
ar
X

iv
:1

10
3.

39
11

v2
  [

cs
.C

G
] 

 2
4 

A
pr

 2
01

5

Computing Shortest Paths among Curved Obstacles in the Plane∗

Danny Z. Chen† Haitao Wang‡

Abstract

A fundamental problem in computational geometry is to compute an obstacle-avoiding Eu-
clidean shortest path between two points in the plane. The case of this problem on polygonal
obstacles is well studied. In this paper, we consider the problem version on curved obstacles,
which are commonly modeled as splinegons. A splinegon can be viewed as replacing each edge
of a polygon by a convex curved edge (polygons are special splinegons), and the combinatorial
complexity of each curved edge is assumed to be O(1). Given in the plane two points s and
t and a set of h pairwise disjoint splinegons with a total of n vertices, we compute a shortest
s-to-t path avoiding the splinegons, in O(n log n+ k) time or O(n+ h log1+ǫ h+ k) time for any
arbitrarily small constant ǫ > 0, where k is a parameter sensitive to the geometric structures
of the input and is upper-bounded by O(h2). In particular, when all splinegons are convex,
k is proportional to the number of common tangents in the free space (called “free common
tangents”) among the splinegons. We develop techniques for solving the problem on the general
(non-convex) splinegon domain, which also improve several previous results, as follows.

1. We improve the previous work on the polygon case (i.e., when all splinegons are polygons).
The polygon case was previously solved in O(n log n) time, or in O(n+h2 logn) time. Thus,
our algorithm improves the O(n + h2 logn) time result, and is faster than the O(n log n)
time solution for sufficiently small h, e.g., h = o(

√
n logn).

2. Our techniques produce an optimal output-sensitive algorithm for a basic visibility problem
of computing all free common tangents among h pairwise disjoint convex splinegons of
totally n vertices. Our algorithm runs in O(n+ h log h+ k) time and O(n) space, where k
is the number of all free common tangents. Note that k = O(h2). Even for the special case
where all splinegons are convex polygons, the previously best algorithm for this visibility
problem takes O(n+ h2 logn) time.

3. We improve the previous work for computing the shortest path between two points among
convex pseudodisks of O(1) complexity each.

In addition, a by-product of our techniques is an optimal O(n+h log h) time and O(n) space
algorithm for computing the Voronoi diagram of a set of h pairwise disjoint convex splinegons
with a total of n vertices.

1 Introduction

Finding Euclidean shortest paths among obstacles in the plane is a fundamental problem in com-

putational geometry. The case on polygonal obstacles has been well studied (e.g., [20, 23, 28, 29,

36, 40, 41]). For obstacles bounded by curves, the problem is more difficult and only limited work

is found in the literature, and we present an efficient algorithm for this curved version in this paper.
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1.1 The Geometric Setting and Our Results

As in [15, 16, 35], we use splinegons to model planar curved objects. A (simple) splinegon S is a

simple region formed by replacing each edge e′i of a simple polygon P by a curved edge ei joining

the endpoints of e′i such that the area bounded by the curve ei and the line segment e′i is convex (see

Fig. 1). The vertices of S are the vertices of P . As in [15, 16, 35], we assume that the combinatorial

complexity of each splinegon edge is O(1), and primitive operations on a splinegon edge can each

be performed in O(1) time, such as computing the intersections of a splinegon edge with a line,

computing the tangents (if any) between two splinegon edges, finding the tangents between a point

and a splinegon edge, computing the distance between two points along a splinegon edge, etc.

We study the problem of computing shortest paths in a splinegon domain, denoted by SPSD.

Given two points s and t and a set of h pairwise disjoint splinegons, S = {S1, . . . , Sh}, with a total

of n vertices, we view the splinegons as obstacles and the plane minus the interior of obstacles is

called the free space. The SPSD problem seeks a shortest path from s to t in the free space. If the

splinegons in S are all convex, then we refer to it as the convex SPSD. We are not aware of any

previous work that solves this general SPSD problem exactly. For the convex SPSD, by generalizing

the algorithm in [40] for the convex polygonal domain, one may obtain an O(n + h2 log n) time

solution.

We develop techniques for the general SPSD problem, and our algorithm, denoted by Algo-

SPSD, takes O(min{n log n, n + h log1+ǫ h} + k) time, where k is a parameter sensitive to the

geometric structures of the input and k = O(h2) (the exact definition of k will be given in Section

2). Throughout this paper, we let ǫ > 0 be any arbitrarily small constant. For the convex SPSD,

Algo-SPSD runs in O(n + h log h + k) time, with k = O(h2) being the number of free common

tangents among the splinegons. A common tangent of two convex splinegons is a line segment that

is tangent to both splinegons at its endpoints; the common tangent is free if it lies entirely in the

free space.

One major contribution of this paper is an optimal output-sensitive algorithm for the following

relevant visibility graph problem: When all splinegons in S are convex, compute all free common

tangents of the splinegons (see Fig. 2). Our algorithm runs in O(n + h log h + k) time and O(n)

working space. This visibility problem is a key subproblem to our algorithm Algo-SPSD. Note that

similar to the argument in [1, 20], our algorithm is optimal. Since computing visibility graphs is a

fundamental topic in computational geometry, our result for this problem may be interesting in its

own right.

Another interesting subproblem that is also solved by our approach is to compute the Voronoi

diagram of h pairwise disjoint convex splinegons of n vertices. By generalizing Fortune’s sweeping

algorithm [19], one may obtain an O(n + h log h log n) time solution. Instead, we extend the

algorithm in [34] for the convex polygon case, and show that the Voronoi diagram for our problem

can be constructed in O(n+h log h) time and O(n) space, which is an optimal solution. Further, as

in [34], we can also construct in O(h log n) time a “compact diagram”, which has several advantages

over the Voronoi diagram and has applications in, e.g., the post-office problem and the retraction

motion planning problem [34].

1.2 Previous Work

The polygon case of SPSD (i.e., S contains polygons only) is well studied. By constructing the

visibility graph [20], a shortest s-t path can be found in O(n log n + K) time, where K = O(n2)

is the size of the visibility graph. By building a shortest path map, Storer and Reif solved this
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Figure 1: A splinegon (solid curves) defined on a poly-
gon (red or dashed segments).

Figure 2: The relevant visibility graph of three convex
objects.

case in O(nh) time [41]. Mitchell [36] gave the first subquadratic, O(n3/2+ǫ) time algorithm for

it based on the continuous Dijkstra approach. Also using the continuous Dijkstra approach and

a conforming planar subdivision, Hershberger and Suri [23] presented an O(n log n) time solution.

An O(n + h2 log n) time algorithm was given in [29] (a preliminary version is in [28]). Thus, our

Algo-SPSD algorithm improves the results in [29, 41] and is faster than the O(n log n) time solution

[23] for sufficiently small values of h, say h = o(
√
n log n).∗

For SPSD on curved obstacles, only limited results for some special convex cases are known.

For the case with n discs, O(n2 log n) time algorithms were given [3, 14], and a heuristic approach

[31] was derived with experimental results. For disks of the same radius, the algorithms in [22, 41]

can find a shortest s-t path in O(n2) time. A set of objects in the plane is called pseudodisks

if the boundaries of any two objects can cross each other at most twice. If S contains n convex

pseudodisks of O(1) complexity each, an algorithm in [7] can find a shortest s-t path in O(n2) time.

By using our Algo-SPSD algorithm, the result in [7] can be improved as follows. Let ⋒S denote

the union of the convex pseudodisks in S and K be the number of vertices on the boundary of ⋒S.
It has been shown in [30] that K = O(n) and ⋒S can be computed in O(n log2 n) time. Since all

pseudodisks in S are convex, ⋒S can be viewed as consisting of pairwise disjoint splinegons; let H

be the number of splinegons in ⋒S (obviously, H ≤ n). By applying Algo-SPSD to ⋒S, a shortest

s-t path can be found in O(n log2 n + k) time with k = O(H2). This improves the O(n2) time

result in [7] when H = o(n). As a consequence, a robot motion planning problem [7, 22] can also

be solved faster.

For a single splinegon S, a shortest s-t path in S can be found in O(n) time, and further,

shortest paths from s to all vertices of S can be found in O(n) time [35].

There are computational difficulties in applying the continuous Dijkstra approach [23, 36] to

our SPSD problem (even when all splinegons are discs) due to the curved obstacle boundaries. For

example, Mitchell’s approach [36] uses a data structure for processing wavelet dragging queries by

modeling them as high-dimensional radical-free semialgebraic range queries. In SPSD, however,

such queries would involve not only radical numbers but also inverse trigonometric operations (e.g.,

arcsine), and hence similar techniques do not seem to apply. Using the continuous Dijkstra frame-

work, Hershberger et al. [24] recently proposed an O(n log n) time algorithm for the problem SPSD,

based on certain assumption on the computation of localizing the intersection of two “bisectors”.

As indicated in [24], the bisector computation itself is a complex problem and the complexity of

computing these bisectors is still unknown. Without the bisector computation assumption, the

approach in [24] can compute a (1 + ǫ)-factor approximate shortest path in O(n log n + n log 1

ǫ )

time.

Constructing the visibility graph for polygonal objects has been well studied [1, 20, 21, 28, 37,

∗An unrefereed report [27] announced an algorithm for the polygon case based on the continuous Dijkstra approach
with an O(n+ h log h log n) time. Our algorithm is superior to it when k = o(n+ h log h log n).
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Figure 3: Illustrating a bounded degree decomposition of F
(with dashed segments) and the corridors (with red solid arcs).
There are two junction regions indicated by large (red) points
inside them, connected by three solid (red) arcs. Removal of
these two junction regions results in three corridors.
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Figure 4: Illustrating an open hourglass (left) and
a closed hourglass (right) with a corridor path linking
the apices x and y of the two funnels. The dashed
segments are diagonals. The paths π(a, b) and π(c, d)
are shown with thick solid curves.

40, 42]. Ghosh and Mount finally gave an O(n log n +K) time algorithm [20], where K = O(n2)

is the size of the visibility graph. For the relevant visibility graph problem [29, 39, 40] (or building

the relevant visibility graph) on splinegons, two special cases have been studied. When S contains

n disjoint convex objects of O(1) complexity each, the problem is solvable in O(n log n +K) time

[39], where K = O(n2) is the number of free common tangents. If S contains h convex polygons,

as in [29, 40], then the problem is solvable in O(n + h2 log n) time; an open question was posed

in [29] to solve this case in O(n + k log n) time, where k = O(h2) is the number of free common

tangents. Note that our O(n + h log h + k) time result is better than the solution desired by this

open question.

2 An Overview of Our SPSD Algorithm

Our algorithm Algo-SPSD follows the high-level scheme used in the polygonal domain case [29],

but with the key steps replaced by our new, generalized, and more efficient solutions for the more

difficult splinegon domain counterparts. We present the paper in a way that each section is highly

self-contained, as discussed below. Let R be a rectangle containing all splinegons in S, and F
denote the free space inside R. We view both s and t as two special splinegons in S.

The first step is to decompose F into regions each of which has at most four sides and at most

three neighbors (see Fig. 3). This decomposition, called bounded degree decomposition, serves the

same purpose as a usual triangulation in the polygonal domain case. Melissaratos and Souvaine [35]

computed a bounded degree decomposition inside a simple splinegon in linear time. By extending

the triangulation algorithm for the polygonal domain case [2] and applying the algorithm in [35],

we present an O(n+ h log1+ǫ h) time algorithm for computing a bounded degree decomposition of

F , denoted by BDD(F) (which can also be computed in O(n log n) time by the standard sweeping

techniques). The details of this step are given in Section 3.

The second step, with details in Section 4, is to compute a corridor structure in BDD(F),
which consists of O(h) corridors and O(h) junction regions (see Fig. 3). Each corridor contains an

hourglass, either open or closed (see Fig. 4). An open hourglass contains two convex chains. A

closed hourglass contains two “funnels” with a corridor path connecting the two apices of the two

funnels. Each side of a funnel is also a convex chain. As in [29], the above O(h) convex chains

from the corridors can be used to partition the space in R into a set S ′ of O(h) convex splinegons

with a total of O(n) vertices such that a shortest s-t path for our original SPSD problem is also a

shortest s-t path avoiding the convex splinegons of S ′ and possibly utilizing some corridor paths.
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Thus, in addition to the presence of the O(h) corridor paths, our SPSD problem is reduced to an

instance of the convex SPSD. All the above computation can be performed in O(n+ h log h) time.

The key is to solve the convex SPSD problem on S ′.
To solve the convex SPSD on S ′, we define a relevant visibility graph G (see Fig. 2), as follows.

Let k be the number of all free common tangents of the O(h) convex splinegons in S ′; thus k =

O(h2). The node set of G consists of the endpoints of the free common tangents. Hence G has

O(k) nodes. Each free common tangent defines an edge in G. For every splinegon S ∈ S ′, its
boundary portion between any two consecutive nodes of G along the boundary of S also defines an

edge. Thus G has O(k) edges. Clearly, a shortest s-t path in the free space of S ′ corresponds to a

shortest path from s to t in G (both s and t are nodes in G). Therefore, to solve the convex SPSD,

we need to solve two subproblems: Constructing G and computing a shortest s-to-t path in G.

The third step solves the first subproblem: Constructing G. Our algorithm takes O(n + k +

h log h) time. This step, which is interesting in its own right, is presented in Section 5.

The fourth step solves the second subproblem: Finding a shortest path from s to t in G. Since

G has O(k) nodes and O(k) edges, simply running Dijkstra’s algorithm on G would take O(k log k)

time. To avoid the log k factor, we extend the approach in [7] for computing a shortest path among

pseudodisks, where a subproblem is to compute the Voronoi diagram of the convex splinegons in

S ′. We show that this Voronoi diagram can be computed in O(n+ h log h) time, which may be of

independent interest. The details of this step are given in Section 7.

The last step, discussed in Section 8, is to incorporate the O(h) corridor paths into the algorithm

for the convex SPSD on S ′ to obtain a shortest path for our original SPSD problem.

3 The Bounded Degree Decomposition of the Free Space

Recall that S = {S1, . . . , Sh} is a set of h pairwise disjoint splinegons with a total of n vertices, and

F is the free space of S. In this section, we compute a bounded degree decomposition BDD(F) of
the free space F . In the following, we first define BDD(F) and then present our algorithm for it.

3.1 Defining a Bounded Degree Decomposition

As preprocessing, we perform a monotone cut on the edges of the splinegons in S, as follows. For

each splinegon edge e, if one or both of its topmost and bottommost points lie in the interior of

e, then we add these points (at most two) as new splinegon vertices, which divide the original

edge e into several new edges (at most three). Since each splinegon edge is of O(1) complexity,

this monotone cut can be done in O(n) time. After the cut, S contains at most 3n vertices. For

convenience, with a little abuse of notation, we still use n to denote the number of vertices of S
after the monotone cut. From now on, we assume that the monotone cut has been done on all

splinegons in S. For any object A in the plane, let ∂A denote its boundary.

Recall that R is a large rectangle containing all splinegons in S. Let ∂F denote the boundary

of F , i.e., the union of the boundaries of the splinegons in S and R. A diagonal is an open line

segment in the interior of F with its two endpoints on ∂F . A bounded degree decomposition of the

free space F , denoted by BDD(F), is a decomposition of F into O(n) bounded degree regions (or

simply regions) each with at most four sides and with at most three neighboring regions by adding

O(n) non-intersecting diagonals (see Fig. 3). Two regions are neighboring if they share a diagonal

on their boundaries. Each region has at most four sides and each side is either a diagonal or (part

of) a splinegon edge. Thus the complexity of each region is O(1) (that is why we call it a “bounded
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degree region”). BDD(F) serves the same purpose as a triangulation in the polygonal domain case.

For a single simple splinegon S, a linear time algorithm was given in [35] for computing a

bounded degree decomposition of S.

3.2 Computing a Bounded Degree Decomposition

As the triangulation algorithm in [2], our algorithm for computing BDD(F) consists of two main

steps. First, we find h non-crossing diagonals to connect all splinegons in S and R together to form

a single simple splinegon S∗ (so the interior of S∗ is F minus the above diagonals). Second, we

apply the algorithm in [35] to compute a bounded degree decomposition of S∗, which is BDD(F).
The details are given below.

For the first main step, our approach generalizes the triangulation algorithm in [2] for the

polygonal domain case. We first define a visibility tree for S, as follows. For each splinegon Si ∈ S,
pick a point on its boundary (not necessarily a vertex) and draw a ray to the right until it hits either

another splinegon in S or R. As shown in [2], if we choose the origins of the rays carefully and

view each splinegon as a node, we can then ensure that the resulting planar graph is connected and

acyclic; actually, the resulting planar graph is a visibility tree for S, denoted by Tvis(S). Clearly,

Tvis(S) connects all splinegons of S and R into a single simple splinegon. Our task is to compute

Tvis(S), which can be easily done in O(n log n) time by the standard sweeping techniques. In the

following Lemma 1, we present an O(n+ h log1+ǫ h) time algorithm.

Note that in the special case where all splinegons in S are convex, a visibility tree Tvis(S) can
be computed in O(n+ h log h) time by the sweeping techniques.

Lemma 1 A visibility tree Tvis(S) of S and R can be computed in O(n+ h log1+ǫ h) time.

Proof: Our approach generalizes the algorithm in [2], which computes a visibility tree in O(n +

h log1+ǫ h) time for a set of h pairwise disjoint polygons of totally n vertices.

To generalize the algorithm in [2], we need to make sure that each of its components can be

generalized. First, the algorithm in [2] makes use of the linear time algorithm in [25] for sorting

the intersections (by their x-coordinates) of a horizontal line and an oriented Jordan curve. For

any splinegon Si ∈ S, consider the problem of sorting the intersections of ∂Si with a horizontal

line l. Due to the monotone cut, each edge of Si has at most one intersection with l which can be

computed in O(1) time. Further, the line l breaks up the boundary of Si into disjoint arcs either

entirely below or above l such that the arcs above (resp., below) the line still form a parenthesis

system, as shown in [2, 25]. Hence, the algorithmic scheme in [25] and the time analysis are still

applicable to our problem. In summary, the intersections of ∂Si and the line l can be computed in

linear time (in terms of the number of vertices of Si); let m be the number of such intersections.

Then these intersection points on l can be sorted in O(m) time.

With the above sorting algorithm in hand, the following more general sorting problem can be

solved by using the approach in [2]: Given a subset of h′ (h′ ≤ h) splinegons in S with a total

of n′ (n′ ≤ n) vertices and a horizontal line l, the goal is to sort the intersections of l with these

h′ splinegons. All intersections can be computed in O(n′) time. Let m be the number of such

intersections. Then by following the algorithmic scheme in [2] and using our sorting procedure for

a single splinegon case, these m intersections can be sorted in O(m+ h′ log h′) time.

