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Abstract. Highly connected and yet sparse graphs (such as expanders or graphs of high
treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We
initiate the study of such highly connected graphs that are, in addition, geometric spanners. We
define a property of spanners called robustness. Informally, when one removes a few vertices from
a robust spanner, this harms only a small number of other vertices. We show that robust spanners
must have a superlinear number of edges, even in one dimension. On the positive side, we give
constructions, for any dimension, of robust spanners with a near-linear number of edges.
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1. Introduction. The cost of building a network, such as a computer network
or a network of roads, is closely related to the number of edges in the underlying
graph that models this network. This gives rise to the requirement that this graph be
sparse. However, sparseness typically has to be counter-balanced with other desirable
graph (that is, network design) properties such as reliability and efficiency.

The classical notion of graph connectivity provides some guarantee of reliability.
In particular, an r-connected graph remains connected as long as fewer than r vertices
are removed. However these graphs are not sparse for large values of r; an r-connected
graph with n vertices has at least rn/2 edges.

For many applications, disconnecting a small number of nodes from the network
is an inconvenience for the nodes that are disconnected, but has little effect on the
rest of the network. In contrast, disconnecting a large part (say, a constant fraction)
of the network from the rest is catastrophic. For example, it may be tolerable that the
failure of one network component cuts off internet access for the residents of a small
village. However, the failure of a single component that eliminates all communications
between North America and Europe would be disastrous.

This global notion of connectivity is captured in graph theory by expanders and
graphs of high treewidth, each of which can have a linear number of edges. These
two properties of graphs have an enormous number of applications and have been the
subject of intensive research for decades. See, for example, the book by Kloks [30] or
the surveys by Bodlaender [11, 12] on treewidth and the survey by Hoory, Linial, and
Wigderson [27] on expanders.

In this paper, we consider how to combine this global notion of connectivity with
another desirable property of geometric graphs: low spanning ratio (a.k.a., low stretch
factor or low dilation), the property of approximately preserving Euclidean distances
between vertices. In particular, given a set of n points in Rd, we study the problem
of constructing a graph on these points where the weights of the edges are given by
the Euclidean distance between their endpoints. We wish to construct a graph such
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that
1. The graph is sparse: the graph has o(n2) edges
2. The graph is a spanner: (weighted) shortest paths in the graph do not exceed

the Euclidean distance between their endpoints by more than a constant
factor; and

3. The graph has high global connectivity: removing a small number of vertices
leaves a graph in which a set of vertices of size n − o(n) are all in the same
component and all vertices in this set have spanning paths between them.

This is the first paper to consider combining low spanning ratio with high global
connectivity. This is somewhat surprising, since many variations on sparse geometric
spanners have been studied, including spanners of low degree [6, 19, 36], spanners of
low weight [14, 24, 26], spanners of low diameter [8, 9], planar spanners [5, 21, 23, 29],
spanners of low chromatic number [13], fault-tolerant spanners [2, 22, 31, 32], low-
power spanners [4, 34, 37], kinetic spanners [1, 3], angle-constrained spanners [20], and
combinations of these [7, 10, 15, 16, 17, 18]. The closest related work is that on fault-
tolerant spanners [2, 22, 31, 32], but r-fault-tolerance is analogous to the traditional
definition of r-connectivity in graph theory and suffers the same shortcoming: every
r-fault-tolerant spanner has Ω(rn) edges.

In the next few subsections, we formally define robust spanners and discuss, at a
more rigorous level, the relationship between robust-spanners, fault-tolerant spanners,
and expanders. From this point onwards, all graphs we discuss have vertices that are
points in Rd; n refers to the number points/vertices; all distances between pairs of
points are Euclidean distances; and any shortest path in a graph refers to the shortest
(Euclidean) path that uses only edges of the graph.

1.1. Robustness. Let V ⊂ Rd be a set of n points in Rd. An undirected graph
G = (V,E) is a (geometric) t-spanner of V − ⊆ V if, for every pair x, y ∈ V −,

‖xy‖G
‖xy‖ ≤ t ,

where ‖xy‖ denotes the Euclidean distance between x and y and ‖xy‖G denotes the
length of the Euclidean shortest path from x to y that uses only edges in G. Here we
use the convention that ‖xy‖G = ∞ if there is no path, in G, from x to y. We say
simply that G is a t-spanner if it is a t-spanner of V (i.e., V − = V ). We point out
that, although t is always at least 1, it need not be an integer.

Geometric t-spanners have been studied extensively and have applications in
robotics, graph theory, data structures, wireless networks, and network design. A
book [33] and handbook chapter [25] provide extensive discussions of geometric t-
spanners and their applications.

For a graph G = (V,E) and a subset S ⊆ V of G’s vertices, we denote by G \ S
the subgraph of G induced by V \ S. A graph G is an f(k)-robust t-spanner of V
if, for every subset S ⊆ V , there exists a superset S+ ⊇ S, |S+| ≤ f(|S|), such that
G \ S is a t-spanner of V \ S+.

