
On Soft Predicates in Subdivision Motion Planning✩

Cong Wanga, Yi-Jen Chianga,∗, Chee Yapb

aDepartment of Computer Science and Engineering, Polytechnic School of Engineering, New York University, Brooklyn, NY, USA.
bDepartment of Computer Science, New York University, New York, NY, USA.

Abstract

We propose to design new algorithms for motion planning problems using the well-known Domain Subdivision
paradigm, coupled with “soft” predicates. Unlike the traditional exact predicates in computational geometry, our
primitives are only exact in the limit. We introduce the notion of resolution-exact algorithms in motion planning:
such an algorithm has an “accuracy” constantK > 1, and takes an arbitrary input “resolution” parameterε > 0 such
that: if there is a path with clearanceKε, it will output a path with clearanceε/K; if there are no paths with clearance
ε/K, it reports “NO PATH”. Besides the focus on soft predicates,our framework also admits a variety of global search
strategies including forms of the A* search and probabilistic search.

Our algorithms are theoretically sound, practical, easy toimplement, without implementation gaps, and have
adaptive complexity. Our deterministic and probabilisticstrategies avoid the Halting Problem of current probabilisti-
cally complete algorithms. We develop the first provably resolution-exact algorithms for motion-planning problems
in SE(2) = R

2 × S1. To validate this approach, we implement our algorithms andthe experiments demonstrate the
efficiency of our approach, even compared to probabilistic algorithms.

Keywords: computational geometry; exact algorithms; subdivision algorithms; motion planning; robotics; soft
predicates; resolution-exact algorithms.

1. Introduction

A central problem of robotics is motion planning [4, 20, 21, 10]. In the early 80’s there was strong interest in this
problem among computational geometers [15, 32]. This period saw the introduction of strong algorithmic techniques
with complexity analysis, and the careful investigation ofthe algebraic configuration space (C-space). In particular,
Schwartz and Sharir [31] showed that the method of algebraic cell decomposition is auniversal solution for motion
planning. We introduced the retraction method in [24, 33, 34]. In the first survey of algorithmic motion planning [40],
we also showed the universality of the retraction method. This method is now commonly known as the road map
approach, popularized by Canny [8] who showed that its algebraic complexity is in single exponential time. Typical
of algorithms in Computational Geometry, these exact motion planning algorithms assume a computational model in
which exact primitives are available in constant time. Implementing these primitives exactly is non-trivial (certainly
not constant time), involving computation with algebraic numbers.

In the 1990s, interest shifted back to more practical techniques. Today, the dominant approach is based on sam-
pling, usually combined with randomization. The most well-known representative of the sampling approach is the
probabilistic roadmap method (PRM) [19]. The idea is to compute a partial road map by random samplingof the
C-space. PRM offers a computational framework for a large class of algorithms. Moreover, many variants1 of the basic
framework have been developed. see [21, 10]. Most sampling methods take sample points in configurationspace, but
the recent paper from Halperin’s group [29] takes sample (parametrized) subsets of configuration space. In an invited
talk at the IROS 2011 Workshop on Progress and Open Problems in Motion Planning2, J.C. Latombe stated that the

✩An extended abstract of this paper appeared inProc. ACM Symposium on Computational Geometry (SoCG’13), pages 349-358, 2013.This
work is supported by NSF Grant CCF-0917093 and DOE Grant DE-SC0004874.
∗Corresponding author.
Email addresses:cwang05@students.poly.edu (Cong Wang),chiang@nyu.edu (Yi-Jen Chiang),yap@cs.nyu.edu (Chee Yap)

1 A partial list includes Expansive-Spaces Tree planner (EST), Rapidly-exploring Random Tree planner (RRT), Sampling-Based Roadmap of
Trees planner (SRT);

2 http://www.cse.unr.edu/robotics/tc-apc/ws-iros2011. Sept. 30, 2011, San Francisco.