In addition, the algorithm in [2] needs a point location data structure [18, 32] on a simple

polygon, constructed in linear time, for answering each point location query in logarithmic time. In

our problem, correspondingly, we need such a point location data structure on a simple splinegon.
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Figure 5: Illustrating the horizontal visibility map of a
splinegon.

(a) (b)

a b

cd

a b

cd

Figure 6: Illustrating the decomposition of a trapezoid:
(a) The black points on the base cd are vertices; (b) a
decomposition of the trapezoid.

As shown in [18, 35], the data structure in [18] can be made to work on a simple splinegon with

the same performance as for the simple polygon case.

It is also easy to verify that other parts of the algorithm in [2] are all applicable to our problem.

Therefore, the visibility tree Tvis(S) for S can be computed in O(n+ h log1+ǫ h) time. ✷

For the second main step, we simply apply the linear time decomposition algorithm in [35]

to S∗. Below, for completeness and easy understanding of our approach, we briefly discuss the

algorithm in [35] for a single splinegon.

Let S be a splinegon of n vertices. The algorithm in [35] first decomposes S into a set of

horizontal trapezoids by computing the horizontal visibility map and then further decomposes each

trapezoid into (bounded degree) regions as the final decomposition of S. Below are some details

of it. Again, the topmost and bottommost points of each splinegon edge are treated as vertices of

S. Clearly, there are O(n) vertices on ∂S. As for the simple polygon case, the horizontal visibility

map is to draw a horizontal line segment through each vertex of S, extending the segment so long

as it does not properly cross ∂S (see Fig. 5). The visibility map of S adds O(n) new vertices on ∂S

and divides S into O(n) trapezoids (each with curved sides and line segment bases). As shown in

[35], Chazelle’s algorithm [4] can be used to compute the visibility map on the splinegon S in O(n)

time. Since in the degenerate case there may be multiple vertices in the interior of a trapezoid

base, a trapezoid may have many neighbors. The next step is to further decompose each trapezoid

into (bounded degree) regions such that each region has at most three neighbors. There are many

ways to decompose a trapezoid into (bounded degree) regions. In [35], one algorithmic approach

for this task was given and some of the cases were discussed. For example, consider a trapezoid

abcd with ab and cd as bases and ad and bc as (curved) sides, as in Fig. 6(a). Suppose there are

multiple vertices in the interior of the base cd. A further decomposition of the trapezoid is shown in

Fig. 6(b). Refer to [35] for more details. Note that although a region may be a four-side trapezoid,

it has at most three neighbors and is of O(1) complexity.

By Lemma 1 and the linear time decomposition algorithm for a simple splinegon [35], the

following result follows.

Theorem 1 A bounded degree decomposition of the free space F among the splinegons of S can be

computed in O(n log n) time or O(n+ h log1+ǫ h) time. If all splinegons in S are convex, then the

decomposition can be computed in O(n+ h log h) time.

4 The Corridor Structure

In this section, based on BDD(F), i.e, the bounded degree decomposition of the free space F , we
compute a corridor structure to reduce our original problem on SPSD to an instance of the convex

SPSD. The corridor structure and its extended version for polygonal domains have been used for
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solving shortest path and visibility problems [6, 8, 9, 10, 11, 12, 13, 26, 28, 29]. For our splinegonal

domain, we generalize the approach in [29] for the polygonal domain case.

Recall that both s and t are considered as two special splinegons in S. In addition to the

splinegon vertices, the endpoints of the diagonals of BDD(F) are also treated as the vertices of

BDD(F). Note that BDD(F) has O(n) vertices. Let G(F) denote the planar dual graph of

BDD(F), i.e., each node of G(F) corresponds to a region in BDD(F) and each edge connects two

nodes of G(F) corresponding to two regions sharing a diagonal. Because the splinegons in S are

pairwise disjoint, the dual graph G(F) is clearly connected, and an s-t path among the splinegons of

S always exists. Since BDD(F) is a planar structure and each region in BDD(F) has at most three

neighbors, G(F) is a planar graph whose vertex degrees are at most three. Since F is connected,

as in the polygonal domain case [29], at least one node dual to a region incident to each of s and t

is of degree three.

Based on G(F), we compute a planar 3-regular graph, denoted by G3 (the degree of each node

in it is three), possibly with loops and multi-edges, as follows. First, we remove every degree-one

node from G(F) along with its incident edge; repeat this process until no degree-one node exists.

Second, remove every degree-two node from G(F) and replace its two incident edges by a single

edge; repeat this process until no degree-two node exists. The resulting graph is G3 (e.g., see

Fig. 3). By a similar argument as in [29] for the polygonal domain case, we can show that the

resulting G3 has O(h) faces, nodes, and arcs. Each node of G3 corresponds to a region of BDD(F),
which is called a junction region (e.g., see Fig. 3). Removal of all junction regions from G3 results

in O(h) corridors, each of which corresponds to one edge of G3.

The boundary of a corridor C consists of four parts (see Fig. 4): (1) A boundary portion of a

splinegon S1 ∈ S, from a point a to a point b; (2) a diagonal of a junction region from b to a point c

of a splinegon S2 ∈ S (it is possible that S1 = S2); (3) a boundary portion of the splinegon S2 from

c to a point d; (4) a diagonal of a junction region from d to a. The two diagonals bc and ad are called

the doors of C. Note that the corridor C itself is a simple splinegon. Let |C| denote the number of

vertices of BDD(F) on ∂C. Note that a shortest path between two points inside a simple splinegon

can be found in linear time [35]. Therefore, in O(|C|) time, we can compute the shortest path π(a, b)

(resp., π(c, d)) from a to b (resp., c to d) inside C. The region HC bounded by π(a, b), π(c, d), and

the two diagonals bc and da is called an hourglass, which is open if π(a, b) ∩ π(c, d) = ∅ and closed

otherwise (see Fig. 4). If HC is open, then both π(a, b) and π(c, d) are convex and they are called

the sides of HC ; otherwise, HC consists of two “funnels” and a path πC = π(a, b) ∩ π(c, d) joining

the two apices of the two funnels, called the corridor path of C. Each funnel side is also convex.

We process all corridors as above. The running time for processing all corridors is linear in terms

of the total number of vertices of all corridors, which is at most the number of vertices of BDD(F),
i.e., O(n). Therefore, the running time for processing all corridors is O(n).

Let Q be the union of all junction regions and hourglasses. Then Q consists of O(h) junction

regions, open hourglasses, funnels, and corridor paths. Let π(s, t) be a shortest s-t path for the

original problem SPSD. As shown in [29], π(s, t) must be contained in Q. Consider a corridor C.

If π(s, t) contains an interior point of C and neither s nor t lies on ∂C, then the path π(s, t) must

cross both doors of C, i.e., it enters C from one door and leaves C from the other. Further, if the

hourglass HC for C is closed, then the corridor path of C must be contained in π(s, t). When HC

is open, since both sides of HC are convex with respect to the interior of HC , if π(s, t) intersects

both sides of HC , then it must contain a common tangent of the two sides such that π(s, t) goes

from one side of HC to the other side via that common tangent.

With all the properties above, let Q′ be Q minus the corridor paths. In other words, Q′ consists
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of O(h) junction regions, open hourglasses, and funnels. Since the sides of open hourglasses and

funnels are convex, the boundary of Q′ consists of O(h) reflex vertices and O(h) convex chains,

implying that the complementary region R\Q′ consists of a set of splinegons of totally O(h) reflex

vertices and O(h) convex chains. Recall that R is a large rectangle containing all splinegons in

S. As in the polygonal domain case [29], we can partition R \ Q′ into a set S ′ of O(h) convex

splinegons with a total of O(n) vertices (e.g., by extending an angle-bisecting segment inward from

each reflex vertex) such that a shortest path π(s, t) for the original SPSD is also a shortest s-t path

that avoids the splinegons in S ′ but possibly contains some corridor paths. Therefore, other than

the O(h) corridor paths, we have reduced our original SPSD problem to an instance of the convex

SPSD. In fact, the key is to compute the free common tangents among the convex splinegons in S ′.

5 Computing the Relevant Visibility Graph of Convex Splinegons

In this section, we construct the relevant visibility graph G for the O(h) convex splinegons in S ′ with
a total of O(n) vertices. For convenience, we slightly change the notation and consider the following

problem: Construct the relevant visibility graph G for h pairwise disjoint convex splinegons in a set

P = {P1, P2, . . . , Ph} with a total of n vertices. Let B denote the set of all free common tangents

of P and let k = |B|. Our algorithm for computing B runs in O(n + k + h log h) time and O(n)

working space. The graph G can also be constructed in O(n+ k + h log h) time.

Our algorithm can be viewed as a generalization of Pocchiola and Vegter’s algorithm [39] (and

its preliminary version [38]). We call it the PV algorithm. Given a set O of n pairwise disjoint

convex obstacles of O(1) complexity each, the PV algorithm computes all free common tangents

of O in O(n log n+K) time and O(n) space, where K = O(n2) is the number of all free common

tangents of the n obstacles in O. It was also claimed in [39] (without giving any details) that

the PV algorithm may be made to compute B for our problem on P in O(n log h + k) time. It

should be noted that although our improvement looks “small” (at most a logarithmic factor), it is

theoretically quite meaningful because our algorithm is optimal.

In general, the PV algorithm relies mainly on the convexity of the obstacles. The needed

properties also hold for our setting. The high-level scheme of our algorithm follows that of the

PV algorithm, but with certain modifications. However, the most challenging task is to achieve

an optimal time bound for the algorithm. A similar analysis to the PV algorithm in [39] does not

work for our problem (or may only obtain an O(n log h + k) time solution as claimed in [39]). As

shown later, our analysis needs numerous non-trivial new observations and novel ideas. Comparing

with the PV algorithm, our algorithm and analysis explore more crucial properties and geometric

structures of the problem, which may be useful for solving other related problems as well. Further,

our modifications to the scheme of the PV algorithm seem necessary (without them, it is not clear

to us whether the scheme in [39] can be generalized to attain our optimal time bound).

5.1 Preliminaries

We focus on showing how to compute B since the graph G can be constructed simultaneously

while B is being computed. In the following, we simply call each splinegon in P an obstacle and

each (curved) splinegon edge an elementary curve. Thus, the complexity of each elementary curve

is O(1). We follow some terminology in [38, 39]. We call a common tangent of two obstacles a

bitangent. For ease of exposition, as in the PV algorithm [38, 39], we assume all obstacles in P are

smooth (i.e., only one tangent line touches each boundary point) and are in general position (i.e.,

9



(b)(a)

Figure 7: A flip operation on a free bitangent b: (a)
The dashed bitangent is b before the flip; (b) the dashed
bitangent is ϕ(b) after the flip.

Figure 8: The common tangent line of two pseudo-
triangles.

no three obstacles share a common tangent line). The algorithm can be easily generalized to the

general case. To handle the case with polygons, for example, we can take the Minkowski sum of

the polygons with an infinitesimally small circle.

As in [38, 39], we define a pseudo-triangulation of the convex obstacles in P as a subdivision of

the free space induced by a maximal number of pairwise noncrossing free bitangents (see Fig. 7).

The number of free bitangents in any pseudo-triangulation of P is 3h− 3 [38, 39].

Let T be a pseudo-triangulation and B(T ) denote the set of all free bitangents that appear in

T . Any bounded free face T in T is a pseudo-triangle, and the boundary of T , denoted by ∂T ,

consists of three convex chains with convexity towards the interior of T . The three endpoints of

the convex chains are called the cusps of T . Denote by B(∂T ) the set of all free bitangents on ∂T

(i.e., each bitangent in B(∂T ) lies on ∂T ). For a point p on ∂T lying on an obstacle Pi, the tangent

line of Pi at p is called the tangent line of T at p; for a point p lying on a free bitangent of B(∂T ),

the line containing the bitangent is the tangent line of T at p. Note that if a line is tangent to

T at a point p ∈ ∂T , then the line is also tangent to the convex chain of ∂T that contains p. As

shown in [38, 39], any two pseudo-triangles in T have a unique common tangent line, i.e., a line

tangent to both pseudo-triangles (see Fig. 8). Suppose two adjacent pseudo-triangles T and T ′ in

T share a bitangent b ∈ B(T ); a flip operation on b replaces b by the common tangent of T and

T ′, which is a free bitangent and denoted by ϕ(b) (see Fig. 7). A flip operation produces another

pseudo-triangulation. If b lies on the convex hull of P, then we let ϕ(b) be b itself.

Our algorithm for computing B, called the topological flip algorithm, performs flip operations

based on a topological order, which can be viewed as a generalization of a topological sweep [17].

We define a partial order on the free bitangents and a topological structure that is maintained by

our algorithm. To define the topological structure, below we assign directions to bitangents and

tangent lines of pseudo-triangulations, and discuss some properties.

Given a unit vector u, the u-slope of a directed line (or segment) l is defined as the angle

(in [0, 2π)) of rotating u counterclockwise to the same direction as l. For an undirected line (or

segment) l, its u-slope is the angle (in [0, π)) of rotating u counterclockwise to the first vector

parallel to l; the direction of that vector is said to be consistent with the u-slope of l.

Consider a pseudo-triangulation T . Given a vector u, for each bitangent b ∈ B(T ), we assign

to b the direction consistent with the u-slope of b. For every pseudo-triangle T of T , let bT be

the bitangent in B(∂T ) with the minimum u-slope. Further, for each point p ∈ ∂T , we assign to

the tangent line l(p) of T at p the direction consistent with the bT -slope of l(p), and call l(p) the

directed tangent line of T at p. The bT -slope of the directed l(p) is also called the pseudo-triangle

slope (or pt-slope for short) of l(p) at the point p ∈ ∂T †. For any bitangent b ∈ B, suppose we

†If p is on a bitangent, then p is also contained in another pseudo-triangle T ′, in which case the pt-slope thus
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assign a direction to b and p is an endpoint of b (say, p is on ∂T of a pseudo-triangle T ); then the

direction assigned to b is said to be compatible with p if the directed tangent line of T at p has the

same direction as b. Note that the pt-slope of any point on bT is zero. As moving on ∂T clockwise

from bT , the pt-slope of the moving point increases continuously from 0 to π, until we are back to

bT .

Our algorithm maintains a topological structure called good pseudo-triangulation, defined as

follows. A pseudo-triangulation T is said to be good (called weakly greedy in [38]) if there is a way

to assign every free bitangent b ∈ B a direction such that a partial order ≺ can be defined on the

directed bitangents of B(T ) with the following properties: (1) For each pseudo-triangle T in T ,
the partial order ≺ is a total order, which corresponds to the pt-slope order on B(∂T ) with respect

to bT ; (2) the direction of each bitangent b ∈ B is compatible with both its endpoints; (3) for any

bitangent b ∈ B \B(T ), all bitangents in B(T ) intersecting b cross the directed b from left to right.

5.2 Initialization and Outline of the Topological Flip Algorithm

Let u0 be a vector with the direction of the positive x-axis. We first compute an initial pseudo-

triangulation T0 of P induced by a set {b1, b2, . . . , b3h−3} of free (undirected) bitangents such that

(1) b1 is the bitangent in B with the smallest u0-slope, and (2) for any 1 ≤ i < 3h − 3, bi+1 is the

bitangent with the smallest u0-slope in B that does not cross any of b1, b2, . . . , bi (e.g., Fig. 7(a) is

T0). As shown in [38, 39], T0 for the obstacle set O is a good pseudo-triangulation, and can be built

in O(n log n) time. Likewise, for our problem, T0 of P is also a good pseudo-triangulation; further,

we can compute T0 even faster, as shown in Lemma 2.

Lemma 2 The initial good pseudo-triangulation T0 of P can be constructed in O(n+h log h) time.

Proof: To construct T0 of P, we modify and generalize the corresponding O(n log n) time algorithm

in [39] for the set O. The algorithm is based on a rotational sweeping procedure, during which

a visibility map, denoted by M(u′) associated with the current rotational direction u′ ∈ [0, π], is

(implicitly) maintained. Consider a direction u′. Each obstacle Pi of P contains two extreme points

each having a tangent line with slope u′ such that Pi is between these two tangent lines. We denote

by V (u′) the set of such extreme points in all obstacles of P.
We first define M(0) for u′ = 0 as follows (see Fig. 9). For each extreme point in V (u′), we

shoot one ray in the direction of u′ and shoot another ray in the opposite direction until hitting

some obstacles. The subdivision of the plane defined by all these rays and the obstacles of P is

M(0), which can be viewed as similar to a trapezoidal decomposition of the free space. In general,

for any u′ > 0, M(u′) is defined by the rays shooting from the points of V (u′) in the direction of u′

and in the opposite direction until hitting some obstacles or bitangents of T0 obtained up to that

moment of the rotational sweep, together with the obstacles of P.
The algorithm first constructs M(0). For this, we compute the extreme point set V (0), which

takes O(n) time. Since the obstacles of P are pairwise disjoint, with a standard sweeping algorithm

(from top to bottom), M(0) can be easily constructed in O(n+ h log h) time.

Starting at M(0), we rotate u′ from 0 to π. During the rotation, the topology of M(u′) is

maintained implicitly. Specifically, the topology of M(u′) does not change until u′ becomes equal

to the slope of a free bitangent b of T0. When a new free bitangent b is detected, a “quadrangular”

region (which contains two points of V (u′)) in M(u′) will disappear, and some rays shooting from

V (u′) will first hit b instead of some obstacles or other free bitangents of T0 already found (we then

defined is with respect to T only and p also has another pt-slope defined with respect to T ′.
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Figure 9: The visibility map M(0). Figure 10: The visibility map
M(π/2).

Figure 11: The visibility map
M(π).

view these rays as hitting b without going further). At the same time, a “triangular” region (which

contains only one point of V (u′)) will emerge (refer to [39] for the details). If two triangular regions

contain a same point of V (u′) at their boundaries, then they are incident along a ray shooting from

this point, and we merge these two regions by removing this ray. The resulting new visibility map

is M(u′) with the newly detected free bitangent b of T0. We keep rotating u′ in this manner. Fig. 10

illustrates M(u′) for u′ = π/2 and Fig. 11 illustrates M(u′) for u′ = π. Note that every new free

bitangent is detected from two obstacles along the boundary of a quadrangular region. In this way,

after the rotation of u′ is over, T0 is obtained.

The key to this procedure is to determine the rotation events, i.e., which free bitangent will

be encountered next in the rotation. For this, the same strategy of the original (O(n log n) time)

algorithm for O in [39] is applied. The only difference is that a bitangent of two O(1) complexity

obstacles in [39] is found in O(1) time, while in our problem we compute each free bitangent of T0
in O(log n) time. Since T0 has O(h) free bitangents, computing all of them during the rotational

sweep takes O(h log n) time. Note that h log n = O(n+ h log h).