An example is shown in Figure 1.1 which suggests that the
√
n×√n grid graph

is an O(k2)-robust 3-spanner. The set S+ in this example is obtained by choosing
“disjoint” squares that cover the vertices of S and adding to S+ any vertices contained
in these squares. A short path between any two vertices in V \ S+ is obtained by
starting with some shortest path in G between these two vertices and then routing
around any of the square holes encountered by this path. (A proof that the grid graph
is indeed an O(k2)-robust 3-spanner is sketched in Section 4.)
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Fig. 1.1. From the set S (whose elements are denoted by •) we find a superset S+ (whose
elements are denoted by × and •) so that G\S is a 3-spanner of G\S+ (whose vertices are denoted
by ◦).

One can think of an f(k)-robust t-spanner in terms of network reliability. If a
network is an f(k)-robust t-spanner, and k nodes of the network fail, then the network
remains a t-spanner of n− f(k) of its nodes. Intuitively, most of the network survives
the removal of k nodes, provided that k is small enough that f(k)� n.

A slightly stronger version of robustness, which is achieved by some of our con-
structions, requires that G \ S+ induces a spanner. Under this definition, the graph
G \ S+ must be a t-spanner of V \ S+. For example, the grid graph in Figure 1.1
satisfies this stronger definition since the vertices inside the squares are not used in the
short paths between vertices outside the squares. In some applications, this stronger
definition may be preferable since the nodes in S+, which no longer gain the full ben-
efits of the network G, are not required to help with the routing of messages between
nodes of V \ S+. (An open problem related to this stronger definition of robustness
is discussed in Section 4.)

1.2. Robustness versus Fault-Tolerance. Robustness is related to, but dif-
ferent from, r-fault tolerance. An r-fault-tolerant t-spanner, G = (V,E), has the
property that G \S is a t-spanner of V \S for any subset S ⊆ V of size at most r. In
our terminology, an r-fault tolerant spanner is f(k)-robust with

f(k) =

{
k for k ≤ r
∞ for k > r.

At a minimum, an r-fault-tolerant spanner must remain connected after the re-
moval of any r vertices. This immediately implies that any r-fault-tolerant spanner
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n−r−1
2

n−r−1
2

r + 1

...

Fig. 1.2. In an r-fault-tolerant spanner, removing r + 1 vertices may disconnect the graph in
such a way that no component has size greater than n/2.

with n > r vertices has at least (r+ 1)n/2 edges, since every vertex must have degree
at least r + 1. Several constructions of r-fault-tolerant spanners with O(rn) edges
exist [22, 31, 32].

In contrast, surprisingly sparse f(k)-robust t-spanners exist. For example, we
show that for one-dimensional point sets, there exists O(k log k)-robust 1-spanners
with O(n log n) edges; the removal of any set of o(n/ log n) vertices leaves a subgraph
of size n−o(n) that is a 1-spanner. An r-fault-tolerant spanner with r = n/ log n also
has this property, but all such graphs have Ω(n2/ log n) edges.

We suggest that in many applications where an r-fault-tolerant spanner is used,
an f(k)-robust spanner may be a better choice. For example, one might build an
r-fault-tolerant spanner so that a network survives up to r faults, perhaps because
more than r faults is viewed as unlikely. Using an f(k)-robust spanner instead means
that, if r′ ≤ r faults do occur, then an additional f(r′) − r′ nodes suffer, but the
remaining n − f(r′) nodes are unaffected. In one case, the network loses r′ nodes
while in the other case f(r′) nodes are affected. For slow-growing functions f this
may be perfectly acceptable.

The use of an f(k)-robust spanner in place of an r-fault-tolerant spanner has
the additional advantage that the maximum number of faults need not be known in
advance. In the unlikely event that r′ > r faults occur, the network continues to
remain usable. In particular, after r′ > r faults, the usable network has size at least
n − f(r′). In contrast, even with r′ = r + 1 faults, an r-fault-tolerant spanner may
have no component of size larger than n/2; see Figure 1.2 for an example.

1.3. Robustness and Magnification. A function h is called a magnification
(or vertex-expansion) function [28, Page 390], for the graph G = (V,E) if, for all
S ⊆ V ,

|N(S)| ≥ h(|S|) ,

where N(S) denotes the set of vertices in V \S that are adjacent to vertices in S. Of
particular interest are graphs that have a magnification function h(x) = cx, for fixed
c > 1, and all x ∈ {1, . . . , |V |/2}. Such graphs are called vertex expanders, and have
a long history and an enormous number of applications [27].

If G is f(k)-robust, then there exists a magnification function, h, for G that
satisfies h(x) ≥ k, for all x > f(k)−k and every k ∈ {1, . . . , bmax{k′ : f(k′) ≤ n/2}c};
see Figure 1.3. This can be proven by contradiction: If h(x) must be less than k for
some x > f(k)−k, then there exists a set S′′ of size x > f(k)−k such that |N(S′′)| < k.
Taking S = N(S′′) ∪ {x1, . . . , xk−|N(S′′)|}, where each xi is chosen arbitrarily from
V \N(S′′) yields a set, S, of size k, such that G \S, has no component of size greater
than n− x < n− f(k).
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S′′

k

x > f(k)− k n− x− k < n− f(k)

S

G \ (S ∪ S′′)

Fig. 1.3. If G does not have a magnification function, h, with h(x) ≥ k, for all x > f(k)− k,
then G is not f(k)-robust.