Preprint submitted to Computational Geometry: Theory and Applications April 29, 2015

major open problem of suchSampling Methods is that they do not know how to terminate when there is no free
path. In practice, one would simply time-out the algorithm,but this leads to issues such as the “Climber’s Dilemma”
[16, p. 4] that arose in the work of Bretl (2005). We call this thehalting problem of PRM, viewed as the ultimate
form of what is popularly known as the “Narrow Passage Problem” [10, p. 216]. Latombe’s talk suggested promising
approaches such as Lazy PRM [3]. The theoretical foundation of PRM is based on two principles: probabilistic com-
pleteness, and fast convergence under certain “expansiveness” assumptions [18] about the environment. It is unclear
how to check these assumptions on specific environments. Fora comprehensive overview of motion planning, see
Lavalle [21] and Choset et al. [10].

In this paper, we turn to a third popular approach [46] for motion planning, which we callSubdivision Methods.
The general idea is to subdivide some bounded domainB0, typically a subset ofRd. In motion planning, the domain
is a subset of configuration space. In its simplest form, the subdivision ofB0 can be represented as asubdivision tree,
which is a generalization of binary trees (d = 1) or quad-trees (d = 2). An early reference for this approach is Brooks
and Lozano-Perez [5]. Recent subdivision references include [46, 2, 45, 12, 26]. Manocha’s group has been active
and highly successful in producing practical subdivision algorithms for a variety of tasks, not just in motion planning
(e.g., [38, 36]). Domain subdivisions are sometimes known as “cell decomposition” (e.g., [46]), but we reserve “cell
decomposition” for the approaches based on partitioning the configuration space into algebraic “cells” with bounded
combinatorial complexity that are directly correlated with the combinatorial features on the obstacles (e.g., [30, 40]). In
contrast to such cells, the boxes in subdivision approachesare more related to “resolution”. Nevertheless, subdivision
that takes into account combinatorial complexity may be seen in [45, 46]. Such kinds of subdivision algorithms offer
tantalizing opportunities for new kinds of complexity analysis. Examples of such analysis may be seen in [28, 35, 7].

¶1. Contributions of This Paper. Although subdivision algorithms have been widely used by practitioners,
their theoretical foundations have so far been lacking. This paper begins this task.

The notion of “resolution completeness” is widely used in the motion planning literature [10] but rarely analyzed
(Section 5discusses some issues). Our first contribution is to introduce the concept ofresolution-exact(or ε-exact)
planners. Such planners accept an inputresolution parameterε > 0. The planner has anaccuracy constantK > 1,
independent of the input, such that if there is a path of clearanceKε, it will output a path with clearanceε/K; if there is
no path of clearanceε/K, it will output “NO PATH”. As this paper shows, our definitionallows us to devise planners
that avoid the halting problem of PRM. Moreover,Section 5notes that the usual concept of “resolution completeness”
does not automatically solve the halting problem. But in what sense have we “solved” the halting problem? To be sure,
we arenotsolving the halting problem for exact motion planning — thiswould require exact computation, something
we wish to avoid in robotics. Instead,ε-exactness weakens the requirements for the “NO PATH” output. But is this
just a trick to solve the halting problem by fiat? No, we argue that our weakening is not only justifiable, but desirable:
good engineers know the limits of accuracy in their sensors,actuators, robot dimensions, etc. Path planning that
depends on accuracy beyond these limits is not realistic, even dangerous. Note that when we output “NO PATH”, we
guarantee that there exists no path with clearanceKε (this is the contrapositive of the statement just mentionedabove:
“if there is a path of clearanceKε, it will output a path with clearanceε/K”); no similar guarantees can come from
PRM. With this information, users can chooseε based on engineering limits so that when we declare “NO PATH”, no
further search is warranted.