In summary, constructing T0 takes O(n+ h log h) time. The lemma thus follows. ✷

After computing T0, we assign to every bitangent b ∈ B(T0) the direction consistent with its

u0-slope (in [0, π)). For each bitangent b ∈ B \ B(T0), as shown in [38, 39], we can always assign

a direction to b that is compatible with both b’s endpoints; for the purpose of discussion, we

assume that this direction has been assigned to b (the algorithm does not explicitly perform this

assignment). Let T = T0. A (directed) bitangent b ∈ B(T ) is minimal if it has the smallest u0-slope

among all free bitangents on the boundaries of both the left and right adjacent pseudo-triangles of

b in T . A minimal bitangent always exists in a good pseudo-triangulation T [38, 39]. To compute

the bitangents in B \ B(T0), the topological flip algorithm keeps flipping a minimal bitangent in

B(T ) and generating another good pseudo-triangulation of P. The next lemma (proved in [38] and

applicable to our problem) shows that any minimal bitangent in B(T ) can be flipped.

Lemma 3 [38] For any good pseudo-triangulation T of P (initially, T = T0), let b be a minimal

free bitangent in B(T ) with a u0-slope less than π. Then the pseudo-triangulation T ′ of P obtained

by flipping b is also good, and the assigned direction of any free bitangent t ∈ B \ {b} does not

change after the flip of b, whereas the direction of b is reversed.

As shown in [38, 39], we only need to flip a minimal bitangent in B(T ) with a u0-slope less than

π, and this ensures that the algorithm will terminate and all free bitangents in B will be generated.

Note that once a bitangent is flipped, since its direction is reversed, its u0-slope becomes no smaller

than π, and thus it will never be flipped again.

The effectiveness of our algorithm hinges on its ability to perform the k flips in O(n+ k) time,

and the key is to determine a minimal bitangent b∗ of T efficiently. To this end, for each pseudo-

triangle T of F , we will choose and store a critical portion of its boundary, as Awake[T ], which

is used to find b∗. After obtaining b∗ and a new good pseudo-triangulation, we need to update
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Awake for some (two) new pseudo-triangles induced by the flip. To update Awake efficiently, we

also choose and store a boundary portion of each pseudo-triangle T , as Asleep[T ]. In other words,

Awake is used to find b∗ and Asleep is used to update Awake (Asleep itself also needs to be

updated). A key difference between the PV algorithm and ours is that Asleep[T ] refers to different

portions of T ’s boundary.

Both Awake and Asleep are implemented as “splittable queues” [39] that support three oper-

ations: enqueue, dequeue, and split. Our algorithm uses two phases for handling each flip: Phase

I computes b∗; Phase II updates Awake and Asleep. To bound the running time, it suffices to

prove the following key claim: The total number of enqueue operations for all k flips is O(n+ k).

Actually, for each flip, only O(1) sequences of enqueue operations are needed and each sequence

involves either a free common tangent or a boundary portion of a single obstacle.

A main difference between the PV algorithm and ours is on proving the key claim. In the PV

algorithm, it is fairly easy: Since every obstacle is of O(1) complexity, each enqueue sequence needs

only O(1) enqueue operations. Our problem is more challenging as the complexity of the boundary

of an obstacle (i.e., a splinegon) can be Ω(n) and thus an enqueue sequence may take as many as

Ω(n) enqueue operations. To prove the key claim, we must conduct a global analysis that requires

many new observations and analysis techniques, which is the most challenging part. Section 6 is

devoted entirely to this task.

5.3 Conducting the Flips

Given T0, we determine the set of minimal bitangents in B(T0), denoted by C. Then, we take an

arbitrary bitangent b from C, flip b, and update C. We repeat this process until C = ∅ (by then B
is obtained and all bitangents in the resulting pseudo-triangulation have u0-slope at least π). The

key is to perform all k (= |B|) flips in O(n+ k) time.

Let T be a good pseudo-triangulation. For any bitangent t in B(T ), denote by Ltri(t) (resp.,

Rtri(t)) the pseudo-triangle of T (if any) that is bounded by the directed t and is on the left

(resp., right) of t. Suppose we are about to flip a minimal bitangent b in T . Let R = Rtri(b) and

L = Ltri(b). To compute ϕ(b), an easy way is to walk clockwise along ∂R and ∂L synchronously,

starting from b, until finding ϕ(b). But, this is too expensive. A more efficient approach is to first

“jump” to a certain location on ∂R and ∂L and then do the synchronous walking. To implement

this idea, we need some “crucial points” on ∂T for each pseudo-triangle T ∈ T , as defined below.

For any directed free bitangent b, we denote its two endpoints by Tail(b) and Head(b), respec-

tively, such that b’s direction is from Tail(b) to Head(b), and call them tail and head of b.

Consider a pseudo-triangle T ∈ T . We define the basepoint of T , denoted by pT , to be the

tail of bT (i.e., the smallest u0-slope bitangent in B(∂T )) if T = Rtri(bT ), and the head of bT if

T = Ltri(bT ) (e.g., see Fig. 12). Starting at pT , if we move along ∂T clockwise, the successive cusps

of T encountered are denoted by xT , yT , and zT (if pT is a cusp, we let it be zT ). The forward

(resp., backward) T -view of any point p on ∂T is the intersection point of ∂T with the directed

tangent line l(p) of T at p, i.e., lying ahead of p (resp., behind p). Let qT denote the special point

on ∂T whose forward (resp., backward) T -view is pT if T = Rtri(bT ) (resp., T = Ltri(bT )) (e.g., see

Fig. 12). For any two points p1 and p2 on ∂T , let p̂1p2 denote the portion of ∂T from p1 clockwise

to p2.

For a pseudo-triangle T , a point p ∈ ∂T is said to be awake if and only if p ∈ x̂T qT (see Fig. 12).

We let Awake[T ] represent the awake portion x̂T qT of ∂T . Also, we let Asleep[T ] represent the

portion ŵT pT of ∂T , where the point wT = qT if qT ∈ ŷT zT and wT = yT if qT 6∈ ŷT zT . Note that

our definition of Asleep[T ] is different from that in [38, 39], in which Asleep[T ] represents ŵT zT .
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Figure 12: Left: R = Rtri(b) and b = bR; the awake points are those on x̂RqR; to flip b, the walk on ∂R starts from
q′R for Case 1 and from xR for Cases 2 and 3. Right: L = Ltri(b) and b = bL; the awake points are those on x̂LqL;
to flip b, the walk on ∂L starts from q′L for Case 1 and from xL for Cases 2 and 3.

Comparing with the algorithm in [38, 39], our modification on defining Asleep[T ] seems necessary

for obtaining the optimal algorithm, and without the modification, it is not clear to us whether the

algorithmic scheme in [38, 39] can be generalized to attain our optimal time bound.

To perform a flip on b, we use Awake[T ] to find ϕ(b) and use Asleep[T ] to help updateAwake[T ].

After every flip, Awake[T ] and Asleep[T ] are updated accordingly. Both Awake[T ] and Asleep[T ]

are stored as splittable queues, which support three types of operations on a list: (1) enqueue an

atom, either at the head or the tail of the list; (2) dequeue the head or the tail of the list; (3) split

the list at an atom x, which is preceded by a search for x in the list. An atom can be a bitangent

or an elementary curve. Further, an elementary curve may be divided into multiple pieces by the

endpoints of some free bitangents in a good pseudo-triangulation, in which case an atom may be

only a portion of an elementary curve. In any case, the complexity of each atom is O(1). A data

structure for splittable queues was given in [38, 39], whose performance is shown below.

Lemma 4 [38, 39] A sequence of O(n + k) enqueue, dequeue, and split operations on a collection

of n initially empty splittable queues can be performed in O(n+ k) time.

For a pseudo-triangle T , a portion of ∂T is called an obstacle arc if that portion lies entirely on

the boundary of a certain obstacle.

Initially, we compute Awake[T ] and Asleep[T ] for each pseudo-triangle T in T0, using O(n) en-

queue operations. Consider a flip on a minimal bitangent b in the current good pseudo-triangulation

T . Let R = Rtri(b) and L = Ltri(b). Let b∗ = ϕ(b), p∗ = Tail(b∗), and q∗ = Head(b∗). Let T ′ be

the resulting pseudo-triangulation after the flip. Let R′ = Rtri(b∗) and L′ = Ltri(b∗). To maintain

the minimal bitangents in T ′, we need to find the bitangent with the smallest u0-slope in B(∂T )

(i.e., bT ), for each T ∈ {R′, L′}. Below, we only discuss the case for R′ (the case for L′ is similar).

Let b′R be the next bitangent of b in B(∂R) clockwise along ∂R. Notice that b′R is the bitangent

in B(∂R)\{b} with the minimum u0-slope. Let ΓR be the portion of ∂R from Head(b) clockwise to

the first encountered point of b′R. Clearly, ΓR is an obstacle arc, and bR′ is one of the two bitangents

b′R and b∗ (the one with a smaller u0-slope). As in [38, 39], there are three main cases (see Fig. 13).

Case 1: b and b′R are not separated by the cusp xR of R (i.e., ΓR does not contain xR). Then

R′ (= Rtri(b∗)) is also Rtri(b′R) and p∗ does not lie on ΓR. Thus, bR′ is b′R.

Case 2: b and b′R are separated by xR and p∗ does not lie on ΓR. Then bR′ is b′R. In this case,

xR is either Head(b′R) (see Fig. 13) or Head(b). As in [38, 39] and shown later, R′ is also Ltri(b′R).

Case 3: b and b′R are separated by xR and p∗ lies on ΓR. Then, bR′ is b∗ (e.g., see Fig. 13).

In the following, we divide the processing of a flip on b into two phases as in [38, 39]: Phase I

finds b∗; Phase II updates Awake and Asleep accordingly (i.e., computing Awake[R′], Awake[L′],

Asleep[R′], and Asleep[L′]). We only discuss the case for R′ (the case for L′ is similar).
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Figure 13: The three possible cases when flipping b; b∗ = ϕ(b) and b′R is the next bitangent of b along ∂R clockwise.

5.4 Phase I of a Flip Operation

Let q′R be the point on ∂R whose forward R-view is Tail(b′R) (see Fig. 12); similarly, let q′L be

the point on ∂L whose backward L-view is Head(b′L) (similar to b′R, b
′
L is the next bitangent of

b in B(∂L) clockwise along ∂L). To compute b∗ = ϕ(b), Cases 2 and 3 are handled in the same

way while Case 1 is different. For now, we assume that we already know whether it is Case 1, and

further, when Case 1 occurs, we know b′R. We will show later how to detect the cases and find b′R
for Case 1. An easy but useful observation is that p∗ = Tail(b∗) must be on x̂RqR (= Awake[R]),

and in Case 1, p∗ is even on q̂′RqR. Similarly, q∗ = Head(b∗) lies on x̂LqL (= Awake[L]), and even

on q̂′LqL in Case 1. To compute b∗, we walk clockwise along ∂R and ∂L synchronously, as follows.

In Cases 2 and 3, the walk on ∂R starts at xR; in Case 1, we first split Awake[R] at q′R and then

start walking from q′R. The split operation on Awake[R] at q′R in Case 1 is preceded by a search for

q′R in Awake[R], which is guided by the position of Tail(b′R) with respect to the directed tangent

lines of R at the endpoints of the atoms in Awake[R]. Similar things are done on ∂L.

We perform the following three main steps for computing the endpoints p∗ and q∗ of b∗.

Step (1): For Case 1, we split Awake[R] (= x̂RqR) at q
′
R into AwakeMin[R] and AwakeMax[R]

such that the atoms in the former queue have the smaller pt-slopes; for Cases 2 and 3, we simply

let AwakeMin[R] = ∅ and AwakeMax[R] = Awake[R]. Thus, in any case, p∗ always lies on an

atom in AwakeMax[R]. We compute AwakeMax[L] and AwakeMin[L] similarly.

Step (2): Compute b∗. To do so, the synchronous walks on ∂R and ∂L can be implemented by

dequeuing atoms from AwakeMax[R] and AwakeMax[L], until p∗ and q∗ are found.

Step (3): Note that the atom at one end of AwakeMax[R] now contains p∗. We cut that atom

at p∗ by setting p∗ as an endpoint such that AwakeMax[R] now represents the portion p̂∗qR. We

do similar things for AwakeMax[L] and q∗ (AwakeMax[L] thus represents the portion q̂∗qL).

These steps can be done at the cost of at most two split operations (at Awake[R] and Awake[L]),

followed by multiple successive dequeue operations, but no enqueue operation is needed at all.

To determine whether Case 1 occurs and find b′R in Case 1, we use the following preparing

procedure. We walk from Head(b) along ∂R clockwise until first encountering either b′R or xR. If

we encounter b′R first, then it is Case 1 and we have b′R as well. Otherwise, it is Case 2 or Case 3.

In addition, once b∗ is computed, whether it is Case 2 or Case 3 can be immediately determined.

This finishes the description of Phase I.

5.5 Phase II of a Flip Operation

In Phase II, our task is to compute Awake[T ] and Asleep[T ] for each T ∈ {R′, L′}. Specifically,

after Phase II, Awake[T ] should represent x̂T qT of ∂T and Asleep[T ] should represent ŵT pT of ∂T ,

where wT = qT if qT ∈ ŷT zT and wT = yT otherwise. Note that since our definition of Asleep is
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different from that for the PV algorithm [38, 39], our algorithmic procedures in Phase II also differ

from those in the PV algorithm.

Recall that after Phase I, AwakeMax[R] (resp., AwakeMax[L]) represents p̂∗qR (resp., q̂∗qL)

in all three cases. In Case 1, AwakeMin[R] (resp., AwakeMin[L]) represents x̂Rq′R (resp., x̂Lq′L),

and in Cases 2 and 3, AwakeMin[R] = AwakeMin[L] = ∅. Recall that p∗ ∈ x̂RqR and q∗ ∈ x̂LqL.

We only show how to compute Awake[R′] and Asleep[R′]. The case for L′ can be handled

similarly. We discuss for Cases 1, 2, and 3 individually. No split operation is needed in Phase II.

Note that after computing b∗ = ϕ(b) in Phase I, as in the PV algorithm, the six new cusps, i.e.,

xT , yT , and zT for T ∈ {R′, L′}, can be determined in O(1) time. Hence, we assume all of them

are already known.

Recall that a splittable queue, e.g., Awake[T ] for a pseudo-triangle T , represents a list of

consecutive atoms on ∂T . We define the head and tail of the queue such that if moving from the

head to the tail along the list, it is clockwise on ∂T . Note that the splittable queue allows to

enqueue an atom at either the head or the tail of the queue. Recall that pT is the basepoint of T .

For two points p1 and p2 on ∂T , if p1 ∈ p̂T p2, we say p1 is before p2; otherwise, p1 is after p2 (when

p1 = p2, p1 is both before and after p2). In the following discussion, when a point p is on both ∂R′

and ∂L (resp., ∂R), we sometimes do not differentiate whether p is on ∂R′ or ∂L (resp., ∂R).

Algorithm 1: Construction of Awake and Asleep of R′ for Case 1

Output: Awake[R′] = x̂R′qR′ and Asleep[R′] = ŵR′pR′

1 Awake[R′]← AwakeMin[R] ; /* done for Awake[R′] */

2 Asleep[R′]← AwakeMax[L] ;
3 Enqueue ẑLpR′ to the tail of Asleep[R′] ; /* charge the enqueue to Q */

4 Enqueue b∗ to the head of Asleep[R′] ; /* charge the enqueue to B */

5 if yR′ = p∗ then
6 Do nothing ;
7 else/* yR′ = yR */

8 Starting at p∗, enqueue atoms along ∂R′ counterclockwise to the head of Asleep[R′] until
either q′R or yR is encountered ; /* charge the enqueue to D */

9 end

5.5.1 Case 1

In Case 1, recall that bR′ = b′R, R
′ = Rtri(b′R), pR′ = Tail(b′R), and qR′ = q′R. Note that xR′ = xR,

yR′ is yR or p∗, and zR′ is yL or q∗. The pseudocode is in Algorithm 1. (Note that every “enqueue”

in the pseudocode is commented by “charge the enqueue to ...”. The comments are used for analysis

in Section 6.3 and can be ignored at the moment.) The details are discussed below.

The goal of computing Awake[R′] is to let it represent x̂R′qR′ . Since in Case 1, AwakeMin[R] =

x̂Rq′R, and xR′ = xR and qR′ = q′R, by setting Awake[R′] = AwakeMin[R], we are done.

The goal of computing Asleep[R′] is to let it represent ŵR′pR′ . Note that in Case 1, AwakeMax[L]

= q̂∗zL (since qL = zL) and p∗ ∈ q̂′RqR. Thus p∗ is after q′R (= qR′). Regardless of whether yR′ is

yR or p∗, p∗ is after yR′ . Thus, p∗ is after wR′ , which is either qR′ or yR′ . Since zL is Head(b),

zL ∈ ẑR′pR′ holds. Hence, b∗ is asleep on ∂R′, and q̂∗zL, which is stored in AwakeMax[L], is part

of Asleep[R′]. Thus, we first set Asleep[R′] = AwakeMax[L]. Since pR′ = Tail(b′R), we enqueue
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ẑLpR′ to the tail of Asleep[R′]. Now Asleep[R′] represents q̂∗pR′ . Since b∗ is asleep, we enqueue b∗

to the head of Asleep[R′]. Now Asleep[R′] represents p̂∗pR′ . Note that yR′ is p∗ or yR.

• If yR′ = p∗, then since p∗ is after q′R = qR′ , wR′ = yR′ = p∗. Thus we are done with computing

Asleep[R′].

• If yR′ = yR, then starting at p∗, we enqueue atoms along ∂R′ counterclockwise to the head

of Asleep[R′] until we first encounter q′R or yR. Note that the first point of q′R (= qR′) or yR
(= yR′) thus encountered is wR′ .

This completes the construction of Asleep[R′].

Algorithm 2: Construction of Awake and Asleep of R′ for Case 2.1

Output: Awake[R′] = x̂R′qR′ and Asleep[R′] = ŵR′pR′

1 Asleep[R′]← ∅ ; /* done for Asleep[R′] */

2 Awake[R′]← AwakeMax[L] ;
3 Enqueue ẑLxR of ∂R to the tail of Awake[R′] ; /* charge the enqueue to Q */

4 Enqueue b∗ to the head of Awake[R′] ; /* charge the enqueue to B */

5 if xR′ = p∗ then
6 Do nothing ;
7 else/* xR′ = yR */

8 Enqueue ŷRp∗ to the head of Awake[R′] ; /* charge enqueue to D */

9 end

5.5.2 Case 2

In Case 2, recall that bR′ = b′R and R′ = Ltri(b′R). Note that xR′ is yR or p∗, yR′ is yL or q∗, and

zR′ is zL or xR. Depending on whether xR is Head(b′R) or Head(b), there are two subcases. Case

2.1: xR = Head(b′R) (see Fig. 13) and Case 2.2: xR = Head(b) (see Fig. 14). In Case 2.1, zR′ = xR
and in Case 2.2, zR′ = zL.

Case 2.1: xR = Head(b′R) (see Fig. 13). In this subcase, Head(b′R) = pR′ = qR′ = xR = zR′ .