If we think of f(k) as a continuous increasing function (and hence invertible)
then the above argument says that any f(k)-robust spanner with n vertices has a
magnification function h(x) such that h(x) ∈ Ω(min{n − x, f−1(x)}). This implies,
for example, that the smallest separator in an f(k)-robust spanner with n vertices
has size Ω(f−1(n/2)).

Unfortunately, achieving f(k)-robustness is considerably more difficult than just
obtaining a magnification function of the preceding form; there exist vertex expanders
with a linear number of edges [27], so they have magnification functions of the form
h(x) = cx, with fixed c > 1. However, these graphs can not be f(k)-robust since, in
Theorem 4, we show that f(k)-robust spanners have a superlinear number of edges,
for any function f(k).

1.4. Overview of Results. In this paper, we prove upper and lower bounds
on the size (number of edges) needed to achieve f(k)-robustness. These bounds are
expressed as a dependence on the function f(k). In particular, the number of edges
depends on the function f∗(n), which is the maximum number of times one can iterate
the function f on an initial input k0 before exceeding n. As a concrete example, if
f(k) = 2k, then f∗(n) = blog2 nc (with the initial input k0 = 1).

Our most general lower-bound, Theorem 4, states that, for any constant, t >
1, there exists one-dimensional point sets of size n for which any f(k)-robust t-
spanner has size Ω(nf∗(n)). For one-dimensional point sets, we can almost match
this lower-bound: Theorem 2 states that any one-dimensional point set of size n has
an O(f(k)f∗(k))-robust 1-spanner of size O(nf∗(n)). Furthermore, if f(k) is suffi-
ciently fast-growing, this construction is O(f(k))-robust, and hence has optimal size.
For point sets in dimension d > 1, our upper and lower bounds diverge by a factor
of k. Theorem 5 shows that, for any set of n points in Rd and any fixed t > 1, there
exists an O(kf(k))-robust t-spanner of size O(nf∗(n)).

As a concrete example, we can consider a function f(k) ∈ O(k2). Removing
any set S of vertices from a n vertex O(k2)-robust t-spanner leaves a set of at least
n − O(|S|2) vertices which continue to have t-spanning paths between them. Our
results show that, in one dimension, O(k2)-robust spanners can be constructed that
have O(n log log n) edges and this is optimal. In two and higher dimensions, O(k2)-
robust spanners can be constructed that have O(n log n) edges.

The remainder of the paper is organized as follows: Section 2 gives results for
1-dimensional point sets, Section 3 gives results for d-dimensional point sets, and
Section 4 summarizes and concludes with directions for further research.
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xr

Fig. 2.1. The graph G′

xr

Fig. 2.2. Constructing the set S+ (whose elements are denoted by × and •) from the set S
(whose elements are denoted by •).

2. One-Dimensional Point Sets. In this section, we consider constructions
of robust t-spanners for 1-dimensional point sets. Throughout this section V =
{x1, . . . , xn} is a set of real numbers with x1 < x2 < · · · < xn. We begin by giv-
ing a construction of an O(k log k)-robust 1-spanner having O(n log n) edges. This
construction contains most of the ideas needed for the construction of O(f(k))-robust
1-spanners for more general f .

2.1. An O(k log k)-robust spanner with O(n log n) edges. We now consider
the following graph, G2× = (V,E) which is closely related to the hypercube. The
edge set, E, of G2× consists of

E = {xixi+2j : j ∈ {0, . . . , blog nc}, i ∈ {1, . . . , n− 2j}} .

Notice that G2× is a 1-spanner since it contains every edge of the form xixi+1, for
i ∈ {1, . . . , n−1}. Furthermore, G2× has size O(n log n) since every vertex has degree
at most 2blog nc + 2. We now prove an upper-bound on the robustness of G2× by
using the probabilistic method.
Theorem 1. Let V ⊂ R be any set of n real numbers. Then there exists an O(k log k)-
robust 1-spanner of V of size O(n log n).

Proof. Let S be any non-empty subset of V and let k = |S|. Select a random integer
r ∈ {0, 1, 2, 3, . . . , 2dlog ne − 1} and consider the subgraph, G′, of G2× consisting only
of the edges of the form xixi+2j where i−r ≡ 0 (mod 2j). One can think of the edges
of G′ as a set O(log n) monotone paths that all contain xr; one of these paths contains
every vertex in V , another contains every second vertex, yet another contains every
fourth vertex, and so on. (For readers with a background in data structures, G′ looks
a lot like a perfect skiplist in which xr appears at the top level; see Figure 2.1.)

For a vertex xi ∈ S, let j = j(i) be the largest integer such that i−r is a multiple
of 2j . Then we say that xi kills the vertices xi−2j+1, . . . , xi+2j−1 in G′; see Figure 2.2.
When this happens, the cost of xi is c(xi) = 2j+1− 1, which is the number of vertices
killed by xi. Observe that, unless i < 2j or i > n−2j , G′ contains the edge xi−2jxi+2j

that “jumps over” all the vertices killed by xi. Therefore, if we define S+ to be the
set of all vertices killed by vertices in S, then G′ \ S (and hence also G2× \ S) is a
1-spanner of V \ S+; it contains a path that visits all vertices of V \ S+ in order.
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We say that a vertex x ∈ S is cheap if c(x) < 4k and expensive otherwise. We
call our choice of r a failure if

1. A: some vertex of S is expensive; or
2. B: the total cost of all cheap vertices exceeds 4k log k + 12k

We declare our choice of r a success if neither A nor B holds. Observe that, in the case
of a success, we obtain a set S+, |S+| ∈ O(k log k), such that G2× \ S is a 1-spanner
of V \ S+. Therefore, all that remains is to show that the probability of success is
greater than 0.

