(1− t2)

d
2 ,

so that md = gd(1) − gd(0) is as in the statement of the lemma. Thus, we
get md ≃

√

2/(πd).
(iii) Integrating the following inequality between 0 and 1

t2(1− t2)
d−2

2 = (1− t2)
d−2

2 − (1− t2)(1 − t2)
d−2

2 ,

one gets the following formula for the second moment of λd1:

cd

∫ 1

0
t2(1− t2)

d−2

2 dt = 1− cd
cd+2

.

Moreover, an integration by part gives

cd

∫ 1

0
t2(1− t2)

d−2

2 dt =
cd
d

∫ 1

0
(1− t2)

d
2 dt =

1

d

cd
cd+2

These two equalities imply that cd/cd+2 = d/(d+ 1), and using the formula
for the mean given above, we get:

σ2d =
1

d
− c2d
d2

∼ 1− 2/π

d
.

Lemma 5.2. There exists a universal constant c > 0 such that for any di-
mension d, any N > 0 and any set of directions U in Sd−1, one has

P

(

max
u∈U

∣

∣

∣
h(Ld

N , u)−md

∣

∣

∣
> ηmd

)

6 2 |U | exp
(

−c ·Nη2
)

.

Proof. Consider N random variables Y1, . . . , YN with distribution λd1. These
random variable are bounded by 1 and their variance is σ2d. Applying Bern-
stein’s inequality gives:

P

(
∣

∣

∣

∣

∣

1

N

N
∑

i=1

Yi −md

∣

∣

∣

∣

∣

> ε

)

6 2 exp

( −Nε2
2σ2d + 2ε/3

)

This implies that for a fixed direction u,

P

(∣

∣

∣
h(Ld

N , u)−md

∣

∣

∣
> ηmd

)

6 2 exp

( −Nη2m2
d

2σ2d + 2ηmd/3

)

Rescaling everything by a certain constant κ > 0, one gets

P

(∣

∣

∣
h(Ld

N , u)−md

∣

∣

∣
> ηmd

)

= P

(∣

∣

∣
h(κLd

N , u)− κmd

∣

∣

∣
> κηmd

)

6 2 exp

( −Nκ2η2m2
d

2κ2σ2d + 2ηκmd/3

)

11



Letting κ go to infinity, we obtain the following bound

P

(∣

∣

∣
h(Ld

N , u)−md

∣

∣

∣
> ηmd

)

6 2 exp

(

−1

2
Nη2

m2
d

σ2d

)

This gives the desired estimate for a single direction using the two estimates
md = O(d−1/2) and σ2d = O(d−1). The conclusion of the lemma is obtained
by a simple application of the union bound.

Lemma 5.3. If K is contained in the ball B(0, r), the support function h(K, .)
is r-Lipschitz.

Proof. Consider u in the unit sphere, and x in K such that h(K,u) = u · x.
For any vector v in the unit sphere,

h(K, v) = max
y∈K

v · y > v · x = u · x+ (v − u) · x

> h(K,u) − ‖u− v‖ ‖x‖
> h(K,u) − r ‖u− v‖ .

Swapping u and v gives the Lipschitz bound.

A subset U of the unit sphere Sd−1 is called a δ-sample or a δ-covering
if the union of the Euclidean balls of radius δ centered at points of U cover
the unit sphere.

Lemma 5.4. Consider a convex set K contained in the unit ball B(0, 1), and
two numbers λ, η ∈ (0, 1). Moreover, suppose

max
u∈U

|h(K,u) − λ| 6 ηλ, (5.13)

where U is a δ-sample of the unit sphere, with δ := min(λ, η). Then, the
Hausdorff distance between 1

λK and the unit ball is at most 5η.

Proof. Note that, almost by definition, a convex set K is included in the ball
B(0, r) if and only if its support function satisfies ‖h(K, .)‖∞ 6 r. Assuming
that the convex set K is contained in some ball B(0, r), we have:

‖h(K, .) − λ‖∞ = max
v∈Sd−1

|h(K, v) − λ|

6 max
v∈Sd−1

[

min
u∈U

|h(K,u)− h(K, v)| + |h(K,u)− λ|
]

6 rmin(λ, η) + ηλ. (5.14)

The first inequality is obtained by applying the triangle inequality, while
the second one follows from the Lipschitz estimation of Lemma 5.3, the fact
that U is a δ-sample of the unit sphere and from Equation 5.13. Applying

12



Inequality (5.14) with r = 1, η < 1 and using the triangle inequality we
get ‖h(K, .) − λ‖∞ 6 2λ. This implies that K is contained in the sphere
B(0, 3λ) and allows us to apply the same inequality (5.14) again with the
smaller radius r = 3λ, implying

‖h(K, .) − λ‖∞ 6 3λη + 2λη = 5λη.