The pseudocode is in Algorithm 2. The details are discussed below.

The goal of computing Awake[R′] is to let it represent x̂R′qR′ . Recall that AwakeMax[L]

represents q̂∗zL on ∂L. Regardless of whether xR′ is yR or p∗, both b and the portion q̂∗zL are

awake on ∂R′, i.e., part of x̂R′qR′ . Thus, we first set Awake[R′] = AwakeMax[L] and then enqueue

ẑLxR of ∂R to the tail of Awake[R′]. We also enqueue b∗ to the head of Awake[R′]. Now Awake[R′]

represents p̂∗qR′ . Recall that xR′ is either yR or p∗. If xR′ is p∗, then we are done with computing

Awake[R′]. Otherwise (xR′ = yR), we enqueue ŷRp∗ to the head of Awake[R′].

This completes the construction of Awake[R′] for Case 2.1.

Now we compute Asleep[R′] which represents ŵR′pR′ . Due to qR′ = pR′ = zR′ , wR′ is qR′ . Hence

ŵR′pR′ is only a point, which is not essential to our algorithm. We simply set Asleep[R′] = ∅.
This completes the construction of Asleep[R′] for Case 2.1.

Case 2.2: xR = Head(b) (see Fig. 14). Recall that zR′ = zL. The pseudocode is in Algorithm

3. The details are discussed below.

We first compute Awake[R′] which represents x̂R′qR′ . Clearly, xR′ is before qR′ on ∂R′. Since

we know b∗ and the basepoint pR′ of R′, by checking the position of pR′ with respect to the line
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Algorithm 3: Construction of Awake and Asleep of R′ for Case 2.2

Output: Awake[R′] = x̂R′qR′ and Asleep[R′] = ŵR′pR′

1 Determine whether qR′ ∈ p̂R′p∗ or p∗ ∈ p̂R′qR′ on ∂R′ by checking the position of pR′ with
respect to the line containing b∗ ;

2 if qR′ ∈ p̂R′p∗ then
3 Starting at xR′ , enqueue the atoms to the tail of Awake[R′] along ∂R′ clockwise until qR′

is found ; /* charge enqueue to D */

4 else/* p∗ ∈ p̂R′qR′ */

5 Awake[R′]← AwakeMax[L] ;
6 Dequeue atoms from the tail of Awake[R′] until qR′ is found ;
7 Enqueue b∗ to the head of Awake[R′] ; /* charge the enqueue to B */

8 if xR′ = p∗ then
9 Do nothing ;

10 else/* xR′ = yR */

11 Enqueue ŷRp∗ to the head of Awake[R′] ; /* charge the enqueue to D */

12 end

13 end
/* done with Awake[R′], the following is for Asleep[R′] */

14 Asleep[R′]← Asleep[L] ;
15 Enqueue x̂RpR′ to the tail of Asleep[R′] ; /* charge the enqueue to Q */

16 if wL = yL then
17 Do nothing ;
18 else/* wL = qL */

19 Starting at qL, enqueue atoms along ∂R′ counterclockwise to the head of Asleep[R′] until
either qR′ or yR′ is found ; /* charge the enqueue to S */

20 end

containing b∗, we can determine whether qR′ is before p∗ on ∂R′ in O(1) time. Depending on

whether qR′ is before p∗ on ∂R′, there are two subcases.

• qR′ is before p∗ on ∂R′, i.e., qR′ ∈ p̂R′p∗. Recall that xR′ is either yR or p∗ in Case 2, and xR′

is before qR′ on ∂R′. Since qR′ is before p∗, xR′ is before p∗, and thus xR′ = yR.

We first set Awake[R′] = ∅, and then starting at xR′ , we enqueue the atoms to the tail of

Awake[R′] along ∂R′ clockwise until we find qR′ . Now Awake[R′] = x̂R′qR′ .

• qR′ is after p∗ on ∂R′, i.e., p∗ ∈ p̂R′qR′ . Then clearly, q∗ ∈ p̂R′qR′ . As can be easily seen, qR′ is

before qL on ∂R′ (see Fig. 14). Hence qR′ lies on q̂∗qL of ∂L, which is stored in AwakeMax[L].

We set Awake[R′] = AwakeMax[L], and then dequeue atoms from the tail of Awake[R′] until

we find qR′ . Now Awake[R′] represents q̂∗qR′ . We then enqueue b∗ to the head of Awake[R′].

Now Awake[R′] represents p̂∗qR′ .

Recall that xR′ is either yR or p∗. If xR′ = p∗, then we are done with constructing Awake[R′].

Otherwise (xR′ = yR), we enqueue ŷRp∗ to the head of Awake[R′].

This completes the construction of Awake[R′] for Case 2.2.
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Figure 15: Illustrating Case 3 in Phase II.

Next, we compute Asleep[R′] (for Case 2.2), which represents ŵR′pR′ . Recall that wR′ is qR′

or yR′ , and yR′ is either q∗ or yL. Below, we will show (implicitly) in a constructive manner that

ŵLpL, which is stored in Asleep[L], is part of ŵR′pR′ . The point wL is either qL or yL. We need to

discuss the relations among the positions of q∗, yL, qR′ , and qL. Recall qR′ is before qL on ∂R′ (see

Fig. 14) and q∗ is before qL on ∂L.

We first set Asleep[R′] = Asleep[L], which represents ŵLpL on ∂L. Recall that pL = Head(b) =

xR and pR′ = Head(b′R). We then enqueue x̂RpR′ to the tail of Asleep[R′]. Now Asleep[R′]

represents ŵLpR′ . Depending on whether wL is yL or qL, there are two subcases.

• If wL = yL, then yL is after qL on ∂L. Since q∗ is before qL on ∂L, q∗ is before yL on ∂L,

implying yR′ = yL. Because yL is after qL, qL is before yR′ (= yL). Since qR′ is before qL
on ∂R′ and qL is before yR′ on ∂R′, qR′ is before yR′ on ∂R′. Thus, wR′ is yR′ , which is yL
(= wL). Therefore, we are done with the construction of Asleep[R′].

• If wL = qL, then yL is before qL on ∂L and thus Asleep[R′] currently represents q̂LpR′ . Next,

starting at qL, we enqueue atoms along ∂R′ counterclockwise to the head of Asleep[R′] until

we first find qR′ or encounter yR′ (regardless of whether yR′ is yL or q∗). Note that the first

point of qR′ and yR′ thus encountered is wR′ . Now Asleep[R′] represents ŵR′pR′ and we are

done with the construction of Asleep[R′].

This finishes the construction of Asleep[R′] for Case 2.2.

We thus complete the construction of both Awake[R′] and Asleep[R′] for Case 2.

Algorithm 4: Construction of Awake and Asleep of R′ for Case 3

Output: Awake[R′] = x̂R′qR′ and Asleep[R′] = ŵR′pR′

1 Asleep[R′]← ∅ ; /* done for Asleep[R′] */

2 Awake[R′]← Asleep[L] ;

3 Enqueue x̂Rp∗ to the tail of Awake[R′] ; /* charge the enqueue to Q */

4 Enqueue b∗ to the head of Awake[R′] ; /* charge the enqueue to B */

5 if wL = yL then
6 Do nothing ;
7 else/* wL = qL */

8 Enqueue x̂R′qL to the head of Awake[R′] ; /* charge enqueue to S */

9 end
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5.5.3 Case 3

In Case 3 (see Fig. 15), bR′ = b∗, qR′ = pR′ = p∗, and pL = Head(b) = xR. Note that xR′ is yL or

q∗, yR′ = zL, and zR′ = p∗. The pseudocode is in Algorithm 4. The details are discussed below.

We first compute Awake[R′], which represents x̂R′qR′ . Below, we will show (implicitly) in a

constructive manner that ŵLpL, which is stored in Asleep[L], is part of x̂R′qR′ . We set Awake[R′] =

Asleep[L] and then enqueue x̂Rp∗ (= p̂LqR′) to the tail of Awake[R′]. Now Awake[R′] represents

ŵLqR′ . Recall that wL is either yL or qL, and qL is after q∗ on ∂L.

• If wL = yL, then qL is before yL on ∂L. Thus yL is after q∗ on ∂L and xR′ is yL (= wL). We

are then done with computing Awake[R′].

• If wL = qL, then qL is after yL on ∂L, i.e., yL ∈ x̂LqL. If xR′ = q∗, then q∗ is on ŷLzL;

otherwise, xR′ = yL. In either case, x̂R′qL lies on ŷLqL. We then enqueue x̂R′qL to the head

of Awake[R′]. Now Awake[R′] represents x̂R′qR′ and we are done with computing Awake[R′].

This completes the construction of Awake[R′] for Case 3.

We next compute Asleep[R′] (= ŵR′pR′). Recall that pR′ = qR′ = p∗ = zR′ . Thus wR′ = qR′ ,

and ŵR′pR′ is only a point, which is not essential to our algorithm. We simply set Asleep[R′] = ∅.
This completes the construction of Asleep[R′] for Case 3.

5.6 The Time Complexity of the Topological Flip Algorithm

In this section, we give the outline of the time analysis for our algorithm, with details given in an

independent Section 6. A key lemma that we need to prove is the following.

Lemma 5 The total number of enqueue operations in Phase II of the entire algorithm is O(n+k).

Recall that the initialization procedure performs O(n) enqueue operations and no enqueue

occurs in Phase I at all. By Lemma 5, the total number of enqueues in the entire algorithm is

O(n + k). Thus, the total number of dequeues in the entire algorithm is also O(n + k) since it

cannot be bigger than the total number of enqueues. Further, at most two splits are needed for

each flip in Phase I, and no split is used in Phase II, implying that the total number of splits in

the algorithm is O(k). Thus, there are totally O(n+ k) operations on the splittable queues in the

entire algorithm. By Lemma 4, the total time for performing all k flip operations is O(n+ k).

In addition, as shown by Lemma 9 (given in Section 6.1), the total time of the preparing

procedure (used only in Phase I) over the entire algorithm is O(n+ k).

We conclude that all k flips can be performed in O(n+ k) time. Therefore, the overall running

time for computing all free bitangents in B is O(n+ h log h+ k). At any moment of the algorithm,

the space needed is for storing the current good pseudo-triangulation and all splittable queues,

which is O(n). If we incorporate the needed graph information into the above algorithm, then the

relevant visibility graph G can be built in the same amount of time.

It remains to prove the key lemma (Lemma 5), which is quite challenging.

As in the PV algorithm [38, 39], only a constant number of enqueue sequences are involved

in Phase II for each flip and each enqueue sequence is on either a free bitangent or a boundary

portion of one single obstacle (see Phase II for more details of this). For the PV algorithm, since

every obstacle is of O(1) complexity, each enqueue sequence can be implemented as O(1) enqueue

operations. Consequently, Lemma 5 easily follows in [38, 39]. For our problem, however, since the
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complexity of an obstacle can be Ω(n), each enqueue sequence may take as many as Ω(n) enqueue

operations. Thus, the simple proof for the PV algorithm does not appear to work for our problem.

To prove the key lemma, we instead conduct the analysis in a global fashion, as follows.

As one of our key proof ideas, we introduce a new concept “reverse”, which was not used in the

previous analysis [38, 39]. Consider a flip on a free bitangent b in Phase I (everything here, such as

b∗, b′R, R, L, ΓR, etc., is defined in the same way as in Sections 5.3 and 5.4). Let p be a point on

∂T of a pseudo-triangle T in the current good pseudo-triangulation T before the flip such that p

lies on an obstacle P . Let l1(p) be the directed tangent line of T at p. Suppose after the flip of b, p

lies on ∂T ′ of a new pseudo-triangle T ′ (6= T ); let l2(p) be the directed tangent line of T ′ at p. By

the definition of tangent lines of a pseudo-triangle, both l1(p) and l2(p) are tangent to the obstacle

P at p. Since by our assumption, the boundary of each obstacle is smooth, l1(p) and l2(p) lie on

the same undirected line. But, it is possible that l1(p) and l2(p) have opposite directions (e.g., if

p is on ΓR \ {Tail(b′R)} in Case 1; see Fig. 13 and recall that ΓR refers to the portion of ∂R from

Head(b) clockwise to the first encountered point of b′R.). When this occurs, we say that the point

p is reversed due to the flip of b. Note that p can be reversed only if the pseudo-triangle T is either

R or L.

For example, in Case 1 (resp., Case 2), all points on ΓR except the endpoint Tail(b′R) (resp.,

Head(b′R)) are reversed (see Fig. 13). In Case 3, all points on x̂Rp∗ \{p∗} (here, xR = Head(b)) are

reversed (note x̂Rp∗ is part of ΓR). Of course, the algorithm does not do the “reversal” explicitly.

For any atom, if it is (part of) an elementary curve, then we say that it is reversed if all its

interior points are reversed; if it is a bitangent t, then it is reversed if the direction of t is reversed.

Our overall proof strategy is to associate the enqueue operations in Phase II of the entire

algorithm with different “classes” of operations and prove a bound for each such class. For this,

we denote by nE the number of enqueue operations in Phase II of the entire algorithm, by nQ the

number of all reversed atoms in the entire algorithm, by nD the number of dequeue operations

in Phase I of the entire algorithm, and by nS the number of certain special enqueue operations in

Phase II of the entire algorithm (which are defined in Section 6.3). Recall that k = |B|.
Then, to prove Lemma 5 is to show nE = O(n + k). To this end, we prove that nE ≤

nQ + nD + nS + k and nQ = O(n+ k), nD = O(n+ k), and nS = O(n+ k).

The detailed proof is given in Section 6, which is organized as follows. In Section 6.1, we prove

nQ = O(n+ k). To this end, we prove that any point on any obstacle boundary can be reversed at

most once in the entire algorithm. We show (in Observation 2) that the total number of all atoms

involved in the algorithm is O(n + k). We also show (in Lemma 9) in Section 6.1 that the total

running time of the preparing procedure in Phase I of the entire algorithm is O(n+ k). In Section

6.2, we prove nD = O(n + k). To this end, we prove that every atom can be dequeued at most

O(1) times in Phase I of the entire algorithm. In Section 6.3, we prove nE ≤ nQ+nD +nS + k and

nS = O(n + k). We show that for any enqueue operation in Phase II, say, on an atom A, A must

belong to one of the following cases: a reversed atom, an atom dequeued in Phase I, the current

enqueue on A being a special enqueue operation, or a free bitangent in B.
The proof in Section 6, which uses many new observations and analysis ideas, is long and

technically difficult and complicated. Nevertheless, it does provide lots of insights into the problem

and explores many essential properties, which may help deal with other related problems as well.

6 The Proof of Lemma 5

This section is devoted to proving the key lemma (Lemma 5).
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Recall that to prove Lemma 5 is to show nE = O(n+ k). To this end, our strategy is to prove

that nE ≤ nQ + nD + nS + k and nQ = O(n+ k), nD = O(n+ k), and nS = O(n+ k).

Note that the above goals that we want to prove do not appear to be obtained easily from the

results in [38, 39] although many properties in the PV algorithm [38, 39] on the obstacle set O
hold in our problem on the splinegon set P. As a simple example, in the PV algorithm, since each

obstacle in O is of constant complexity, each enqueue sequence only needs O(1) enqueue operations,

and thus nE = O(n+k) simply follows as there are O(k) enqueue sequences in the entire algorithm.

By contrast, in our problem since a splinegon may be of Ω(n) complexity, an enqueue sequence may

need Ω(n) enqueue operations, and thus if we use similar analysis to the PV algorithm, we would

only obtain nE = O(nk) as there are O(k) enqueue sequences. As another example, in the PV

algorithm on O, each enqueue sequence involves a portion of the boundary of an obstacle, which

can be treated as a single atom since each obstacle in O is of constant complexity. Thus, it does

not matter if a boundary portion of an obstacle is involved in multiple enqueue sequences since

there are totally O(k) enqueue sequences. In our problem, however, it does matter if a boundary

portion of an obstacle is involved in multiple enqueue sequences because that boundary portion

may contain many atoms (e.g., elementary curves), potentially causing the number of enqueue

operations (i.e., nE) not bounded by O(n + k). Hence, to show nE = O(n + k) we have to give

more careful argument that requires exploring more observations on the problem.

The rest of this section is organized as follows. In Section 6.1, we prove nQ = O(n + k). In

Section 6.2, we prove nD = O(n + k). In Section 6.3, we show nE ≤ nQ + nD + nS + k and

nS = O(n + k). In addition, we show in Section 6.1 that the total running time of the preparing

procedure in Phase I over the entire algorithm is O(nQ), which is O(n+ k).

6.1 Bounding the Number of Reversed Atoms (i.e., nQ = O(n+ k))

Consider a flip operation on a free bitangent b in Phase I. Everything here is defined in the same

way as in Sections 5.3 and 5.4, e.g., b∗, b′R, R, L, R′, L′, ΓR, etc.

Recall that ΓR is the portion of ∂R from Head(b) clockwise to the first encountered point of

b′R. In Case 1 (resp., Case 2), all points on ΓR except the endpoint Tail(b′R) (resp., Head(b′R))

are reversed (see Fig. 13). In Case 3, all points on x̂Rp∗ \ {p∗} (here, xR = Head(b)) are reversed

(note that x̂Rp∗ is part of ΓR). Observe that ΓR is an obstacle arc. The following observation is

self-evident.

Observation 1 After the flip of b, let α be the reversed portion on ∂T , with T ∈ {R,L}. Let T ′

be R′ (resp., L′) if α lies on ∂R′ (resp., ∂L′). Then the following properties hold.

1. α is an obstacle arc. One (resp., the other) endpoint of α is an endpoint of b (resp., bT ′).

2. Let αb (resp., αb
T ′ ) be the endpoint of b (resp., bT ′) on α. From αb to αb

T ′ along α, it is

counterclockwise with respect to the obstacle on which α lies. We call αb the obstacle-ccw-start

endpoint of α.

3. Every point on α except the endpoint αb
T ′ is reversed due to the flip of b. For any point

p ∈ α \ {αb
T ′ }, α is called the hosting arc of p.

Note that only points on ∂R or ∂L can be reversed due to the flip of b. An important property

of the reversed portions after every flip is given in the lemma below.
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Lemma 6 After a flip operation on b, suppose α is the reversed portion on ∂T of a pseudo-triangle

T , T ∈ {R,L}. Then no interior point of α can be an endpoint of any bitangent in B.

Proof: First, by Lemma 3, the direction of any free bitangent t ∈ B can be reversed only by a

flip operation on t. Thus, after the flip of b, the direction of b is reversed, whereas the direction of

any other free bitangent in B does not change. By Observation 1, α is an obstacle arc, say, on an

obstacle P .

Assume to the contrary that there is an interior point q of α that is an endpoint of a free

bitangent t ∈ B. Note that t 6= b since an endpoint of b is an endpoint of α by Observation 1.

By the definition of good pseudo-triangulation, the direction of t is compatible with its endpoint q

before the flip of b. Recall that the direction of t is compatible with its endpoint q if the directed

tangent line of T at q, denoted by l1(q), has the same direction as t.