We first note that the probability any particular xi ∈ S is expensive is at most
1/4k. This is because xi is expensive if and only if (i− r) ≡ 0 (mod 2dlog(4k)e). The
probability of selecting r with this property is only 1/2dlog(4k)e ≤ 1/4k. Therefore, by
the union bound,

Pr{A} ≤ k/4k = 1/4 .

To upper-bound the total expected cost of cheap vertices, we note that, if xi ∈ S
kills 2j+1 − 1 vertices, then i− r ≡ 0 (mod 2j). The probability that this happens is
1/2j . Letting Sc denote the set of cheap vertices in S, the total expected cost of all
cheap vertices is at most

E

[∑
x∈Sc

c(x)

]
≤ E

[∑
x∈S

min{2blog 4kc, c(x)}
]

≤ k
blog(4k)c∑

j=0

(2j+1 − 1)/2j

≤ k
blog(4k)c∑

j=0

2

≤ 2k log k + 6k .

Therefore, by Markov’s Inequality, Pr{B} ≤ 1/2. By the union bound

Pr{A or B} ≤ 1/4 + 1/2 < 1 .

2.2. A General Construction. Let k0 ≥ 1 be a constant and let f : R → R
be any function that is convex, increasing over the interval [k0,∞), and such that
f(k0 + 1)−f(k0) > 1. Let f i(k) be the function f iterated i times on the initial value
k, i.e.,

f i(k) = f(f(f(· · · f︸ ︷︷ ︸
i

(k) · · · ))) .

We use the convention that f0(x) = k0 for all x. We define the iterated f -inverse
function

f∗(n) = max{i : f i(k0) ≤ n} .

Notice that, for any k > k0, there exists i such that

f i(k0) < k ≤ f(f i(k0)) .



8 P. BOSE, V. DUJMOVIĆ, P. MORIN, AND M. SMID

Vf j(k0)W

Vf j−1(k0)W

xixi−p xi+q

. . . . . .

Fig. 2.3. The vertices killed by xi.

In particular, the sequence k0, f(k0), f2(k0), . . . , contains a value f i+1(k0) such that

k ≤ f i+1(k0) < f(k) .

Another important property is that, since f(k) is increasing, convex, and f(k0 + 1)−
f(k0) > 1, the function f(x)/x is non-decreasing for x ≥ k0: For every δ ≥ 0, and
every x ≥ k0, f(x+ δ)/(x+ δ) ≥ f(x)/x.

For a positive number x, we define VxW = 2dlog xe, as the smallest power of 2
greater than or equal to x. From the function, f , we define the graph Gf = (V,Ef )
to have the edge set:

Ef = {xixi+1 : i ∈ {1, . . . , n− 1}}
∪
{
xixi+Vfj(k0)W : j ∈ {0, . . . , f∗(n)}, i ∈ {1, . . . , n− Vf j(k0)W}

}
The graph Gf clearly has O(nf∗(n)) edges. The following theorem shows that this
graph is a robust spanner:
Theorem 2. Let f , f∗, k0, and Gf be defined as above. Then the graph Gf has
O(nf∗(n)) edges and is

1. an O(f(4k)f∗(k))-robust 1-spanner; and

2. an O(f(4k))-robust 1-spanner if f(k) ∈ k2Ω(
√

log k).

Proof. The proof is very similar to the proof of Theorem 1. Let S be any non-empty
subset of V and let k = |S|. Select a random integer r from the set {0, 1, 2, 3, . . . ,Vff∗(n)+1(k0)W−
1}. We consider the subgraph G′ of Gf that contains only the edges xixi+` where
i− r ≡ 0 (mod `). We say that an edge xixi+` has span `.

For an integer i, let j = j(i) be the smallest integer such that i − r 6≡ 0
(mod Vf j(k0)W); see Figure 2.3. Informally, if G′ has any edge that jumps over xi,
then it has an edge of span Vf j(k0)W that jumps over xi. Then we say that xi kills
xi−p+1, . . . , xi+q−1 where

p =
(
(i− r) mod Vf j(k0)W

)
and

q =
(
(i− r) mod Vf j(k0)W

)
.

As before, we define S+ to be the set of all vertices killed by vertices in S. It is
easy to verify, since all edges have spans that are powers of 2, that the graph G′ \S+

(and hence also Gf \S) contains a path that visits all the vertices of V \S+ in order.
Therefore, Gf \ S is a 1-spanner of V \ S+.