Dividing this last inequality by λ, and using Equation (2.4) implies the
conclusion of the Lemma.

Proof of Theorem 3.1 Consider δ = min(η,md), and let U be a δ-sample
of the unit sphere with minimal cardinality. The cardinality of such a sample
is bounded by |U | 6 (const/δ)d, where the constant is absolute. Applying
Lemma 5.4 first and then Lemma 5.2 gives us the following inequalities:

P

(

dH

(

1

md
Kd

N ,B(0, 1)
)

> 5η

)

6 P

(

max
u∈U

∣

∣

∣
h(Ld

N , u)−md

∣

∣

∣
> ηmd

)

6 2 |U | exp
(

−c ·Nη2
)

.

We conclude the proof by applying the upper bound on the cardinality of
the δ-sample U stated above, and by using the equivalent md ∼

√

2/(πd).

6 Extension to other values of k
N

It is possible to extend some of the results to cases where ratio k/N is
different from one half. Let us consider the random polytope Md

N,k = Kd
k(P ),

where P is a set of N random points sampled uniformly and independently
on the (d−1)-dimensional unit sphere, and k is between 1 and N . Lemma 5.2
can be partially extended to this more general family of random polytopes.
Note however that the statement below does not provide any estimate for
the radius r(d,N, k) as the number of points N grows to infinity with k/N
remaining constant. In particular, it is not precise enough to generalize the
lower bounds of Theorem 3.1.

Lemma 6.1. For any dimension d, and any numbers N and k, there exist
a value r := r(d,N, k) such that for any set of directions U in Sd−1, and
N > 0 one has

P

(

max
u∈U

∣

∣

∣
h(Md

N,k, u)− r
∣

∣

∣
> ηr

)

6 2 |U | exp
(

−1

4

k2

N
η2r2

)

.

This lemma follows from a version of Chernoff’s inequality adapted to
Lipschitz functions. Consider a function F from the cube [−1, 1]N to R,
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which is α-Lipschitz with respect to the ℓ1 norm on the cube. Then, for any
family Y1, . . . , YN of i.i.d. random variables taking values in [−1, 1] one has:

P(|F (Y1, . . . , YN )− EF | > ε) 6 2 exp

( −ε2
4α2N

)

. (6.15)

Proofof Lemma 6.1. We consider the map F k
N from the cube [−1, 1]N to R

defined by:

F k
N (x) := max







1

k

k
∑

j=1

xij ; 1 6 i1 < . . . < ik 6 N







,

where xi denotes the ith coordinate of x. We also consider the measure µ
obtained by pushing forward the (d− 1)-area measure on the unit sphere of
R
d by the map x 7→ u · x, for some direction u in the unit sphere. As in

the halving case (cf (5.12)), the distribution of h(Md
N,k, u) is given by the

distribution of F k
N (Y1, . . . , YN ), where Y1, . . . YN are i.i.d random variables

with distribution µ.
Moreover, the map F k

N is 1
k -Lipschitz with respect to the ℓ1 norm on the

cube [−1, 1]N . Indeed, given two points x, y in [−1, 1]N and a set of indices
i1 < . . . < ik corresponding to the maximum in the definition of F k

N (x), one
has

kF k
N (x) = xi1 + . . . + xik 6 yi1 + . . . + yik + ‖x− y‖ℓ1

6 kF k
N (y) + ‖x− y‖ℓ1

Thus, we can apply Chernoff’s inequality (6.15):

P

(
∣

∣

∣
F k
N (Y1, . . . , YN )− EF k

N

∣

∣

∣
> ε
)

6 2 exp

(

−ε
2k2

4N

)

where m = k/N . The Lemma follows by setting r := EF k
N , ε = ηr in the

equation and by using the union bound.
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