Our second contribution is the introduction ofsoft primitives for designing resolution-exact planners. Briefly, soft
primitives are suitable numerical approximations of exact(hard) primitives. Such primitives are perhaps nascent in
previous literature. But by making this idea explicit, we open up many new possibilities, as well as lay the groundwork
for a systematic investigation of such algorithms. Such primitives are relatively easy to implement correctly (i.e., there
are no “implementation gaps” in such algorithms).

Third, we design new planners based on soft predicates. These algorithms are the first explicit examples of
resolution-exact planners. Our algorithms can use varioussearch strategies, including probabilistic ones. Halting
is guaranteed even in our probabilistic planners.

Our final contribution is the development and implementation of the first resolution-exact algorithms for rigid
robots with configuration spaceSE(2) = R

2 × S1. Our experiments demonstrate their effectiveness.

2. On Numerical Computational Geometry

Computational Geometry (CG) has traditionally concentrated onExact Methods. The attractive features of exact
algorithms are well-known. The drawback of such methods is exposed when we start to implement the algorithms. The
inability of Exact Methods to have wider impact on robotics and fields of Computational Sciences and Engineering

2

(CS&E) despite the fact that geometric reasoning is centralin these fields calls for a re-examination of our assumptions.
We argue that Subdivision Algorithms, when3 combined with soft primitives, offer a pathway for CG’ers to design
new algorithms based on numerical approximations that are both practical and theoretically sound. Our soft primitives
do not entail error analysis in the style of numerical analysis; rather, we rely on interval methods [22]. Algorithms in
“Numerical CG” in this sense are distinctly different from the usual exact algorithms (see [43] for a general discussion).

One limitation of numerical primitives is that they are onlycomplete in the limit. They also cannot detect degen-
eracies unless we use zero bounds [42]. Luckily for us, this is not an issue for resolution-exact planners and many
other applications. But there are some problems (e.g., subdivision methods for Voronoi diagrams [39]) for which it is a
challenge to handle degeneracies using only soft predicates. On the other hand, numerical methods have the advantage
of greater generality, being applicable to non-algebraic problems where exact solutions are generally unknown (see a
rare exception in [9]). Numerical CG will open up completely new areas for CG’ers.

The conventional wisdom of roboticists (see Choset et al [10, p. 202]) is that Subdivision Methods are effective
only up to “medium” degrees of freedom (DOFs) while SamplingMethods can be effective for much higher DOFs.
This remark is borne out by currently implemented planners.But we do not see any inherent reason for this gap. Use
of randomness is not a reason – as we will see, it is easy to deploy random search strategies in Subdivision Methods.
We believe that the current reach of Subdivision Methods in motion planning can be greatly extended with better
(perhaps randomized) search strategies. More generally, does the supposed limitation of subdivision extend beyond
motion planning? Pessimistic views of subdivision often assume that the size of subdivision trees is exponential in the
inverse resolution 1/ε. This only shows that adaptivity in subdivision is critical. Some recent examples [28, 6, 35]
suggest that adaptive approaches can guarantee optimal tree sizes, even in the worst case sense. Also the exploitation
of Newton-type techniques in subdivision is very promising(e.g., [27]). All these point to many new opportunities for
algorithmic development in Numerical CG.

3. Subdivision Motion Planning

In this section, we illustrate our approach with a basic motion planning problem. Fix a rigid robotR0 ⊆ R
d and an

obstacle setΩ ⊆ R
d. BothR0 andΩ are closed sets. Initially we assumeR0 is ad-dimensional ball of radiusr0 > 0.