What remains is to show that, with some positive probability, S+ is sufficiently
small to satisfy the appropriate condition, 1 or 2, of the theorem. Define c(xi) as the
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number of vertices killed by xi. We say that xi is expensive if c(xi) > f(4k) and cheap
otherwise. If xi is expensive, then f j(i)−1(k0) ≥ 4k and i−r ≡ 0 (mod Vf j(i)−1(k0)W).
Therefore, the probability that xi is expensive is at most 1/f j(i)−1(k0) ≤ 1/4k. There-
fore, by the union bound, the probability that S contains some expensive vertex is
at most 1/4. All that remains is to bound the expected cost of all cheap vertices.
Letting Sc denote the set of cheap vertices in S, we obtain

E

[∑
x∈Sc

c(x)

]
≤ k

f∗(4k)∑
j=0

Vf j+1(k0)W/Vf j(k0)W

≤ 2k

f∗(4k)∑
j=0

f j+1(k0)/f j(k0)

= 2k

f∗(4k)∑
j=0

f(f j(k0))/f j(k0)

≤ 2k

f∗(4k)∑
j=0

f(4k)/4k (since f(x)/x is non-decreasing)

≤ (1/2)(f(4k)(f∗(4k) + 1) .

Again, Markov’s Inequality implies that the probability that the total cost of all cheap
vertices exceeds f(4k)(f∗(4k)+1) is at most 1/2. Therefore, the probability of finding
a set S+ of size at most f(4k)(f∗(4k) + 1) is at least

1− 1/2− 1/4 > 0

which proves the existence of such a set S+.
To prove the second part of the theorem, we proceed exactly the same way,

except that the sequence f j+1(k0)/f j(k0), j = 0, 1, 2, . . ., becomes geometric,1 so it
is dominated by its last term. This yields:

E

[∑
x∈Sc

c(x)

]
≤ k

f∗(4k)∑
j=0

Vf j+1(k0)W/Vf j(k0)W

≤ 2k

f∗(4k)∑
j=0

f j+1(k0)/f j(k0)

≤ 2ck

(
f(ff

∗(4k)(k0))

ff∗(4k)(k0)

)
(for some c, since the sum is geometric)

≤ 2ck

(
f(4k)

4k

)
(since f(x)/x is non-decreasing)

≤ (c/2)f(4k) ,

as required.

1This is most easily seen by taking f(k) = kδ2
√

(log k)/(log δ)+1. Then it is straightforward

to verify that fj(δ) = δ(j+1)2 , so that fj+1(δ)/fj(δ) = δ2j+3, so the sequence is exponentially
increasing. Taking δ = 1 + ε for a sufficiently small ε > 0 allows us to lower-bound any function

f(k) ∈ k2Ω(
√

log k) this way.
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i− k/4 i+ k/4ii− ck i+ ck
. . .

u w

Fig. 2.4. After removing S (denoted by •), there are still two vertices u,w ∈ V \ S+ such that
‖uw‖ ≤ 2ck but ‖uw‖G\S > 2ctk.

Applying Theorem 2 with different functions f(k) yields the following results.
Corollary 1. For any set V of n real numbers, and any constant ε > 0, there exist
f(k)-robust 1-spanners G = (V,E) with

1. f(k) ∈ O(k log k) and O(n log n) edges;

2. f(k) ∈ O(k(1 + ε)
√

log k) and O(n
√

log n) edges; and
3. f(k) ∈ O(k1+ε) and O(n log log n) edges.

2.3. Lower Bounds. In this section, we give lower-bounds on the number of
edges in f(k)-robust t-spanners. These lower-bounds hold already for a specific 1-
dimensional point set (the 1× n grid), therefore they apply to all dimensions d ≥ 1.

2.3.1. A Lower Bound for Linear Robustness. We begin by focusing on
the hardest case, f(k) ∈ O(k).
Theorem 3. Let V = {1, . . . , n} and let t ≥ 1 be a constant. Then any O(k)-robust
t-spanner of V has Ω(n log n) edges.

Proof. To simplify the following discussion, we will assume that G = (V,E) is a ck-
robust t-spanner. Note that we have gone from O(k)-robust in the statement of the
theorem to ck-robust in the proof. This does not cause a problem so long as we only
consider values of k greater than some constant k0 hidden in the O notation.

We claim that for every natural number k divisible by 4 and every i ∈ {ck +
1, . . . , n−ck−1}, G has at least k/2 good edges, xy, such that x < i−k/4 < i+k/4 < y
and such that y − x ≤ 2ctk.

To see why the preceding claim is true, consider the set S that contains {i −
k/4, . . . , i+ k/4} as well as the left endpoint of each good edge (see Figure 2.4). The
set S has size at most k and, in G \ S, the only edges xy with x < i and y > i have
length greater than 2ctk. Now consider any S+ ⊇ S, with |S+| ≤ ck. Since |S+| ≤ ck
there is at least one element u ∈ {i− ck, . . . , i− 1} that is not in S+ and at least one
element w ∈ {i+ 1, . . . , i+ ck} that is not in S+. Now,

w − u ≤ 2ck

and, in G \ S, every path from u to w uses an edge of length greater than 2ctk.
Therefore,

‖uw‖G\S
‖uw‖ >

2ctk

2ck
= t .

This contradicts the assumption that G is ck-robust t-spanner, so we conclude that
there are, indeed at least k/2 good edges.