Suppose α lies on a pseudo-triangle T ′ right after the flip of b. Let l2(q) be l1(q) but with the

reversed direction. Then both l1(q) and l2(q) are tangent to the obstacle P at q. Since q is reversed

due to the flip of b, l2(q) is the directed tangent line of T ′ at q right after the flip of b. As a free

bitangent, t’s direction does not change after the flip of b (6= t), the direction of l2(q) is opposite to

that of t, making t not compatible with its endpoint q after the flip of b. But this contradicts with

the definition of good pseudo-triangulation. Thus q cannot be an endpoint of any free bitangent in

B, and the lemma follows. ✷

The next lemma is critical.

Lemma 7 During the topological flip algorithm, any point on the boundary of any obstacle in P
can be reversed at most once.

Proof: By Lemma 3, the direction of any free bitangent t ∈ B can be reversed only by a flip

operation on t. Since the algorithm does not flip any bitangent more than once, the direction of

each free bitangent is reversed only once throughout the algorithm.

Consider a flip of a free bitangent b of a good pseudo-triangulation T . Suppose a point a on

∂T of a pseudo-triangle T is reversed for the first time due to the flip of b. Below we prove that a

cannot be reversed again. We only discuss the case when a lies on ∂R (the case on ∂L is similar).

Let p = Head(b); let q = Tail(b′R) in Case 1, q = Head(b′R) in Case 2, and q = Tail(b∗) in Case

3, respectively (see Fig. 13). Due to the flip of b, in each case, the reversed portion is p̂q \{q}. Also,
the direction of b is reversed. By Observation 1, p̂q is an obstacle arc, say, on obstacle P . Assume

to the contrary that later a point a ∈ p̂q \ {q} is reversed for the second time. Note that a cannot

be p since otherwise b would not be compatible with p unless b is reversed twice.

At the second reversal of a, let p̂′q′ be the hosting arc of a with p′ being the obstacle-ccw-start

endpoint (see Fig. 16). By Observation 1, p̂′q′ is an obstacle arc, say, on obstacle P ′. Since the

point a is on both p̂q ∈ P and p̂′q′ ∈ P ′, a lies on both P and P ′. Therefore, P = P ′ since our

obstacles in P are pairwise disjoint. Also by Observation 1, both p′ and q′ are endpoints of some

free bitangents in B.
Since p′ is the obstacle-ccw-start endpoint of p̂′q′, by Observation 1, when moving from p′ to q′

on p̂′q′, it is counterclockwise with respect to P . Similarly, when moving from p to q on p̂q, it is

counterclockwise with respect to P . Since a is on both p̂q and p̂′q′, there are three possible cases:

(i) p is an interior point of p̂′q′, (ii) p′ is an interior point of p̂q, and (iii) p = p′. We argue below

that any case can not occur. Consequently, the point a cannot be reversed again.

As the point p is an endpoint of b, by Lemma 6, p cannot be an interior point of p̂′q′. Similarly,

p′ cannot be an interior point of p̂q. For case (iii), since the point p′ is the obstacle-ccw-start
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Figure 16: Illustrating the proof of Lemma 7.

endpoint of p̂′q′, p′ is reversed. If case (iii) occurs, p′ (= p) is the endpoint of b, and thus the

direction of b has to be reversed again since otherwise b would not be compatible with the reversed

p′. But this contradicts with the fact that b cannot be flipped twice in the algorithm.

The lemma thus follows. ✷

The following lemma bounds the number of all different atoms involved in the algorithm.

Observation 2 The total number of different atoms involved in the algorithm is O(n+ k).

Proof: In our problem, an atom is of one of the following three types: (1) A free bitangent, (2)

an elementary curve, and (3) a portion of an elementary curve. It is easy to see that the number

of type (1) atoms is O(k) and the number of type (2) atoms is O(n). To prove this observation, it

suffices to show that the number of type (3) atoms is O(n+ k).

After initialization, in the initial good pseudo-triangulation T0, there are O(n) type (3) atoms.

Subsequently in the algorithm, each new type (3) atom is produced only due to a flip operation.

Note that after every flip operation, at most O(1) new type (3) atoms can be produced. Since there

are k flips, plus those in T0, the number of type (3) atoms is bounded by O(n+ k). ✷

We then have the following result.

Lemma 8 The number of reversed atoms in the entire algorithm (i.e., nQ) is O(n+ k).

Proof: By Lemma 7, each atom can be reversed at most once. Consequently, Observation 2 leads

to the lemma. ✷

Lemma 9 The overall running time of the preparing procedure in Phase I of the entire algorithm

is O(n+ k).

Proof: Recall that the preparing procedure is to determine whether Case 1 occurs and find b′R if

Case 1 holds. Since the three cusps of R are maintained by the algorithm, xR is known. We walk

from Head(b) along ∂R clockwise until first encountering either b′R or xR. If we encounter b′R first,

then it is Case 1 and we have b′R as well. Otherwise, it is either Case 2 or Case 3.

It is easy to see that the running time of the above walking is proportional to the number

of atoms of the reversed portion due to the flip of b. Therefore, the total time of the preparing

procedure for the entire algorithm is at most proportional to the total number of reversed atoms

in the entire algorithm, i.e., O(nQ), which is O(n+ k) by Lemma 8. The lemma thus follows. ✷
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6.2 Bounding the Number of Dequeue Operations in Phase I (i.e., nD = O(n+k))

Our goal in this section is to prove Lemma 10 below.

Lemma 10 In Phase I of the entire algorithm, the total number of dequeue operations (i.e., nD)

is O(n+ k).

To prove Lemma 10, we will first prove the following lemma (Lemma 11), which states that any

atom can be dequeued in Phase I of the entire algorithm at most twice before its (only) reversal

and can be dequeued in Phase I at most twice after its reversal (if any). Note that Lemma 11 does

not include the dequeue operations in Phase II.

Lemma 11 For any atom A in the algorithm, regardless of whether it has been reversed previously,

A can be dequeued in Phase I at most twice before its next reversal (if any) in the algorithm.

By Lemma 7, every point on ∂P can be reversed at most once. This implies that, by Lemma

11, every atom can be dequeued in Phase I at most four times in the entire algorithm. Since the

total number of atoms in the algorithm is O(n+ k), Lemma 10 follows.

The rest of this section gives the proof for Lemma 11. The proof, which is quite long and

technically complicated, is based on many new geometric observations and analysis techniques.

The following lemma (proved in [38, 39]) will be repeatedly referred to by our analysis later.

Lemma 12 [38, 39] For any pseudo-triangle T of a good pseudo-triangulation, (1) if yT lies on

x̂T qT of ∂T , then ŷT qT is an obstacle arc, and (2) if zT 6= pT , then ẑT pT is an obstacle arc.

For example, in the left figure of Fig. 12, since yR lies on x̂RqR and zR 6= pR, according to

Lemma 12, both ŷRqR and ẑRpR are obstacle arcs; similarly, in the right figure of Fig. 12, both

ŷLqL and ẑLpL are obstacle arcs.

For any bitangent t ∈ B(T ) of a good pseudo-triangulation T in the algorithm, we view t as

defining two atoms, one for Rtri(t) and the other for Ltri(t), and we say that these two atoms

are defined by t. Similarly, we let every point on t have two copies that belong to Rtri(t) and

Ltri(t), respectively. Thus, for any point p ∈ ∂T for a pseudo-triangle T in T , if p is on a bitangent

t ∈ B(∂T ), then p refers to the copy of the point on t that belongs to T . In this way, every point

on ∂T belongs to exactly one pseudo-triangle in T , i.e.,the pseudo-triangle T . Since there are k

bitangents in B, by Observation 2, the total number of atoms is still O(n + k). When an atom A

is (part of) an elementary curve, we also say A is an obstacle arc.

Before presenting the main proof, we give some observations, which will be useful later.

6.2.1 Some Observations

Observation 3 Consider a pseudo-triangle T in a good pseudo-triangulation at a (time) moment

ξ1 of the algorithm. For any point p ∈ ∂T , let l1(p) be the directed tangent line of T at p. Suppose

later at a moment ξ2 of the algorithm, the point p lies on ∂T ′ for a pseudo-triangle T ′, and let

l2(p) be the directed tangent line of T ′ at p. Then, l1(p) and l2(p) lie on the same undirected line.

Further, if p is not reversed during the time period from ξ1 to ξ2, then l1(p) has the same direction

as l2(p); otherwise, l1(p) and l2(p) have opposite directions
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Proof: The observation can be easily proved by the definition of a directed tangent line of a

pseudo-triangle. If A is defined by a free bitangent, then l1(p) and l2(p) both lie on the same

undirected line that contains A. If A is an obstacle arc, then l1(p) and l2(p) also both lie on the

same undirected line that is tangent to the obstacle where p lies. Thus, in any case, l1(p) and l2(p)

lie on the same undirected line.

If the atom A has not been reversed during the time period from ξ1 to ξ2, then clearly l1(p) and

l2(p) are of the same direction. Otherwise, by Lemma 7, p is reversed only once during the time

from ξ1 to ξ2, and therefore, l1(p) and l2(p) have opposite directions. ✷

Observation 4 Consider a pseudo-triangle T in a good pseudo-triangulation at a (time) moment

ξ1 of the algorithm. For any two points p and q on ∂T , let l(p) and l(q) be their corresponding

directed tangent lines of T . Then the following properties hold.

1. If the l(q)-slope of l(p) is less than π, then the l(q)-slope of l(p) is no bigger than the pt-slope

of l(p) in T .

2. If at a later moment ξ2 of the algorithm, the point p lies on ∂T ′ of a pseudo-triangle T ′

(T ′ = T is possible) such that the same directed l(p) is the directed tangent line of T ′ at p

then the pt-slope of l(p) at the moment ξ1 is no smaller than the pt-slope of l(p) at the moment

ξ2.

Proof: For the first part, observe that the pt-slopes of all points on ∂T (l(p) and l(q) included)

are no more than π. Suppose the l(q)-slope of l(p) is less than π. If we rotate bT around its

tail counterclockwise, we will encounter first the direction of l(q) and then the direction of l(p)

(otherwise, the pt-slope of l(q) would be larger than π). This means that the pt-slope of l(p) is the

sum of the pt-slope of l(q) and the l(q)-slope of l(p). The first part thus follows.

The second part can be proved by a simple induction. Recall that if the point p lies on a

bitangent in B(∂T ), then p refers to the copy of the original point that belongs to T . If T ′ = T ,

then it is easy to see that the property holds. Now consider the first flip operation after which the

point p lies on ∂T ′ of a pseudo-triangle T ′ 6= T such that l(p) is still the directed tangent line of T ′

at p. Since T ′ 6= T , the above flip must be on the free bitangent bT .

Let ξ′1 (resp., ξ′2) be the moment right before (resp., after) the flip of bT . At the moment ξ′1,

one endpoint of bT ′ must be on ∂T although bT ′ may be ϕ(bT ). Recall that due to the flip of bT ,

every free bitangent in B \ {bT } does not change direction. So bT ′ does not change direction due

to the flip of bT . Consequently, the bT -slope of bT ′ on ∂T at the moment ξ′1 is the pt-slope of the

endpoint of bT ′ that is on ∂T , which must be less than π. Note that the bT -slope of l(p) is the

pt-slope of l(p) on ∂T at the moment ξ′1, which must be less than π. Similarly, the bT ′-slope of

l(p) is the pt-slope of l(p) on ∂T ′ at the moment ξ′2, which must be less than π. Therefore, if we

rotate bT around its tail counterclockwise, we will encounter first the direction of bT ′ and then the

direction of l(p) (otherwise, the bT -slope of bT ′ would be larger than π at the moment ξ′1). This

implies that the bT -slope of l(p) at the moment ξ′1 is no smaller than the bT ′-slope of l(p) at the

moment ξ′2, i.e., the pt-slope of l(p) at the moment ξ′1 is no smaller than the pt-slope of l(p) at the

moment ξ′2.

Consider the first flip after which the point p lies on ∂T ′′ of a pseudo-triangle T ′′ 6= T ′ such

that l(p) is still the directed tangent line of T ′′ at p. Let ξ′3 be the moment right after this flip. By

a similar argument, the pt-slope of l(p) at the moment ξ′2 is no smaller than the pt-slope of l(p) at

the moment ξ′3. Inductively, the second part holds. ✷
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Note that Observation 4(2) above actually tells us that for any point p ∈ ∂T of a pseudo-

triangle T in the algorithm, regardless of whether p has been reversed previously, the pt-slope of p

is monotonically decreasing during the rest of the algorithm until it is possibly reversed.

6.2.2 The Main Proof of Lemma 11

In the following proof of Lemma 11, all dequeue operations refer to those in Phase I.

Consider the dequeued atoms on ∂R due to the flip of b for the pseudo-triangle R = Rtri(b).

In Case 1, the dequeued atoms are on q̂′Rp
∗; in Cases 2 and 3, the dequeued atoms are on x̂Rp∗. In

all three cases, the dequeued atoms of ∂R are also on ∂R′. Recall R′ = Rtri(b∗) and L′ = Ltri(b∗).

The situation on the pseudo-triangle L = Ltri(b) is similar.

Let A be an arbitrary atom of the good pseudo-triangulation T right before the flip of b. Note

that A may have been reversed before (and thus cannot be reversed again), but this is not important

to our proof. Observe that due to the flip of b, A can be dequeued only if (a) A is awake before

the flip of b, and (b) A lies on either ∂R or ∂L. Note that b = bR = bL since b is minimal. In other

words, suppose A lies on ∂T of a pseudo-triangle T ; if A is dequeued due to the flip of b, then (a)

T is either R or L, (b) A must be awake on ∂T (before the flip of b), and (c) b = bT .

One key observation used in our proof is: For any pseudo-triangle T with T = Rtri(bT ) (resp.,

T = Ltri(bT )), if a point p is awake on ∂T , then the forward (resp., backward) T -view of p has a

smaller pt-slope than p in T (see Fig. 12).

To prove Lemma 11, we first prove the following statement, which we call Sub-lemma 11(a).

Sub-lemma 11(a). Suppose A is an atom on ∂T of a pseudo-triangle T with T = Rtri(bT ) in a

good pseudo-triangulation T and A is dequeued due to a flip operation on bT . Also, suppose at any

later moment before the reversal of A, A lies on ∂T ′ of a pseudo-triangle T ′ with T ′ = Rtri(bT ′) in

another good pseudo-triangulation T ′. Then A cannot be dequeued due to the flip of bT ′ .

To prove Sub-lemma 11(a), our main idea is to show that A cannot be awake when bT ′ is flipped

(and thus cannot be dequeued again). The proof, however, consists of a lengthy and complicated

case analysis with considerable details. We analyze the three main cases (Cases 1, 2, and 3).

The proof of Case 1. In Case 1, all dequeued atoms lie on q̂′Rp
∗. Let A be an arbitrary atom on

q̂′Rp
∗. Let ξ1 be the moment right after the flip of b. Hence the atom A is on ∂R′ at the moment

ξ1. Suppose at a later moment ξ2 of the algorithm, the atom A lies on ∂T ′ of a pseudo-triangle

T ′ of a good pseudo-triangulation T ′ with T ′ = Rtri(bT ′) and A has not been reversed since the

moment ξ1. As discussed above, the atom A on ∂T ′ can be dequeued only due to the flip of bT ′ .

Thus, during the time between the moment ξ2 and the flip of bT ′ , A cannot be dequeued on ∂T ′.

Note that once it is formed, the pseudo-triangle T ′ remains unchanged in the algorithm (and thus,

A is not reversed) until bT ′ is flipped. Without loss of generality, we let ξ2 be the moment right

before the flip of bT ′ . We prove below that A cannot be awake at the moment ξ2 and thus cannot

be dequeued due to the flip of bT ′ . In the following discussion, for simplicity, when we mention R′

(resp., T ′), we always refer to the moment ξ1 (resp., ξ2) unless otherwise stated.

Let p be an arbitrary interior point on A, i.e., p is not an endpoint of A.

Let l2(p) be the directed tangent line of T ′ at p (at the moment ξ2), and l1(p) be the directed

tangent line of R′ at p (at the moment ξ1). Since p is not reversed during the time period from ξ1
to ξ2, by Observation 3, l1(p) and l2(p) are the same. Below, we simply use l(p) to refer to both

l1(p) and l2(p). Since p is not reversed due to the flip of b, l(p) is also the directed tangent line of

R at p before the flip of b.
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Below, we prove that at the moment ξ2, the point p is not awake on ∂T ′ (i.e., p does not lie on

Awake[T ′] = x̂T ′qT ′) and thus the atom A cannot be awake. Let q ∈ ∂T ′ be p’s forward T ′-view

point along l(p) (at the moment ξ2). Let l(q) be the directed tangent line of T ′ at q.

Assume to the contrary that the point p is awake on ∂T ′ (at the moment ξ2). Then it immedi-

ately implies that p lies on Awake[T ′] = x̂T ′qT ′ and the pt-slope of l(p) is larger than that of l(q)

in T ′ (see Fig. 12). Thus, l(q) must cross l(p) from left to right.

Note that right before the flip of b, we have pL = qL = zL = Head(b), i.e., pL = zL is the

basepoint of L = Ltri(b) and qL is the point on ∂L whose backward L-view (on ∂L) is pL and

qL = zL in this case (see Fig. 13). Let c = Tail(b′R).

Recall that the point p is an interior point of an atom A on q̂′Rp
∗. Recall that q′R is the point

on ∂R whose forward R-view is Tail(b′R). If q
′
R is on a bitangent t ∈ B(∂R), since p is the interior

point of t, every point on t can be viewed as q′R; in this case, we let q′R be the endpoint of t such that

t lies entirely on x̂Rq
′
R. This step can be done when we conduct the split operation on Awake[R]

at q′R (i.e., change the criterion when searching q′R in Awake[R]). Note that the above requirement

for q′R does not change the running time of Lemma 4. In this way, l(p) must intersect either ŷLzL
on ∂L or ẑLc on ∂R (see Fig. 17 or Fig. 18).

Let a be the intersection point between l(p) and ŷLzL or ẑLc (see Fig. 17 or Fig. 18). Since ẑLc

is the reversed portion on ∂R due to the flip of b, by Observation 1, ẑLc is an obstacle arc. Since

qL = zL, by Lemma 12, the part ŷLqL (= ŷLzL) is an obstacle arc. Hence, the point a must be on

an obstacle, say P . Consider the position of q, which is p’s forward T ′-view point on ∂T ′ along l(p)

(at the moment ξ2). Since a lies on an obstacle P , q can be either at a or on l(p) between p and

a (but before a). In the following, we show that either case cannot occur, and consequently our

assumption that the point p is awake on ∂T ′ is not correct.