Suppose we want to compute a motion from an initial configuration α to some final configurationβ. One of the
best exact solutions whenR0 is a ball is based on roadmaps (i.e., retraction approach). Historically, the cased = 2 was
the first exact roadmap algorithm [24]. For polygonalΩ, the roadmap is efficiently computed as the Voronoi diagram
of line segments [41, 13]. For d = 3, it is clear that a similar exact solution is possible. But here we see the limitations
of exact solutions: there is no known exact algorithm for theVoronoi diagram of polyhedral obstacles [17, 39]. The
configuration spaceor Cspaceis R

d whenR0 is a ball. In general, we writeCspace(R0) for the configuration of a robot
R0. Let α, β ∈ Cspace. The footprint of R0 at α is the setR0[α] comprising those points inRd occupied byR0 in
configurationα (whereR0 is centered atα). We sayα is free if R0[α] ∩ Ω is empty; it issemi-freeif it is not free
but R0[α] does not intersect the interior ofΩ. Thusα is semi-free ifR0[α] is just touchingΩ without penetrating it.
Finally α is stuck if it is neither free nor semi-free. Thus, every configuration is classified as free, stuck or semi-free.
We extend this classification to any setB ⊆ Cspace: we sayB is free (resp.,stuck) if everyα ∈ B is free (resp., stuck).
Otherwise,B is mixed (i.e., contains at least one semi-free configuration). We thus defined the (exact)classification
predicate C : 2Cspace→ {FREE, STUCK, MIXED}. This classification goes back to the beginning of subdivision motion
planning in Brooks and Perez [5]. Our goal in soft primitive design is to avoid this exact predicate.

Let C f ree = C f ree(R0,Ω) ⊆ Cspacedenote the set of free configurations. Amotion from α to β is a continuous
mapµ : [0, 1] → Cspacewith µ(0) = α andµ(1) = β. We callµ a free motion or more simply, apath, if its range
{µ(t) : t ∈ [0, 1]} is contained inC f ree. For setsA, B ⊆ R

d, define theirseparationto be Sep(A, B) := inf {‖a−b‖ : a ∈ A,
b ∈ B}. Theclearanceof a configurationγ ∈ Cspaceis the separation betweenR0[γ] andΩ. Theclearanceof a pathµ
is the minimum clearance ofµ(t) for t ∈ [0, 1].
¶2. Subdivision Trees. Our main data structure is a subdivision treeT rooted at a boxB0 ⊆ R

d. The nodes
of T are subboxes ofB0, where boxes are closed subsets of full dimensiond, and each internal nodeB is split into
2i (i = 1, . . . , d) congruent subboxes which form the children ofB. We remark that boxesB are axes-parallel and
not assumed to be square, withwidth w(B) andlength ℓ(B) defined to be the lengths of the shortest and longest side

3 Subdivision Algorithms could also be combined with hard primitives. But to exploit the full power of Subdivision Methods we must consider
soft primitives.

3

(resp.). For convergence, we must assume that theaspect ratio ℓ(B)/w(B) ≥ 1 is bounded. Any box that can be
obtained as a descendant ofB0 in a subdivision tree is said to bealigned. Let m(B) denote themidpoint andradius
r(B) be the distance fromm(B) to any corner ofB. For any real numbers > 0, let s · B (or sB) denote the congruent
box centered atm(B) with radiuss · r(B). Two boxesB, B′ areadjacent if B∩ B′ is a facet F of B or of B′, where
facets refer to faces of co-dimension 1. Also, letDm(r) denote theclosed ballcentered atm with radiusr.

To allow domains of arbitrarily complex geometry, the inputto our algorithm is an initial subdivision treeT0 whose
leaves are arbitrarily markedON or OFF. The set ofON-leaves forms asubdivision of the region-of-interestROI(T)
of the tree. Subsequently,T can beexpandedat anyON-leaf B, by splitting B into 2i (1 ≤ i ≤ d) congruent subboxes
who become the children ofB.
¶3. A Subdivision FindPath Algorithm. Our algorithm is givenε > 0 and an initialT0 rooted atB0. The

algorithm is parametrized by two subroutines: a classification predicateC(B) for boxes, and a subroutineSplit(B, ε)
which returns a subdivision ofB into 2i (for somei = 0, . . . , d) congruent subboxes; the split subroutine is said tofail
if w(B) ≤ ε (in this casei = 0). Recall that we assume the aspect ratioℓ(B)/w(B) to be bounded. We useT to search
for a path inB0 ∩C f ree as follows. LetV(T) denote the set of free leaves inROI(T). We define an undirected graph
G(T) with vertex setV(T) and edges connecting pairs of adjacent free boxes. We maintain the connected components
of G(T) using the well-knownUnion-Find data structure onV(T): givenB, B′ ∈ V(T), Find(B) returns the index of
the component containingB, andUnion(B, B′) merges the components ofB and ofB′.