Applying the above argument to i = ck + j2ctk, for j ∈ {0, . . . , b(n− ck)/2ctkc}
implies that G contains Ω(n/tc) = Ω(n) edges whose length is in the range [k/2 +
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1, 2ctk]. Applying this argument for k ∈ {d(4tck0)je : j ∈ {0, . . . , b(log n)/ log(2tck0)c}
proves that, for any constants c, k0, t > 1, G has Ω(n log n) edges.

2.3.2. A General Lower Bound. Using the iterated functions from Section 2.2,
we obtain a whole class of lower-bounds.
Theorem 4. Let k0, f , and f∗ be defined as in Section 2.2, let V = {1, . . . , n}, and
let t ≥ 1 be a constant. Then any f(k)-robust t-spanner of V has Ω(nf∗(n)) edges.

Proof. The proof is similar to the proof of Theorem 3. We need only consider f(k) ∈
ω(k) since, otherwise we can apply Theorem 3. We group the edges of the graph G
into Ω(f∗(n)) classes and show that each class contains Ω(n) vertices.

In particular, using the same argument one can show that, for any i ∈ {1, . . . , f∗(n/t)},
any f(k)-robust t-spanner of V has Ω(n) edges whose lengths are in the range [f i(k0)/2, 2tf i(k0)].
Since f(k) is superlinear, there exists a constant i0 such that, for any i > i0, f i+1(k0)/2 >
2tf i(k0). Thus, the number of edges in any f(k)-robust t-spanner of V is at least

Ω(n)× (f∗(n/t)− i0) = Ω(nf∗(n)) .

Corollary 2. Let V = {1, . . . , n} and let c > 1 and t > 1 be constants. Then any
f(k)-robust t-spanner with

1. f(k) ∈ O(k log k) has Ω(n log n/ log log n) edges;

2. f(k) ∈ O(kc
√

log k) has Ω(n
√

log n) edges; and
3. f(k) ∈ O(kc) has Ω(n log log n) edges.

Note that the lower bounds in Parts 2 and 3 of this corollary match the corre-
sponding upper-bounds while the lower-bound in Part 1 is off by a factor of log log n.
Remark. The dependence of our lower bounds on the value of t is not given in the
statements of Theorems 3 and 4 or in Corollary 2. However, it is readily extracted
from their proofs. In Theorem 3, each value of k shows the existence of Ω(n/t) edges
and there are Ω(logt n) values of k, so the lower-bound is Ω((n log n)/(t log t)).

In Theorem 4, each value of k shows the existence of Ω(n/t) edges, but now the
number of values of k is f∗(n/t) − f∗(x0) where x0 is the minimum value such that
f(x0) ≥ 4tx0. (Informally, x0 is where the slope of f exceeds 4t.) Thus, in Theorem 4,
the lower-bound is Ω((n/t)(f∗(n)−f∗(x0)))). It is fairly straightforward to apply this
bound to the choices of f used in Corollary 2 or to other choices of f . For example,
applying it to Case 3 of Corollary 2 we get x0 = Θ(t1/(c−1)) and the result that any
O(kc)-robust t-spanner has Ω((n/t)(log log n− log log t− log(1/(c− 1)))) edges.

3. Higher Dimensions. In this section, we give a family of constructions for
point sets V ⊂ Rd, d ≥ 1. These constructions make use of dumbbell tree spanners
[33, Chapter 11]. In particular, they make use of binary dumbbell trees, first used by
Arya et al. [7] in the construction of low-diameter spanners. A full description of the
construction (and proof of existence) of binary dumbbell trees can be found in the
notes by Smid [35].

A (binary) dumbbell tree spanner of V is defined by a set of O(1) binary trees
T = {T1, . . . , Tp}, each having n leaves. Each node, u, in each of these trees is
associated with one element, r(u) ∈ V . For each i ∈ {1, . . . , p}, and each x ∈ V , Ti
contains exactly one leaf, u, such that r(u) = x and at most one internal node, w,
such that r(w) = x. For any two points x, y ∈ V , there exists some tree, Ti, with
two leaves, u and v, such that r(u) = x, r(v) = y and the path, u, . . . , v in Ti defines
a path r(u), . . . , r(v) whose Euclidean length is at most t′‖xy‖, where t′ > 1 is a
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Fig. 3.1. A dumbbell tree decomposed in components of size O(k′) by the removal of a set X
of O(n/k′) vertices (each denoted by ◦).

parameter in the construction of the dumbbell tree. Thus, the graph G
@

= (V,E
@

)
obtained by taking

E
@

=

p⋃
i=1

{r(u)r(v) : uv is an edge of Ti}

is a t′-spanner of V .
The size (number of edges) of a dumbbell tree spanner is clearly O(pn) = O(n).

For a fixed dimension, d, as a function of t and as t approaches 1, the number of trees,
p, is O(log(1/(t− 1))/(t− 1)d). In particular, for t = 1 + ε, p ∈ O(log(1/ε)/εd).