If q is at the point a (see Fig. 17), then l(q) is the directed tangent line of T ′ at a (= q). Since

a lies on the obstacle P , l(q) is tangent to P at a. Note that the point a lies on ∂R′ at the moment

ξ1 (right after the flip of b). Let l1(q) be the directed tangent line of R′ at a (at the moment ξ1).

Since a lies on P , l1(q) is also tangent to P at a, and therefore, l1(q) and l(q) both lie on the same

undirected line. There are two subcases to consider: a lies on ẑLc or on ŷLzL \ {zL}. Below, we

show that neither case can occur.

(i) If a (= q) lies on ẑLc (a can be zL), since q′R is an endpoint of an atom on q̂′Rp
∗ and p is an

interior point of the atom A, we have p 6= q′R and a 6= c. Since ẑLc is reversed due to the flip

of b, by Lemma 7, ẑLc will not be reversed again after the moment ξ1. Thus, l(q) has the

same direction as l1(q). Recall that l(q) crosses l(p) from left to right. Thus, l1(q) crosses
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l(p) from left to right. However, at the moment ξ1, both p and q (= a) are on ∂R′ and it is

easy to see that the pt-slope of l(p) is less than the pt-slope of l1(q) in R′. Thus, l(p) must

cross l1(q) from left to right, or equivalently, l1(q) must cross l(p) from right to left. Hence,

we obtain that l1(q) crosses l(p) both from left to right and from right to left, which is a

contradiction. Thus, a cannot lie on ẑLc.

(ii) For the subcase when a (= q) lies on ŷLzL \{zL} (see Fig. 17), if a has not been reversed since

ξ1, then at the moment ξ2, the direction of l(q) is the same as l1(q)’s. By a similar argument

as for the former subcase (i), we can show that a contradiction also occurs.

In the following, we assume that a is reversed (only once) during the time from ξ1 to ξ2.

Thus, l1(q) and l(q) have opposite directions. Since l(q) crosses l(p) from left to right, l1(q)

crosses l(p) from right to left. Since l(q) crosses l(p) from left to right, the l(q)-slope of l(p)

must be less than π. Since both l(p) and l(q) are directed tangent lines of T ′, by Observation

4(1), the pt-slope of l(p) in T ′ is no smaller than the l(q)-slope of l(p) (at the moment ξ2).

Below, we consider l(q) as a physically directed line that is not associate with any time

moment. We claim the l(q)-slope of l(p) is larger than the bR′-slope of l(p) at the moment ξ1.

Indeed, the bR′ -slope of l1(q) is the pt-slope of the point q (= a) on ∂R′, which is larger than

zero and less than π. Since l1(q) and l(q) have opposite directions, the l(q)-slope of bR′ is less

than π and larger than zero. Note that l(p) is the directed tangent line of R′. So the bR′-slope

of l(p) is the pt-slope of l(p) in R′ (at the moment ξ1), which is less than π. To summarize,

we have: (1) the l(q)-slope of bR′ is less than π and larger than zero, (2) the bR′ -slope of l(p)

is less than π, and (3) the l(q)-slope of l(p) is less than π. Therefore, the l(q)-slope of l(p) is

the sum of the l(q)-slope of bR′ and the bR′-slope of l(p). Since the l(q)-slope of bR′ is larger

than zero, the claim is true. Since the bR′-slope of l(p) is the pt-slope of l(p) in R′, we obtain

that the l(q)-slope of l(p) is larger than the pt-slope of l(p) in R′ at the moment ξ1.

To summarize what have been deduced above, we have: (i) the l(q)-slope of l(p) is larger

than the pt-slope of l(p) in R′ at the moment ξ1, and (ii) at the moment ξ2, the pt-slope of

l(p) in T ′ is no smaller than the l(q)-slope of l(p). These imply that the pt-slope of l(p) in R′

at the moment ξ1 is smaller than the pt-slope of l(p) in T ′ at the moment ξ2. However, l(p)

is the directed tangent line of both the pseudo-triangles R′ and T ′; by Observation 4(2), the

pt-slope of l(p) in R′ at the moment ξ1 must be no smaller than the pt-slope of l(p) in T ′ at

the moment ξ2, which incurs a contradiction.

Hence, we conclude that a cannot lie on ŷLzL \ {zL}.

The above analysis shows that q cannot be at the point a.

We then discuss the case when q lies on l(p) between p and a (but before a). In other words,

l(p) intersects l(q) (at q) before a at the moment ξ2, as shown in Fig. 18. Since the interior of the

line segment pa connecting a and p (lying on l(p)) does not intersect any obstacle, it follows that q

lies on a directed free bitangent t2 in B(∂T ′) at the moment ξ2. Clearly, t2 has the same direction

as l(q) and thus t2 crosses l(p) from left to right. We let t2 be a physical copy of t2 (i.e., they are at

the same location with the same direction) but t2 is not associated with any time moment. Then

t2 crosses l(p) from left to right as well. Note that the interior of R′ is free of obstacles and the

segment pa is contained in R′. Because pa intersects t2 before a, we claim that there must be a

(directed) bitangent t′1 ∈ B(∂R′) on x̂R′p or p̂zR′ such that t2 crosses t′1 from left to right. This

claim is proved in the next paragraph.
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Recall that ∂R′ consists of three convex chains, i.e., x̂R′yR′ , ŷR′zR′ , ẑR′xR′ . Note that x̂R′p ∪
p̂zR′ = x̂R′yR′ ∪ ŷR′zR′ . Since the interior of R′ is free of obstacles and pa (which is contained in

R′) intersects the directed free bitangent t2 (at q) before a, t2 must cross ∂R′ somewhere, at x̂R′p

or p̂zR′ (and possibly at other locations of ∂R′). We discuss below the subcase when t2 crosses

x̂R′p (the other subcase can be analyzed similarly). Let w be the first point of x̂R′p encountered as

walking on t2 from q in the direction of t2. Then since t2 is a free bitangent, the point w must lie on

another free bitangent tw on x̂R′p. Below, we show that t2 crosses tw from left to right. Note that

in Case 1, the portion ŵp of ∂R′ does not contain the basepoint pR′ (= Tail(b′R)) of R
′. Further,

ŵp is to the right of both t2 and l(p). Let w′ be the endpoint of the bitangent tw that lies on ŵp.

As a portion of ŵp, ŵ′p does not contain the basepoint pR′ of R′ and ŵ′p is to the right of both t2
and l(p). Suppose we move a point w′′ from p along ŵ′p to w′; let ρ(w′′) be the ray originating at

w′′ and shooting in the direction of the directed tangent line of R′ at w′′ (i.e., ρ(w′′) is the directed

half-line of the directed tangent line of R′ at w′′). Then since ŵ′p does not contain the basepoint

pR′ of R′, the direction of ρ(w′′) changes continuously as we walk along ŵ′p. In particular, when

w′′ is at p, ρ(w′′) lies on l(p) and has the same direction as l(p); when w′′ arrives at w′, ρ(w′′)

contains tw and has the same direction as tw. Note that l(p) crosses t2 from right to left. Since the

direction of ρ(w′′) changes continuously for w′′ ∈ ŵ′p and ŵ′p is to the right of both t2 and l(p),

during the movement of w′′ from p to w′ on ŵ′p, the ray ρ(w′′) always crosses t2 from right to left.

In particular, when w′′ arrives at w′, ρ(w′) crosses t2 from right to left. Since ρ(w′) has the same

direction as tw and t2 crosses tw (at w), the directed bitangent tw crosses t2 from right to left, or

equivalently, t2 crosses tw from left to right. Letting t′1 = tw, the claim holds.

Let t′2 be the version of the bitangent t′1 at the moment ξ2 (i.e., t′1 and t′2 are defined by the

same undirected free bitangent but may have different directions). So t′2 has opposite direction to

t′1 if and only if t′1 is flipped during the time period from ξ1 to ξ2. Since t2 crosses t
′
1, t2 crosses t

′
2 at

the moment ξ2. Recall that at the moment ξ2, t2 is in B(∂T ′). Thus, since t2 crosses t′2, t
′
2 cannot

be in B(T ′) for the good pseudo-triangulation T ′ at the moment ξ2. Because t′1 ∈ B(∂R′) at the

moment ξ1, there must be one and only one flip operation on t′1 during the time from ξ1 to ξ2, which

reverses the direction of t′1. Hence, t
′
1 and t′2 have opposite directions. Since t2 crosses t′1 from left

to right (at the moment ξ1) and t2 has the same direction as t2, t2 crosses t′2 from right to left at

the moment ξ2. However, at the moment ξ2, we have t2 ∈ B(T ′) and t′2 6∈ B(T ′) for the current

good pseudo-triangulation T ′; by the third property of the definition of good pseudo-triangulation,

t2 should cross t′2 from left to right. This incurs a contradiction.

Consequently, the case when q lies on l(p) between p and a (but before a) cannot occur.

Therefore, our assumption that the point p is awake on ∂T ′ at the moment ξ2 is not correct. In

other words, the point p cannot be awake at the moment ξ2. Consequently, the atom A cannot be

awake at the moment ξ2 (i.e., right before the flip of bT ′).

As a summary for Case 1, we conclude that when T ′ = Rtri(bT ′), the atom A cannot be

dequeued due to the flip of bT ′ . This finishes the proof of Case 1 for Sub-lemma 11(a).

In Case 2, all dequeued atoms lie on x̂Rp∗. Depending on whether xR is Head(b′R) or Head(b),

there are two subcases. Case 2.1: xR = Head(b′R) (see Fig. 13) and Case 2.2: Head(b) = xR (see

Fig. 19). For convenience, Case 2.2 will be analyzed after Case 3.

The proof of Case 2.1. In Case 2.1, let A be an arbitrary atom on x̂Rp∗ (dequeued due to the

flip of b), and ξ1 be the moment right after the flip of b. Suppose at a later moment ξ2 of the

algorithm, the atom A lies on ∂T ′ of a pseudo-triangle T ′ of a good pseudo-triangulation T ′ with

T ′ = Rtri(bT ′) and A has not been reversed since the moment ξ1. Without loss of generality, let ξ2
be the moment right before the flip of bT ′ . By a similar analysis as for Case 1, we can prove that
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Figure 19: Illustrating Case 2.2 in Phase I: xR = Head(b).

A cannot be awake at the moment ξ2 and thus cannot be dequeued due to the flip of bT ′ . Below

we sketch the similarity and (minor) difference between the analysis for Case 2.1 and Case 1.

Let p be an arbitrary interior point on A, and l(p) be the directed tangent line of T ′ at p at

the moment ξ2. Note that in Case 2.1, Head(b) = zL = qL = pL still holds (see Fig. 13). Further,

although Case 2.1 does not involve with q′R, the same critical structure for this case as for Case 1

is that l(p) must intersect either ŷLzL on ∂L or ẑLxR on ∂R, both lying on the same obstacle, say

P . To see this, first, since ẑLxR is the reversed portion on ∂R due to the flip of b, by Observation

1, ẑLxR is an obstacle arc. Second, due to qL = zL, by Lemma 12, the portion ŷLqL (= ŷLzL) is

an obstacle arc. Let a be the intersection of l(p) with ŷLzL or ẑLxR on ∂P . As in Case 1, the fact

still holds that p’s forward T ′-view point q on ∂T ′ at the moment ξ2 is either at the point a or on

l(p) between p and a (but before a). Hence, the rest of the analysis simply follows as in Case 1.

We conclude that in Case 2.1, when T ′ = Rtri(bT ′), the atom A cannot be awake at the moment

ξ2 and consequently cannot be dequeued due to the flip of bT ′ . This finishes the proof of Case 2.1.

The proof of Case 3. For Case 3, all dequeued atoms lie on x̂Rp∗ of ∂R, which are immediately

reversed after the flip of b (see Fig. 13). That is, for each atom A on x̂Rp∗, after it is dequeued, it

is reversed immediately as well. Hence in this case, for each dequeued atom A, it is obviously true

that A is not dequeued again before its forthcoming reversal (due to the flip of b).

The proof of Case 2.2. For Case 2.2 (see Fig. 19), all dequeued atoms lie on x̂Rp∗. Let c =

Head(b′R). Note that the portion x̂Rc is reversed due to the flip of b. Similarly to the analysis for

Case 3, it is clearly true that any dequeued atom on x̂Rc is not dequeued again before its reversal.

For the portion ĉp∗ of x̂Rp∗, let A be an arbitrary atom on ĉp∗, and ξ1 be the moment right

after the flip of b. Suppose at a later moment ξ2 of the algorithm, the atom A lies on ∂T ′ of

a pseudo-triangle T ′ of a good pseudo-triangulation T ′ with T ′ = Rtri(bT ′) and A has not been

reversed since the moment ξ1. Further, let ξ2 be the moment right before the flip of bT ′ . Next, we

prove that A cannot be awake at the moment ξ2 and thus cannot be dequeued due to the flip of

bT ′ . Parts of the proof use similar analysis techniques as for Case 1, which we will only sketch.

Let p be an arbitrary interior point on A, and l(p) be the directed tangent line of T ′ at p at the

moment ξ2. For simplicity, we always associate R′ (resp, T ′) with the moment ξ1 (resp., ξ2). As in

Case 1, l(p) is also the directed tangent line of R′ at p.

Let q ∈ ∂T ′ be p’s forward T ′-view point on l(p), and l(q) be the directed tangent line of T ′ at q

(at the moment ξ2). Recall that a point w on ∂T ′ is awake if and only if w ∈ x̂T ′qT ′ (= Awake[T ′]).

Assume to the contrary that the atom A on ∂T ′ is awake at the moment ξ2. Then it immediately

implies that the point p ∈ A lies on Awake[T ′] = x̂T ′qT ′ and the pt-slope of l(p) is larger than that

of l(q) in T ′ (see Fig. 12). Thus, l(q) must cross l(p) from left to right.

We first briefly explain why the argument in Case 1 does not work in this case. Note that l(p)

31



must intersect ŷR′zR′ on ∂R′ (see Fig. 19); let a be the intersection point of l(p) and ŷR′zR′ . In

Case 1, the corresponding point a must lie on an obstacle and thus p’s forward T ′-view point q on

∂T ′ at the moment ξ2 is either at the point a or on l(p) between p and a (but before a). However, in

Case 2.2, the point a may not lie on an obstacle. Consequently, the point q may lie on l(p) beyond

the point a, i.e., “behind” the chain ŷR′zR′ . This makes the argument in Case 1 not applicable to

Case 2.2. A new analysis approach is given below.

Clearly, the point q can be on either an obstacle or a bitangent in B(∂T ′). In the following, we

show that neither of these two cases can occur (the analysis techniques are somewhat similar), and

consequently our assumption that the atom A is awake on ∂T ′ is not correct.

We first consider the case when q lies on a bitangent in B(∂T ′), denote by tq (at the moment

ξ2). Since tq has the same direction as l(q), tq crosses l(p) from left to right. Let t′q(ξ1) be the

version of the bitangent tq at the moment ξ1 (i.e., t′q(ξ1) and tq are defined by the same undirected

free bitangent but may have different directions). So tq has opposite direction to t′q(ξ1) if and

only if t′q(ξ1) is flipped during the time period from ξ1 and ξ2. Recall that by our general position

assumption, no three obstacles have a common tangent line. Note that l(p) must intersect ŷR′zR′

on ∂R′ (see Fig. 19); let a be the intersection point of l(p) and ŷR′zR′ . Depending on the relations

between the free bitangent t′q(ξ1) and the chain ŷR′zR′ , there are further four subcases to consider:

(i) t′q(ξ1) is part of ŷR′zR′ ; (ii) t′q(ξ1) crosses ŷR′zR′ (i.e., t′q(ξ1) crosses a bitangent in ŷR′zR′ since

t′q(ξ1) is a free bitangent); (iii) t′q(ξ1) does not intersect ŷR′zR′ and q lies on l(p) between p and a;

(iv) t′q(ξ1) does not intersect ŷR′zR′ and q lies on l(p) beyond a. Note that in subcase (ii) above,

q can be either between p and a or beyond a on l(p). We prove below that none of these four

subcases can occur.

(i) t′q(ξ1) is part of ŷR′zR′ . So q lies on ŷR′zR′ of ∂R′ in this subcase. Clearly, the point p lies

on ĉyR′ of ∂R′ (recall c = Head(b′R)). Recall that bR′ = b′R (in Case 2). Thus, the pt-slope

of l(p) in R′ is less than that of t′q(ξ1), and thus l(p) must cross t′q(ξ1) from left to right.

Since t′q(ξ1) ∈ B(∂R′) and tq ∈ B(∂T ′) ⊆ B(T ′) for the good pseudo-triangulation T ′ at

the moment ξ2, the bitangent t′q(ξ1) is not flipped during the time period from ξ1 to ξ2 since

otherwise tq would not be in B(T ′). This implies that t′q(ξ1) and tq have the same direction.

Thus l(p) must cross tq from left to right, or equivalently, tq must cross l(p) from right to left,

contradicting with that tq crosses l(p) from left to right. Hence, this subcase cannot occur.

(ii) t′q(ξ1) crosses ŷR′zR′ (i.e., t′q(ξ1) crosses a bitangent on ŷR′zR′). As in Case 1, since the interior

of R′ is free of obstacles, it is easy to see that t′q(ξ1) must also cross ẑR′xR′ or x̂R′yR′ of ∂R′.

Note that due to the flip of b, the portion x̂Rc on ∂R is reversed. By Observation 1, x̂Rc is

an obstacle arc. Note that zL = zR′ in Case 2.2 (see Fig. 19). Since pL = Head(b) = xR, by

Lemma 12, ẑLpL = ẑR′xR is an obstacle arc. Thus, t′q(ξ1) cannot cross the subchain ẑR′c of

ẑR′xR′ on ∂R′. We let tq be a physical copy of tq (i.e., they are at the same location with

the same direction) but tq is not associated with any time moment. Then tq crosses ĉxR′ or

x̂R′yR′ of ∂R′. By a similar analysis as Case 1, we can show that there must be a directed

free bitangent t′1 ∈ B(∂R′) on ĉp or p̂yR′ such that tq crosses t′1 from left to right. Again,

as the analysis for Case 1, this will incur a contradiction with the third property of good

pseudo-triangulation (at the moment ξ2). Therefore, this subcase cannot occur.

(iii) t′q(ξ1) does not intersect ŷR′zR′ and q lies on l(p) between p and a. In this subcase, since the

interior of R′ is free of obstacles, t′q(ξ1) must cross ẑR′xR′ or x̂R′yR′ of ∂R′. The rest of the

analysis follows that of subcase (ii) above. We conclude that this subcase cannot occur.

32



(iv) t′q(ξ1) does not intersect ŷR′zR′ and q lies on l(p) beyond a. Note that q 6= a since t′q(ξ1) does

not intersect ŷR′zR′ . Clearly, a lies on a free bitangent in ŷR′zR′ ; let t′a denote this bitangent

(at the moment ξ1). Note that l(p) crosses t′a from left to right since the pt-slope of l(p)

is less than that of t′a in R′. Let ta(ξ2) be the version of t′a at the moment ξ2 (i.e., t′a and

ta(ξ2) are defined by the same undirected free bitangent but may have different directions).