We associate withT a priority queueQ = QT to store all the mixed leavesB with width w(B) > ε. LetT .getNext()
remove a box inQ of highest “priority”. This priority is discussed below. Wedenote byBoxT (α) (resp.BoxT (β)) the
leaf box inT containingα (resp.β). Let B be BoxT (α) or BoxT (β) or a leaf box returned byT .getNext(). We will
expandB as follows: first callSplit(B, ε). If Split(B, ε) fails, we returnfail (note that it never fails ifB is a box
returned byT .getNext()). Otherwise, each of the subboxesB′ returned bySplit(B, ε) is made a child ofB. We
label B′ with the predicateC(B′). If C(B′) = FREE, we insertB′ into V(T) and into the union-find structure, and
for eachB′′ ∈ V(T) adjacent toB′, we add an edge (B′, B′′) to the graphG(T) and callUnion(B′, B′′). Finally, if
C(B′) = MIXED andw(B′) > ε, we insertB′ into Q. Thus, mixed boxes of width≤ ε are discarded (effectively regarded
asSTUCK). Now we are ready to present a simple but useful subdivisionalgorithm:

FindPath:
Input: Configurationsα, β, toleranceε > 0, boxB0 ∈ R

d.
Output: Path fromα to β in Free(R0,Ω) ∩ B0.

Initialize a subdivision treeT with only a rootB0.
1. While (BoxT (α) , FREE)

If (ExpandBoxT (α) fails) Return(”No Path”).
2. While (BoxT (β) , FREE)

If (ExpandBoxT (β) fails) Return(”No Path”).
3. While (Find(BoxT (α)) , Find(BoxT (β)))

If QT is empty, Return(”No Path”)
(*) B← T .getNext()

ExpandB
4. Compute a channelP from BoxT (α) to BoxT (β).

Generate a pathP from P and Return(P)

In Step 4, thechannel P is a sequence (B1, . . . , Bm) of boxes whereBi, Bi+1 are adjacent. We also callP an F-
channelsince theBi ’s are all free. We easily convert an F-channel into a path (ortrajectory) which is a parametrized
pathP : [0, 1]→ C f ree fromα toβ. It is also easy to produceP that satisfies reasonable constraints such as smoothness.
This ability to generate a path is a benefit of subdivision methods over pure algebraic methods. Freeness is essential
for our use of the extremely efficient Union-Find data structure. The use of Union-Find was proposed in [21].

In contrast to F-channels, Zhu-Latombe [46] usesM-channels (comprised ofFREE or MIXED leaf boxes). Their
idea is to attempt to find an F-channel along the “shortest” M-channel, by expanding all theMIXED boxes in the
channel. Subsequent researchers (Barbehenn-Hutchinson [2] and Zhang-Manocha-Kim [45]) continued this approach.
Barbehenn and Hutchinson [2, 1] introduced the highly efficient Dijkstra or the related A* search. The challenge in
their approach is how to efficiently update the A*-structure after expansions along theM-channel.

The routineT .getNext() in Step (*) is not fully specified; the correctness of our planner also does not depend
on T .getNext(). Nevertheless, it is critical for performance. There aremany possible strategies for implementing
getNext(). For instance,getNext() may return a random box in the queue, or use the BFS strategy. We can implement

4

a Dijkstra-like or A* strategy by lettinggetNext() return a mixed leaf that is adjacent to the connected component of
BoxT (α). By alternating between two or more of these strategies, weget hybrid strategies. Another idea is to use some
entropy criteria. Recent work on shortest-path algorithmsin GIS road systems offers many other heuristics.