In the following, we will often treat the nodes of each tree, Ti, in a dumbbell
tree decomposition as if the nodes are elements of V . This will happen, for example,
when we make statements like “the path in Ti from the leaf containing x to the
leaf containing y has length at most t′‖xy‖.” We do this to avoid the cumbersome
phraseology required to distinguish between a node u ∈ Ti and the node r(u) ∈ V
associated with u. Hopefully the reader can tolerate this informality.
Theorem 5. Let k0, f , and f∗ be defined as in Section 2.2 and let d ≥ 1 and t > 1
be constants. Let V ⊂ Rd be any set of n points in Rd. Then, for any constant t > 1,
there exists an O(kf(k))-robust t-spanner of V with O(nf∗(n)) edges.

Proof. Fix a value k′ > 1 and recall that, in any binary tree, T , with n nodes, there
exists a vertex whose removal disconnects T into at most 3 components each of size
at most n/2. Repeatedly applying this fact to any component of size greater than k′

yields a set of O(n/k′) vertices whose removal disconnects T into components each of
size at most k′ [33, Lemma 12.1.5]; see Figure 3.1.

Perform the above decomposition for each of the trees T1, . . . , Tp defining a dumb-
bell tree t′-spanner, G

@
, of V with t′ =

√
t. This yields a set, X, of O(n/k′) vertices

whose removal disconnects every dumbbell tree into components each of size at most
k′. Using any of the k′-fault-tolerant spanner constructions cited in the introduction,
we can construct a k′-fault-tolerant t′-spanner for X having O(k′|X|) = O(n) edges.
Let Gk′ = (V,Ek′) denote the graph whose edge set contains all edges of the dumbbell
spanner G

@
and all edges of a k′-fault-tolerant spanner on X.

Suppose that we are now given a set S ⊆ V , |S| = k ≤ k′. Any vertex x ∈ S
appears at most twice in each tree Ti. For each i ∈ {1, . . . , p}, we say that x kills
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x y

x′
y′

Fig. 3.2. The set S (whose elements are denoted by •) kills O(|S|k) vertices in each dumbbell tree.

all the vertices in any component of Ti \X that contains x. Furthermore, if x is an
element of X, then x kills all the vertices in the (at most 3) components of Ti whose
that have a vertex adjacent to x. The total number of vertices killed by x is therefore
O(pk′) = O(k′); see Figure 3.2.

Let S+ be the set of all vertices killed by all vertices in S. The size of S+ is
O(kk′). Consider some pair of vertices x, y ∈ V \S+. There exists a tree Ti such that
the path, in Ti, from the leaf containing x to the leaf containing y has length at most
t′‖xy‖. If x and y are in the same component of Ti \X then this path is also a path
in Gk′ \ S.

If x and y are in different components of Ti \X then consider the path from the
leaf containing x to the leaf containing y in Ti. Let x′ denote the first node on this
path that is in X and let y′ denote the last node on this path that is in X. The
graph Gk′ \S contains a path, from the leaf containing x, to x′, to y′, and then finally
to y, where the path from x′ to y′ uses the k′-fault tolerant spanner; see Figure 3.2.
Therefore,

‖xy‖G\S ≤ ‖xx′‖Ti + t′‖x′y′‖+ ‖y′y‖Ti

≤ t′(‖xx′‖Ti + ‖x′y′‖+ ‖y′y‖Ti)

≤ t′(‖xx′‖Ti + ‖x′y′‖Ti + ‖y′y‖Ti)

= t′‖xy‖Ti

≤ (t′)2‖xy‖
= t‖xy‖ .

Since this is true for every pair x, y ∈ V \ S+, this means that Gk′ \ S is a t-spanner
of V \ S+.

We have just shown how to construct a graph Gk that has O(n) edges and is
O(kk′) robust provided that |S| ≤ k′. To obtain a graph that is kf(k)-robust for any
value of k, we take the graph G containing the edges of each Gk′ for k′ ∈ {f i(k0) :
i ∈ {0, . . . , f∗(n)}}. The graph G has O(nf∗(n)) edges. For any set S ∈

(
V
k

)
, we can

apply the above argument on the subgraph Gk′ with k ≤ k′ < f(k), to show that G
is O(kf(k))-robust.

Applying Theorem 5 with different functions f(k) yields the following results.
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Corollary 3. For any constants d > 1, t > 1, ε > 0, and any set V of n points in
Rd, there exist f(k)-robust t-spanners G = (V,E) with

1. f(k) ∈ O(k2) and O(n log n) edges;

2. f(k) ∈ O(k2(1 + ε)
√

log k) and O(n
√

log n) edges; and
3. f(k) ∈ O(k2+ε) and O(n log log n) edges.

Remark. Note that, like our lower bounds, Theorem 5 and Corollary 3 do not express
the relationship between the number of edges and the spanning ratio, t. As before,
this relationship is not hard to work out. The number, p, of spanning trees in the
dumbbell tree spanner is O(log(1/ε)/εd), where ε = 1 −

√
t. Each k′-fault-tolerant

spanner has O(nεd−1) edges [32] and we construct one of these for f∗(n) different
values of k′. Thus, the total number of edges in our constructions is O(n(f∗(n)/εd−1+
log(1/ε)/εd)).

3.1. Linear-Size (Kind of) Robust Spanners. The lower bound in Theo-
rem 4 shows that linear-size f(k)-robust t-spanners do not exist for any function
f(k). In this section, we show that there are linear sized graphs that satisfy a weaker
definition of robustness.