Since q 6= a, l(p) intersects ta(ξ2) (at a) in the interior of the pseudo-triangle T ′, and thus

ta(ξ2) cannot be in B(T ′) for the good pseudo-triangulation T ′ at the moment ξ2. Since

t′a ∈ B(∂R′), there is one and only one flip on t′a during the time from ξ1 to ξ2. Thus, t′a
and ta(ξ2) have opposite directions. This implies that l(p) crosses ta(ξ2) from right to left, or

equivalently, ta(ξ2) crosses l(p) from left to right. Consider the two endpoints of ta(ξ2) with

respect to ∂T ′. There are three possibilities: (a) Both endpoints of ta(ξ2) are on ∂T ′; (b)

only one endpoint of ta(ξ2) is on ∂T ′; (c) neither endpoint of ta(ξ2) is on ∂T ′. We show below

that none of the above possibilities can occur, and thus this subcase cannot occur.

(a) Both endpoints of ta(ξ2) are on ∂T ′. Note that for any free bitangent t∗ with t∗ 6∈
B(∂T ′), the two endpoints of t∗ cannot be both on ∂T ′. Since ta(ξ2) 6∈ B(T ′), we have

ta(ξ2) 6∈ B(∂T ′) and thus this possibility cannot occur.

(b) Only one endpoint of ta(ξ2) is on ∂T ′. The analysis here utilizes some analysis techniques

for Case 1 (specifically for the subcase of a = q ∈ ŷLzL\{zL}). As in Case 1, we will show

that the pt-slope of l(p) in R′ at the moment ξ1 is smaller than the pt-slope of l(p) in T ′

at the moment ξ2. Since l(p) is the directed tangent line of both the pseudo-triangles R′

and T ′ at p, by Observation 4, the pt-slope of l(p) in R′ (at the moment ξ1) must be no

smaller than the pt-slope of l(p) in T ′ (at the moment ξ2), which incurs a contradiction.

Let l(ta(ξ2)) be the directed line that contains ta(ξ2) with the same direction as ta(ξ2).

We consider l(ta(ξ2)) as a physically directed line that is not associated with any time

moment. Recall that ta(ξ2) and t′a have opposite directions, l(ta(ξ2)) and t′a have opposite

directions. We claim that the l(ta(ξ2))-slope of l(p) is larger than the bR′-slope of l(p) at

the moment ξ1. Indeed, at the moment ξ1, the bR′-slope of t′a is the pt-slope of the point

a on ∂R′, which is larger than zero and less than π. Since t′a and l(ta(ξ2)) have opposite

directions, the l(ta(ξ2))-slope of bR′ is less than π and larger than zero. Note that l(p)

is the directed tangent line of R′. So the bR′-slope of l(p) is the pt-slope of l(p) in R′ (at

the moment ξ1), which is less than π. Recall that ta(ξ2) crosses l(p) from left to right,

implying the l(ta(ξ2))-slope of l(p) is less than π. Therefore, the l(ta(ξ2))-slope of l(p) is

the sum of the l(ta(ξ2))-slope of bR′ and the bR′-slope of l(p). Since the l(ta(ξ2))-slope

of bR′ is larger than zero, the claim is true. Since the bR′-slope of l(p) is the pt-slope of

l(p) in R′, we obtain that the l(ta(ξ2))-slope of l(p) is larger than the pt-slope of l(p) in

R′ at the moment ξ1.

Let a′ be the endpoint of ta(ξ2) on ∂T ′. Since the direction of l(ta(ξ2)) is the same as

ta(ξ2), l(ta(ξ2)) is the directed tangent line of T ′ at a′. Recall that ta(ξ2) crosses l(p)

from left to right, implying the l(ta(ξ2))-slope of l(p) is less than π. By Observation 4,

the l(ta(ξ2))-slope of l(p) is no bigger than the pt-slope of l(p) in T ′ (at the moment ξ2).

We thus obtain that the pt-slope of l(p) in R′ at the moment ξ1 is smaller than the

pt-slope of l(p) in T ′ at the moment ξ2. Consequently, this possibility cannot occur.

(c) Neither endpoint of ta(ξ2) is on ∂T ′. In this situation, since ta(ξ2) intersects l(p) (at a)

in the interior of T ′, ta(ξ2) must cross ∂T ′ somewhere. Note that l(p) intersects ta(ξ2) (at

a) before q and ta(ξ2) crosses l(p) from left to right. Recall in our proof by contradiction
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Figure 20: Illustrating the situation when no endpoint of ta(ξ2) is on ∂T ′: ta(ξ2) crosses l(p) from left to right.

we assume the atom A is awake on ∂T ′ and the point p ∈ A lies on Awake[T ′] = x̂T ′qT ′

(see Fig. 20). Note that qT ′ always lies on x̂T ′zT ′ and so does the point p. Since the

interior of T ′ is free of obstacles and ta(ξ2) crosses l(p) from left to right, similar to the

analysis for Case 1, there must be a directed free bitangent t′1 ∈ B(∂T ′) lying on x̂T ′p

or p̂zT ′ such that ta(ξ2) crosses t′1 from left to right (ta(ξ2) may also cross ẑT ′xT ′ , but

we are not interested in that). Thus t′1 crosses ta(ξ2) from right to left. However, since

t′1 ∈ B(T ′) and ta(ξ2) 6∈ B(T ′) for the good pseudo-triangulation T ′ at the moment ξ2,

by the third property of good pseudo-triangulation, t′1 should cross ta(ξ2) from left to

right. But this is a contradiction. Hence, this possibility cannot occur.

We conclude that the case when q lies on a bitangent in B(∂T ′) cannot occur.

Below we discuss the case when q lies on an obstacle. For simplicity, here we view q as a physical

point not associated with any time moment. Consider the position of q with respect to the chain

ŷR′zR′ on ∂R′. There are two subcases to consider: (i) q lies on ŷR′zR′ ; (ii) q does not lie on ŷR′zR′

(i.e, l(p) crosses a free bitangent in ŷR′zR′). We show below that neither subcase can occur.

(i) q lies on ŷR′zR′ . Let l′(q) be the directed tangent line of R′ at q (at the moment ξ1). Recall

that l(q) is the directed tangent line of T ′ at q (at the moment ξ2) and l(q) crosses l(p) from

left to right. Since q lies on an obstacle, l(q) and l′(q) both lie on the same undirected line

but may have opposite directions. The following analysis is very similar to that for Case 1

(specifically for the subcase of a = q ∈ ŷLzL \ {zL}).
If the point q has not been reversed since the moment ξ1, then l(q) has the same direction

as l′(q). As analyzed before, the pt-slope of l(p) is smaller than that of l′(q) in R′, and thus

l(p) crosses l′(q) from left to right, or equivalently, l′(q) crosses l(p) from right to left, which

contradicts with that l(q) (= l′(q)) crosses l(p) from left to right.

If the point q is reversed (at most once by Lemma 7) during the time from ξ1 to ξ2, then l′(q)

and l(q) have opposite directions. By the same analysis as for subcase (iv (b)) of the former

case (i.e., the case when q lies on a bitangent in B(∂T ′)), we can show that the pt-slope of

l(p) in R′ at the moment ξ1 is smaller than the pt-slope of l(p) in T ′ at the moment ξ2, which

contradicts with Observation 4. We omit the details. Thus, this subcase cannot occur.

(ii) q does not lie on ŷR′zR′ (i.e, l(p) crosses a free bitangent on ŷR′zR′). Clearly, l(p) must cross

a free bitangent on ŷR′zR′ before arriving at q. Then, the analysis follows in exactly the same

way as that for subcase (iv) of the former case, and we can conclude that this subcase cannot

occur either.

In summary, we prove that the atom A cannot be awake at the moment ξ2 of the algorithm.

34



For Case 2.2, we conclude that when T ′ = Rtri(bT ′), the atom A on ∂T ′ cannot be dequeued

due to the flip of bT ′ .

Based on the above detailed case analysis, Sub-lemma 11(a) is proved.

By an analogous analysis, we can also prove the following statement, called Sub-lemma 11(b).

Sub-lemma 11(b). Suppose A is an atom on ∂T of a pseudo-triangle T with T = Ltri(bT ) in a

good pseudo-triangulation T and A is dequeued due to a flip operation on bT . Also, suppose at any

later moment before the reversal of A, A lies on ∂T ′ of a pseudo-triangle T ′ with T ′ = Ltri(bT ′) in

another good pseudo-triangulation T ′. Then A cannot be dequeued due to the flip of bT ′ .

By combining Sub-lemmas 11(a) and 11(b), we conclude that for any dequeued atom, it can be

dequeued at most twice before its next reversal (if any). An explanation of this is as follows.

Suppose at the moment ξ1, an atom A on ∂T1 of a pseudo-triangle T1 in a good pseudo-

triangulation T1 is dequeued for the first time due to the flip of bT1
. We assume T1 = Rtri(bT1

) (the

case for T1 = Ltri(bT1
) can be analyzed similarly). If A will not be dequeued again in the algorithm,

then we are done. Otherwise, suppose at a later moment ξ2 (A has not been reversed), A is on

∂T2 of a pseudo-triangle T2 in a good pseudo-triangulation T2 and A is dequeued for the second

time due to the flip of bT2
. By Sub-lemma 11(a), the case T2 = Rtri(bT2

) cannot occur. Thus, only

T2 = Ltri(bT2
) is possible. For any moment ξ3 after ξ2, suppose A is on ∂T3 of a pseudo-triangle

T3 in a good pseudo-triangulation T3 and A has not been reversed. Now, if T3 = Rtri(bT3
), then

by Sub-lemma 11(a), A cannot be dequeued due to the flip of bT3
. But if T3 = Ltri(bT3

), then by

Sub-lemma 11(b), A cannot be dequeued either.

Thus, A can be dequeued at most twice in Phase I of the entire algorithm before its next reversal

(if any). Lemma 11 then follows.

Note: It appears possible to show that there is at most one dequeue per atom before its reversal.

But, proving this seems to make the already long and complicated proof of Lemma 11 even longer

and more complicated, and this stronger statement, although nicer, is not essential to our result.

In addition, we briefly discuss why R′ (= Rtri(b∗)) is also Ltri(b′R) in Case 2 with the help of

Lemma 12. In Case 2.1 (i.e., xR = Head(b′R)), this is obviously true. We discuss Case 2.2 (i.e.,

xR = Head(b)) below. It suffices to show that b′R lies on x̂RyR of ∂R. Assume to the contrary

that b′R does not lie on x̂RyR of ∂R. Then, x̂RyR must be an obstacle arc on an obstacle, say P .

Thus, it is easy to see that b′R must be tangent to P and the tangent point on P is yR, and b′R lies

on ŷRzR. Further, since in Case 2, p∗ does not lie on the obstacle arc between b and b′R, we have

p∗ 6∈ x̂RyR, and thus b′R ∈ ŷRp∗. Note that ŷRp∗ is part of x̂RqR. Therefore, b′R ∈ ŷRqR. However,

since yR ∈ x̂RqR, by Lemma 12, the portion ŷRqR of ∂R is an obstacle arc, contradicting with

b′R ∈ ŷRqR since b′R is a free bitangent. Hence, b′R must lie on x̂RyR and R′ is Ltri(b′R).

6.3 Bounding the Number of Enqueue Operations in Phase II

In this section, we prove nE ≤ nQ + nD + nS + k and nS = O(n + k). Consequently, due to

nQ = O(n+ k), nD = O(n+ k), and k = |B|, we obtain nE = O(n+ k) and Lemma 5 thus follows.

Let Q be the set of all reversed atoms in the entire algorithm, D be the set of all dequeue

operations in Phase I, and S be the set of special enqueue operations in Phase II that will be

defined later. Thus, nQ = |Q|, nD = |D|, and nS = |S|.
To prove nE ≤ nQ + nD + nS + k, we will show that every enqueue operation in Phase II

corresponds to an element in D, Q, S, or B, and we charge the enqueue operation to that element;

each such element will be charged only O(1) times in the entire algorithm. Further, we will prove

that nS = |S| = O(n+ k). We discuss the three main cases individually.
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For Case 1, refer to the pseudocode Algorithm 1 in Section 5.5. There are three enqueue

sequences, i.e., Lines 3, 4, and 8, and their corresponding charges are already shown in the pseu-

docode. We briefly explain why we can charge them in those ways. For Line 3, it is easy to see

that ẑLpR′ (recall pR′ = Tail(b′R)) is reversed due to the flip of b. So we can charge the enqueue

on ẑLpR′ to Q. For Line 4, since b∗ ∈ B, we can charge the enqueue on b∗ to B. For Line 8, recall

that when computing b∗ in Phase I, all atoms in q̂′Rp
∗ have been dequeued (from AwakeMax[R]).

Note that the atoms in the enqueued portion of Line 8 are all in q̂′Rp
∗, implying that they have

been dequeued in Phase I. So we can charge them to D.

For Case 2, again, we discuss the two subcases Case 2.1 (i.e., xR = Head(b′R), see Fig. 13) and

Case 2.2 (i.e., xR = Head(b), see Fig. 14).

For Case 2.1, refer to the pseudocode Algorithm 2. There are three enqueue sequences, i.e.,

Lines 3, 4, and 8, and their corresponding charges are already shown in the pseudocode. For Line

3, note that ẑLxR is reversed due to the flip of b, so we charge the enqueue operations on ẑLxR
to Q. For Line 4, we charge the enqueue on b∗ to B. For Line 8, note that the atoms in ŷRp∗ are

dequeued when computing b∗ in Phase I, so we charge the enqueue to D.

For Case 2.2, refer to the pseudocode Algorithm 3. There are five enqueue sequences, i.e.,

Lines 3, 7, 11, 15, and 19. For Line 3, which is for the case when qR′ ∈ p̂R′p∗, note that the

enqueued portion is x̂R′qR′ . Since qR′ ∈ p̂R′p∗, qR′ is before p∗, and thus all the enqueued atoms

in Line 3 are dequeued for computing b∗ in Phase I. Therefore, we can charge them to D. Line

7 is trivial. For Line 11, again, the atoms in the enqueued portion ŷRp∗ have been dequeued for

computing b∗, we charge those enqueue operations to D. For Line 15, note that pR′ = Head(b′R).

Since xR = Head(b), the enqueued portion x̂RpR′ is reversed due to the flip of b, so we can charge

the enqueue to Q. The enqueue in Line 19 needs special treatment. Below we discuss that the

enqueued atoms there have some special properties and we call those enqueue the special enqueue

operations and charge them to S. Later, we will prove |S| = O(n+ k).

We assume that the reader has read the detailed algorithm discussion for Algorithm 3 in Section

5.5. Note that Line 19 is for the case wL = qL (recall that wL is defined to be qL if qL ∈ ŷLzL and

yL otherwise). First, note that the enqueue sequence in Line 19 is on ŵR′qL of ∂R′, which is part

of q̂R′qL regardless of whether wR′ is yR′ or qR′ . We claim that ŵR′qL is part of ŷLqL on ∂L. To

prove this claim, it suffices to show that wR′ is after yL on ∂L. Clearly, wR′ is always after yR′ .

Recall that yR′ is q∗ or yL. If yR′ is q∗, then q∗ is after yL on ∂L; else, yR′ is yL. In either case, yR′

is always after yL on ∂L. Consequently, wR′ is after yL on ∂L. The claim thus follows. Hence, the

special enqueue sequence is on ŵR′qL, which is part of both q̂R′qL and ŷLqL.

Due to wL = qL, yL is before qL on ∂L, and in other words yL lies on x̂LqL. By Lemma 12, ŷLqL
is an obstacle arc and thus ŵR′qL also lies on that obstacle. For any point p on an atom A of ŵR′qL
on ∂R′, let l(p) be the directed tangent line of the pseudo-triangle R′ at p. Suppose we move from p

along l(p) towards its inverse direction (resp., the direction of l(p)), and let a (resp., a′) be the first

point encountered on any obstacle in P; we call the point a (resp., a′) the backward P-view (resp.,

forward P-view) of p. Let Pback(A) (resp., Pfor(A)) denote the set of backward (resp., forward)

P-view points of the points of A. Since x̂RpR′ (recall pR′ = Head(b′R)) on ∂R is reversed due to the

flip of b, by Observation 1, x̂RpR′ is an obstacle arc. An easy but critical observation is that for any

point on q̂R′qL, its backward P-view is on x̂RpR′ (see Fig. 14). Since the enqueued portion ŵR′qL
is part of q̂R′qL, for any point on ŵR′qL \ {qR′}, its backward P-view is on x̂RpR′ , which is reversed

due to the flip of b. To summarize what have been deduced above, we have (i) the portion of ∂R′

involved in the special enqueue sequence is ŵR′qL, which is an obstacle arc, and (ii) the backward

P-view points of all points on ŵR′qL \ {qR′} lie on x̂RpR′ , which is an obstacle arc reversed due to
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the flip of b. We then have the following observation.

Observation 5 Consider a flip operation on a minimal bitangent b. If an atom A on ∂R′ with

R′ = Rtri(ϕ(b)) is involved in a special enqueue operation (for processing the flip of b), then A is

an obstacle arc and Pback(A) is an obstacle arc reversed due to the flip of b.

In addition, if an atom A is an obstacle arc, say, on the obstacle P , then for any point p ∈ A,

the tangent line of P at p is also the tangent line of the pseudo-triangle (at p) on which A lies,

and vice versa. Thus, as long as the atom A is not reversed in the algorithm, both Pback(A) and

Pfor(A) will not change. After A is reversed (if this ever happens), Pback(A) and Pfor(A) still refer
to the same two obstacle arcs but switch names with each other.

The bound of |S| will be discussed later in Lemma 13. Some special enqueue operations also

appear in Case 3.

For Case 3 (see Fig. 15), refer to the pseudocode Algorithm 4. There are three enqueue se-

quences, i.e., Lines 3, 4, and 8. For Line 3, since x̂Rp∗ is reversed due to the flip of b, we charge the

enqueue to Q. Line 4 is trivial. For Line 8, we explain below that the enqueue can also be viewed

as special enqueue and charged to S.

Note that Line 8 is on the case wL = qL. Thus, yL ∈ x̂LqL. By Lemma 12, ŷLqL is an obstacle

arc. Recall that in Case 3 xR′ is either yL or q∗. If xR′ = q∗, q∗ is on ŷLzL; otherwise, xR′ = yL. In

either case, the enqueued portion in Line 8, i.e., x̂R′qL, lies on ŷLqL, which is an obstacle arc. Note

that the backward P-view of any point on x̂R′qL is on x̂Rp∗ (xR = Head(b), see Fig. 15), which is

reversed due to the flip of b and is an obstacle arc by Observation 1.

In summary, we have: (i) the enqueued portion x̂R′qL in Line 8 is an obstacle arc, and (ii) the

backward P-view points of all points on x̂R′qL lie on x̂Rp∗, which is an obstacle arc reversed due

to the flip of b. Thus, Observation 5 also applies to the enqueue on x̂R′qL in Line 8. Therefore, we

also treat the enqueue as special enqueue and charge them to S.