Our FindPath algorithm is not our claim to novelty. Nevertheless, it has interesting features, including great
potential for adaptivity through itsgetNext() strategy. In contrast, non-adaptive uniform grid approaches (e.g., [21,
p. 185]) is widely used. Although grids are superficially similar to subdivisions, grids use point-based operations while
our theory is based on box (interval) operations (see Sec.4). Uniform grid translates into breadth-first search strategy
for getNext(), but we can do much better.

4. Let us Design Soft Predicates!

The preceding FindPath is based on the exact predicateC(B). Our main interest in the Subdivision Method lies
in its ability to replaceC(B) by some “soft” versioñC(B) which is easy to compute and correct in the limit. We now
formalize this.
¶4. Soft Predicates. Let C̃(B) be a box predicate that returns a value in{FREE, STUCK, MIXED} .We callC̃ a soft

versionof C if two conditions hold:

(A1) It is conservative, i.e.,C̃(B) , MIXED impliesC̃(B) = C(B).
(A2) It is convergent, i.e., if {Bi : i = 1, 2, . . . ,∞} converges to a configurationγ, thenC̃(Bi) = C(γ) for
large enoughi.

We need a quantitative measure of the convergence rate. Let 0≤ σ ≤ 1 andB be any class of boxes. A soft versioñC
of C is said to beσ-effective(or haveeffectivity factor σ) for B if C(B) = FREE impliesC̃(σB) = FREE for all B ∈ B
(recall thatσB is the congruent box centered atm(B) with radiusσ · r(B)). One might imagine a stronger condition
thatC(B) , MIXED impliesC̃(σB) , MIXED for all B ∈ B, but our current definition suffices for our main Theorem A.
For example, we will prove that our soft predicates below areeffective for any classB of boxes with bounded aspect
ratio.

r0 + r(B)

W+(B) (b)(a)

r0B

W−(B)W−(B)

r0 − r(B)
r(B)

Figure 1: (a) DomainsW+(B) andW−(B). (b) Condition (S1) holds.

We now design soft predicates̃C assumingΩ ⊆ R
d is a polyhedral set, and the boundary ofΩ is partitioned into a

simplicial complex comprising relatively open cells of each dimension. For simplicity, assumed = 2. These cells are
calledfeaturesofΩ. The features of dimensions 0 and 1 are calledcornersandedges(resp.). Each boxB is associated
with three sets: itsouter domain W+(B), inner domain W−(B), andfeature setφ(B). When the robotR0 ⊆ R

2 is
a ball of radiusr0, W+(B) ⊆ R

2 andW−(B) ⊆ R
2 are defined as the disksDm(B)(r0 + r(B)) and Dm(B)(r0 − r(B)),

respectively. See Figure1(a). If r0 < r(B), thenW−(B) is empty. Also,φ(B) comprises the features ofΩ that intersect
W+(B). We callB simple if one of the following conditions holds:

(S0)Its feature setφ(B) is empty. Equivalently, no feature ofΩ intersects its outer domainW+(B).
(S1)Some feature ofΩ intersects its inner domainW−(B). Thus (S1) holds in the Figure1(b) because of
the red triangle obstacle.

The soft predicatẽC can now be defined: for our purposes, we only need to defineC̃(B) for aligned boxesB. Thus
we can use induction by depth. IfB is non-simple, declarẽC(B) = MIXED. Else if (S1) holds, declarẽC(B) = STUCK.
Otherwise, (S0) holds and clearlyB is either free or stuck, and we definẽC(B) = C(B) accordingly.