We say that a graph G = (V,E) is f(k, n)-hardy if, for every subset S ⊆ V , there
exists a superset S+ ⊇ S, |S+| ≤ f(|S|, |V |), such that G \S is a t-spanner of V \S+.
Note that this definition is almost identical to that of robustness except that the size
of S+ may also depend on |V |. In particular, any f(k)-robust t-spanner is also an
f ′(k, n)-hardy t-spanner with f ′(k, n) = f(k).
Theorem 6. If f(k, n)-hardy t-spanners with O(n · s(n)) edges exist for all V ⊂ Rd,
then O(f(k, n) · s(n))-hardy t-spanners with O(n) edges exist for all V ⊂ Rd.

Proof. Perform the same dumbbell tree decomposition used in the proof of Theorem 5
to obtain a set X of O(n/s(n)) nodes whose removal partitions each dumbbell tree
into components of size at most s(n). Construct an f(k, n)-hardy t-spanner on the
elements of X. The size of the resulting graph is

O(n) +O(|X| · s(|X|)) = O(n) +O

(
n

s(n)
· s
(

n

s(n)

))
≤ O(n) +O

(
n

s(n)
· s(n)

)
= O(n) .

The same argument used to prove Theorem 5 shows that the resulting construction
is O(f(k, n)s(n))-hardy. (Each vertex of X that belongs to S results in the loss of at
most 3 components in each dumbbell tree, each of size at most s(n).)

The following corollary is obtained by combining Theorem 6 with some of our
upper-bound constructions:
Corollary 4. For any constant ε > 0, there exist linear size

1. O(k log k log n)-hardy 1-spanners of any V ⊂ R;
2. O(k1+ε log log n)-hardy 1-spanners of any V ⊂ R;
3. O(k2 log n)-hardy t-spanners of any V ⊂ Rd; and
4. O(k2+ε log log n)-hardy t-spanners of any V ⊂ Rd.

Remark. One can use the same argument used to prove Theorems 3 and 4 to study
the hardiness/space tradeoff in hardy spanners. For example, one can show that any
f(k)g(n)-hardy t-spanner of the 1× n grid has Ω((nf∗(n)/g(n)) edges. This implies,
for example, that Part 2 of Corollary 4 is tight; it is not possible to asymptotically
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reduce the dependence on k or n while keeping a linear number of edges (apply the
tradeoff result with f(k) ∈ O(k1+ε), and f∗(n) = g(n) ∈ Θ(log log n)).

4. Summary. We have introduced the notion of f(k)-robust t-spanners and
given upper and lower-bounds on the number of edges in such spanners. Our lower
bounds show that, for any f , f(k)-robust spanners sometimes require a superlinear
number of edges, even in one dimension. Our 1-dimensional constructions nearly
match this lower-bound except when the function f is nearly linear.

Open problem: Tighter bounds.. We understand the situation less clearly in two
and higher dimensions. The lower bounds show that f(k)-robust t-spanners must have
Ω(nf∗(n)) edges, but we have only been able to obtain O(kf(k))-robust t-spanners
with O(nf∗(n)) edges. Closing this gap is the main open problem left by this work.

To gain some intuition about which is closer to the truth, the lower bound or the
upper bound, one can study the

√
n × √n grid graph; see Figure 1.1. An argument

similar to the proof of Theorem 1, based on randomly shifting a quadtree, shows that
this graph is an O(k2)-robust 3-spanner. Therefore, the vertices of the

√
n×√n grid

admit a linear-size O(k2)-robust 3-spanner. In contrast, Theorem 4 shows that any
f(k)-robust t-spanner for the 1× n grid has superlinear size. This suggests that one
dimension is the hardest case:
Conjecture 1. If f(k)-robust t-spanners with sf (n) edges exist for all one-dimensional
point sets, then O(f(k))-robust t-spanners with sf (n) edges exist for all point sets in
Rd.

Open problem: Low weight.. In many cases, the cost of building a network is more
closely related to the total length (rather than number) of edges. In these cases, one
attempts to construct a graph whose total edge length is close to that of the minimum
spanning tree of V . The same lower-bound argument used in Theorem 4 shows that,
in general, f(k)-robust spanners may require edges whose total length is Ω(f∗(n))
times that of the minimum spanning tree. Is there a (nearly) matching upper bound?

Open problem: O(k)-robust spanners.. Another fundamental open problem has to
do with the number of edges needed in an O(k)-robust t-spanner. We have no upper-
bound better than the trivial O(n2) and the only lower-bound is Ω(n log n). This is
true even if we restrict our attention to constructing a t-spanner for the 1-dimensional
point set V = {1, . . . , n}.

Open problem: Induced spanners.. Finally, we observe that the one-dimensional
constructions of f(k)-robust spanners actually satisfy a property that is slightly
stronger than f(k)-robustness: For each of these, the graph G \ S+ is a t-spanner.
In other words, vertices not in V \ S+ are not needed in the short paths between
pairs of vertices in V \S+. Our d-dimensional constructions do not have this stronger
property. It would be interesting to know if d-dimensional constructions having this
stronger property exist.
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