We have finished the discussion on charging the enqueue operations in Phase II for all cases.

It remains to show |S| = O(n + k). For this, we first give a similar observation on the (possible)

special enqueue operations on ∂L′ with L′ = Ltri(ϕ(b)) for the flip operation on b.

Observation 6 Consider a flip operation on a minimal bitangent b. If an atom A on ∂L′ with

L′ = Ltri(ϕ(b)) is involved in a special enqueue operation (for processing the flip of b), then A is

an obstacle arc and Pfor(A) is an obstacle arc reversed due to the flip of b.

Based on Lemma 7 and Observations 5 and 6, we prove the following lemma.

Lemma 13 The number |S| of all special enqueue operations in Phase II of the entire algorithm

is O(n+ k).

Proof: Consider an arbitrary atom A in a good pseudo-triangulation at a moment ξ0 during the

algorithm (A may have been reversed). First, it is important to note that A can be involved in a spe-

cial enqueue operation only if A is an obstacle arc and the special enqueue operation is for processing

a flip operation on a minimal bitangent b such that A is on ∂T with T ∈ {Rtri(ϕ(b)), Ltri(ϕ(b))}.
In the following, we show that the atom A can be involved in at most two special enqueue opera-

tions before its next reversal (if any). If A is not an obstacle arc, the above statement simply holds.

We assume A is an obstacle arc. We assume that the discussion below is on the time period after

the moment ξ0 and before the next reversal of A (if any), unless otherwise stated.
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If the atom A is not involved in any special enqueue operation in the algorithm later on, then

we are done. Otherwise, suppose at a later moment ξ1 > ξ0, A is involved in a special enqueue

operation for processing the flip of a minimal bitangent t1. Without loss of generality, we assume

that A is on ∂Rtri(ϕ(t1)). Then, by Observation 5, the obstacle arc Pback(A) is reversed due to

the flip of t1. By Lemma 7, Pback(A) cannot be reversed again later in the algorithm.

If A is not involved in any special enqueue operation in the algorithm after the moment ξ1, then

we are done. Otherwise, suppose at a later moment ξ2 > ξ1, A is involved in a special enqueue

operation for processing the flip of a minimal bitangent t2. Because A has not been reversed since

the moment ξ0, as discussed earlier, both Pback(A) and Pfor(A) do not change. Then, A cannot

be on ∂Rtri(ϕ(t2)) since otherwise, by Observation 5, the obstacle arc Pback(A) would be reversed

again due to the flip of t2. Hence, A can only be on ∂Ltri(ϕ(t2)). By Observation 6, the obstacle

arc Pfor(A) is reversed due to the flip of t2. By Lemma 7, Pfor(A) cannot be reversed again later.

Consider any flip operation on a minimal bitangent t3 in the algorithm at any later moment

ξ3 > ξ2. Because A has not been reversed since the moment ξ0, both Pback(A) and Pfor(A) do

not change. No matter whether A is on ∂Rtri(ϕ(t3)) or ∂Ltri(ϕ(t3)), A cannot be involved in any

special enqueue operation for processing the flip of t3, since otherwise, by Observations 5 and 6,

the obstacle arc Pback(A) or Pfor(A) would be reversed again due to the flip of t3.

Therefore, we obtain that A can be involved in at most two special enqueue operations before its

next reversal (if any). By Lemma 7, A can be reversed at most once. We now claim that A can be

involved in at most two special enqueue operations in the entire algorithm. Indeed, if A is involved

in two special enqueue operations before its reversal (if any), then both Pback(A) and Pfor(A) are
reversed before the reversal of A. Note that after A is reversed, Pback(A) and Pfor(A) refer to the

same two obstacle arcs but switch names with each other. Since neither of Pback(A) and Pfor(A)
can be reversed again, the reversed atom A cannot be involved in any special enqueue operation in

the rest of the algorithm. If A is involved in one special enqueue operation before its reversal, then

exactly one of Pback(A) and Pfor(A) is reversed before the reversal of A. After A is reversed, only

one of Pback(A) and Pfor(A) (with their names switched with each other) can possibly be reversed,

and thus in this situation the reversed A can be involved in at most one special enqueue operation

in the rest of the algorithm. Finally, if A has not been involved in any special enqueue operation

before its reversal, then the claim simply holds. Therefore, the claim is true and the atom A can

be involved in at most two special enqueue operations in the entire algorithm.

Since the number of all atoms in the algorithm is O(n+ k), the number of all special enqueue

operations in Phase II of the entire algorithm is O(n+ k), i.e., |S| = O(n+ k). ✷

7 Computing a Shortest Path in the Relevant Visibility Graph

In this section, we compute a shortest path from s to t in G, which is the relevant visibility graph

of the O(h) pairwise disjoint convex splinegons in S ′ with a total of O(n) vertices. Recall that k is

the number of the free common tangents of all splinegons in S ′. For convenience, we assume that

the number of convex splinegons in S ′ is h and the total number of splinegon vertices is n. Let

S ′ = {S1, S2, . . . , Sh}.
To find a shortest path from s to t in the graph G, since G has O(k) nodes and O(k) edges,

simply running Dijkstra’s algorithm on G would take O(k log k) time. To avoid the log k factor, we

transform G to a coalesced graph Gc such that: (1) Gc has only O(h) nodes and O(k) edges; (2) a

shortest s-t path in G corresponds to a shortest s-t path in Gc, which can be found in O(h log h+k)

time. This approach is quite similar to that in [7] for computing a shortest s-t path among n convex

38



pseudodisks of O(1) complexity each. In general, the approach in [7] relies only on the convexity

of the objects involved and thus is applicable to our problem setting. Note that the idea of using

a coalesced graph was first proposed by Hershberger and Guibas [22], but the definition of the

coalesced graph and its construction in [7] are both different from those in [22]. We extend the

method in [7] to solving our problem in the splinegon setting.

As the approach in [7], a key to our algorithm is to compute a set of O(h) “distinguished points”

on the boundaries of the splinegons in S ′, which are then used to construct Gc. By a proof similar

to that in [7], a set of O(h) distinguished points can be obtained easily once the Voronoi diagram

of the convex splinegons in S ′ is available. Denote by VD(S ′) the Voronoi diagram of the h convex

splinegons in S ′. The next lemma follows from the results in [7].

Lemma 14 [7] After the Voronoi diagram VD(S ′) is built, the coalesced graph Gc with O(h) nodes

and O(k) edges can be constructed in O(n+ k + h log h) time.

It remains to describe how to compute VD(S ′). In Section 7.1, we will show that VD(S ′) can
be computed in O(n+h log h) time and O(n) space, which is optimal. Thus, we have the following

result.

Theorem 2 A shortest s-t path for the convex SPSD can be found in O(n + h log h + k) time,

where k = O(h2) is the number of free common tangents among the convex splinegons of S ′.

Recently, Chen et al. [5] have shown the following result: Suppose we can prove that a distin-

guished point set P with |P | = O(h) exists; then another distinguished point set P ′ with |P ′| = O(h)

can be found by a simple greedy algorithm in O(n + k) time. Since it is proved that such a set P

exists [7], we can use the algorithm in [5] to compute another set P ′ without computing the Voronoi

diagram VD(S ′). In this way, the coalesced graph Gc can still be constructed in O(n+ k+ h log h)

time by using the distinguished points in P ′. However, since computing VD(S ′) itself is an inter-

esting problem, we choose to present our optimal solution for it in Section 7.1.

7.1 The Voronoi Diagram of Convex Splinegons

In this section, we compute the Voronoi diagram VD(S ′) for a set S ′ of h pairwise disjoint convex

splinegons of totally n vertices. To our best knowledge, no efficient algorithm was given previously

for it. By extending Fortune’s sweeping algorithm [19], one may obtain an O(n+h log h log n) time

solution for it. For the convex polygon case (i.e., all splinegons in S ′ are convex polygons), VD(S ′)
can be computed in O(n + h log h) time [34]. We show that by generalizing the algorithm in [34],

VD(S ′) for the convex splinegon case can also be computed in O(n + h log h) time (as in [34], we

assume that the edges of each input splinegon are represented as a cyclically ordered list). Note

that since the combinatorial complexity of each splinegon edge is O(1), we assume the bisector of

any two splinegon edges can be computed in constant time.

In fact, as in [34], we achieve a stronger result: The compact diagram (to be defined below) of

the convex splinegons in S ′ can be computed in O(h log n) time, from which VD(S ′) can be derived

in additional O(n) time. Note that h log n = O(n + h log h). As in [34] and to be discussed later,

the compact diagram has several advantages over the “normal” Voronoi diagram.

We first formally define the compact diagram of S ′, denoted by CD(S ′). We follow the termi-

nology in [34]. Consider a convex splinegon S ∈ S ′, which is contained in a Voronoi cell of VD(S ′),
say CS. For each Voronoi vertex v on the boundary of CS , we draw a line segment from v to

its closest point, say pv, on S. The segment vpv is called the spoke from v to S and the point
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Figure 21: Illustrating the compact diagram of a set of convex splinegons: The black polygons are the cores of the
splinegons. The Voronoi diagram of the splinegons is shown with dashed curves.

pv is called the spoke attachment point. If the cell CS is unbounded, then there is a point on ∂S

whose normal does not intersect the cell boundary; we view this normal as a spoke from an infinite

Voronoi vertex to S. The core of S is the convex hull of all spoke attachment points on S. The

compact diagram CD(S ′) is the union of all spokes and cores of the splinegons in S ′ (see Fig. 21).

Theorem 3 gives the algorithm for computing CD(S ′).
Besides its efficient construction, the compact diagram has several advantages over the Voronoi

diagram. Note that while the Voronoi diagram VD(S ′) may have O(n) high degree (but still

constant) algebraic curves (whose shapes depend on the boundaries of the convex splinegons of

S ′), the compact diagram CD(S ′) consists of only O(h) line segments. This feature makes the

compact diagram easier and more efficient to display and represent. In addition, for applications

in which knowing only two candidates for the closest splinegons is sufficient, the original splinegons

can be discarded and only the O(h) segments of CD(S ′) need to be stored, using O(h) instead of

O(n) space. In [34], two applications of the compact diagram were discussed, i.e., the post-office

problem and the retraction motion planning problem, in which the sites were modeled as convex

polygons. With our results, if the sites are modeled as convex splinegons, then the corresponding

post-office problem and the retraction motion planning problem can be handled similarly with the

same performance as in [34]. Our results may also find other applications.

Theorem 3 The compact diagram CD(S ′) of the convex splinegons in S ′ can be computed in

O(h log n) time, from which the Voronoi diagram VD(S ′) can be derived in additional O(n) time.

Proof: We first focus on computing CD(S ′). For this, we generalize the corresponding algorithm

in [34]. Given a set P of h pairwise disjoint convex polygons of totally n vertices (each polygon is

represented in a standard fashion), McAllister, Kirkpatrick, and Snoeyink gave an algorithm [34]

for computing the compact diagram of the convex polygons of P in O(h log n) time. We refer to

their algorithm as the MKS algorithm. We first sketch the MKS algorithm and then discuss our

generalization of it on the convex splinegon set S ′.
Like Fortune’s approach [19], the MKS algorithm is a sweeping algorithm, sweeping the convex

polygons of P from (say) left to right. As in Fortune’s algorithm, the Voronoi cell boundary

maintained by the sweepline is called the sweep front or beach line, which consists of Voronoi

edges between the sweepline and some polygons. A maximal connected portion of the sweep front

between the sweepline and a single polygon is called a front arc. There are two types of events

in the sweeping process. A site event occurs when the sweepline reaches the leftmost point of a

polygon. A circle event occurs when the sweepline reaches the rightmost point of a circle that is

tangent to three polygons of some consecutive front arcs on the sweep front. Clearly, there are O(h)
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site events and O(h) circle events. The MKS algorithm focuses on computing the vertices of the

Voronoi diagram as well as identifying the polygons that generate those Voronoi vertices. Two data

structures are maintained by the sweeping algorithm: A balanced binary search tree that stores

the sweep front and a priority queue that schedules the events in the order that the sweepline will

encounter them.

Generalizing Fortune’s algorithm in a straightforward manner would take O(h log h log n) time

since every site event is processed in O(log h log n) time. Specifically, at each site event, the

sweepline is at the leftmost point, say p, of a polygon, and it needs to determine the front arc on

the sweep front that is closest to p. A straightforward processing of this task takes O(log h log n)

time. Based on a critical observation [34], the MKS algorithm handles each site event in O(log n)

time. This observation states that the sweepline can be partitioned into disjoint intervals such that

finding the nearest front arc to the point p is equivalent to locating in which interval the point p lies,

which can be carried out in O(log n) time. Two subroutines heavily used in the MKS algorithm are

spoke(p,A) and vertex(A,B,C). Given a convex polygon A and a point p outside A, spoke(p,A)

returns the closest point on A to p, which can be implemented in O(log n) time by binary search.

The subroutine vertex(A,B,C) takes three convex polygons A,B, and C as input and computes a

finite or an infinite Voronoi vertex v such that the Voronoi cells for the polygons A, B, and C occur

in a counterclockwise order around v. An advanced technique developed in [33], called tentative

prune-and-search, is used to implement vertex(A,B,C) in O(log n) time.

A generalization of the MKS algorithm to computing CD(S ′) for our convex splinegon set S ′
turns out to be quite natural. First, for each convex splinegon S of S ′, we consider its leftmost

and rightmost points as two new vertices of S, which may partition at most two splinegon edges

of S into two new edges each. This step can be done in O(h log n) time by binary search on each

splinegon in S ′. After this step, for each splinegon edge of the splinegons in S ′, any vertical line

can intersect it at most once. Next, we sweep the splinegons of S ′ from left to right. We define the

site events and circle events similarly as in the MKS algorithm. Clearly, there are still O(h) site

events and O(h) circle events. We also maintain the two data structures for storing the sweep front

and for scheduling the events. Essentially, the MKS algorithm relies on the convexity of the objects

involved. Since the splinegons in S ′ are convex, the scheme of the MKS algorithm is still applicable.

For example, the critical observation used by the MKS algorithm for handling site events is based

on the convexity of the polygons. In our problem, at each site event, the sweepline is at the leftmost

point, say p, of a convex splinegon. To determine the nearest front arc on the sweep front that is

closest to p, by following the same approach as for the MKS algorithm, we can also partition the

sweepline into disjoint intervals such that finding the nearest front arc to the point p is equivalent

to locating in which interval the point p lies.

For the implementation details and the running time of our compact diagram algorithm, in

general, since each splinegon edge is of O(1) complexity, the operations on splinegons edges needed

in the algorithm can be performed in the same order of time asymptotically as those on poly-

gon edges in the MKS algorithm. Obviously, the subroutine spoke(p,A) can be implemented in

O(log n) time by a binary search. For the subroutine vertex(A,B,C), the tentative prune-and-

search technique [33] is also applicable to our problem. Specifically, this technique defines three

continuous, monotone-decreasing functions that rely only on the convexity of the objects involved.

In our problem, since all splinegons are convex, we can define three such functions in exactly the

same way as those for convex polygons in the MKS algorithm. One basic operation needed in our

algorithm is: For any point p on the boundary of a convex splinegon Si ∈ S ′, compute the normal

of Si at p. Since each splinegon edge is of O(1) complexity, this operation takes O(1) time, as
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in the convex polygon case. Other operations can also be performed in the same order of time

as their counterparts in the convex polygon case. We omit the details. Therefore, the subroutine

vertex(A,B,C) can be implemented in O(log n) time.

We conclude that the compact diagram CD(S ′) can be computed in O(h log n) time.

Since each splinegon edge is of O(1) complexity, as in [34], the Voronoi diagram VD(S ′) can be

derived from CD(S ′) in an additional O(n) time. The theorem thus follows. ✷

8 Wrapping Things Up

We now show how to find a shortest s-t path for our original SPSD problem on the splinegon set

S. In Section 4, we build a corridor structure to obtain O(h) corridor paths and a set S ′ of O(h)

pairwise disjoint convex splinegons with a total of O(n) vertices such that a shortest s-t path for

SPSD is also a shortest s-t path avoiding the convex splinegons in S ′ and possibly utilizing some

corridor paths. In Section 7, based on S ′, we construct a coalesced graph Gc such that: (1) Gc

has only O(h) nodes and O(k) edges; (2) a shortest s-t path avoiding the convex splinegons in S ′
corresponds to a shortest s-t path in Gc.

To compute a shortest s-t path for our original SPSD problem, our final step is to incorporate

the O(h) corridor paths into the graph Gc to obtain a new graph Gc
a such that a shortest s-t path

for SPSD corresponds to a shortest s-t path in Gc
a, as follows.

Recall that a corridor path connects the two apices of two funnels. When buildingGc, in addition

to other distinguished points, we also treat all the O(h) funnel apices as distinguished points. In this

way, every funnel apex defines two vertices in Gc since every distinguished point defines two vertices

in Gc (refer to [7] on this). Consider a corridor path connecting two funnel apices u and v. Suppose

the two vertices in Gc defined by u (resp., v) are u1 and u2 (resp., v1 and v2). After obtaining Gc,

we add to Gc eight directed edges e(u1, v1), e(u1, v2), e(u2, v1), e(u2, v2), e(v1, u1), e(v1, u2), e(v2, u1),

and e(v2, u2), whose weights are the length of the corresponding corridor path. We do this for each

corridor path, and then obtain the graph Gc
a. Since there are O(h) corridor paths, the graph Gc

a,

which still has O(h) nodes and O(k) edges, can be constructed in O(n+h log h+k) time. A shortest

s-t path for SPSD can then be computed by running Dijkstra’s algorithm on Gc
a, in O(h log h+ k)

time.

In summary, we have the following result.

Theorem 4 Given a set S of h pairwise disjoint splinegons with a total of n vertices in the plane,

a shortest s-t path in the free space can be computed in O(n log n+ k) time or O(n+h log1+ǫ h+ k)

time for any arbitrarily small constant ǫ > 0, where k is the size of the relevant visibility graph and

k = O(h2).

9 Conclusions

In this paper, we present an efficient algorithm for computing shortest paths among curved obstacles

in the plane. For curved obstacles, previous solutions were known only for convex curved obstacles

while our approach works for non-convex curved obstacles. Even if applied to polygonal obstacles,

our algorithm is faster than the previous best O(n log n) time solution [23] when the number of

obstacles is small (e.g., h = o(
√
n log n)). As a subproblem that is interesting in its own right,

we give an output sensitive optimal O(n + h log h + k) time algorithm for computing the relevant
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visibility graph of convex curved obstacles; even if applied to convex polygonal obstacles, our

algorithm is better than the previous best O(n+ h2 log n) time solution [29, 40].

It would be interesting to see whether the techniques developed in this paper can be used to

solve other related problems on curved objects.
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