5

We now come to computing̃C(B), but only in the context whereB is a leaf of a subdivision tree. Observe ifB′ is
a child of B, thenW+(B′) is contained inW+(B). This implies the followingdistributional approach of computing
φ(B) is valid: when we expandB, we can distribute the features inφ(B) to each of its children. Note that a feature
can be given to more than one child, or to no child (when it intersects noW+(B′)). Moreover, we can check the
conditions (S1) and (S0) during this distribution. Finally, if (S0) holds, we determinẽC(B) as follows:C̃(B) = FREE
(resp.STUCK) iffm(B) is outside (resp. inside) the obstacleΩ. To decide between these two cases, note that by a linear
search of the non-empty setφ(B.parent), we can find the featuref in φ(B.parent) that is closest tom(B). We have 2
possibilities: (1)f is an edge. Assume that edges are oriented so that we can decide using a orientation test whether
m(B) is inside or outsideΩ in the neighborhood off . (2) f is a corner. We callf a convex(resp.,concave) corner
if, for any sufficiently small ballD centered atf , the setD ∩ Ω is a convex (resp., concave) set. Every corner is either
convex or concave. Moreover,f is convex iff m(B) is outsideΩ (iff B is free).

SupposeΩ is given as the union of a set of polygons that may overlap (this situation arises in Section 7). Moreover,
φ(B) is defined to comprise features in these (possibly overlapping) polygons. We extend the above FREE/STUCK
test for (S0) as follows: again linearly searchφ(B.parent), and foreachobstacle polygonS appearing inφ(B.parent),
find the featuref ⊆ ∂S that is closest tom(B). Thenm(B) is outsideΩ (andB is free) iff m(B) is outsideall such
polygonsS.

L 1. The predicatẽC is a soft version of C for the ball robot R0 ⊆ R
2. When boxes are squares,̃C has an

effectivity factorσ = 1/
√

2. More generally, if our boxes have aspect ratio at mostα ≥ 1, then the effectivity factor is
σ = 1/

√
1+ α2.

Proof. To see the effectivity factor for square boxes, suppose thatC(B) = FREE for some squareB. Referring to

r0r

r(B)

B

Figure 2: Effectivity factor 1/
√

2.

Figure2, we see that the region bounded by the outer four red segmentsand the outer four red circular arcs does not
intersect the obstacle setΩ. Clearly, the dotted circle also does not intersectΩ. Note that this dotted circle is centered
at m(B) with radiusr(B) = r + r0, and it is the boundary of the outer domainW+(σB) of boxσB whose radius isr,
wherer = r(B)/

√
2. This means thatσ = 1/

√
2 and we havẽC(σB) = FREE. Therefore,̃C has an effectivity factor

σ = 1/
√

2. In general, letB be a rectangular box with dimensions 2w× 2αw. If B is free, there is a disc centered at
m(B) of radiusw+ r0 that does not intersectΩ. This disc is the outer domain ofσB whereσ = 1/

√
1+ α2. 2

The proof easily generalizes to ball robots in every dimension. We can now use the soft predicateC̃ instead of the
exact predicateC to get a resolution-exact algorithm. This will be proved below. Of course, doing this for the disc
robot is no great achievement since the exact algorithm is actually quite practical too. But it lays the groundwork for
generalization to more complicated robots for which exact methods are no longer viable.
¶5. Implementability. We claim that our algorithm is easy to implement correctly. We have designed our

predicates so that they are reduced to comparison of “distances” between sets. In particular, a featuref is in φ(B) iff

Sep(m(B), f) ≤ r(B) + r0 (1)

where Sep(A, B) is the separation between setsA andB. Notice that (1) is a comparison of two exact (!) expressions.
There are implicit square roots in these expressions, so an exact implementation would be expensive. But we are
not obliged to implement soft predicates exactly — this cannot be said for hard predicates. We provide a simple
implementation method: for any numerical expressionx, let (x) or x denote any closed interval [a, b] that contains
x. If the interval has width at most 2−p, we also write p(x). Assume that for any expression x and any given p, we

6

can compute some p(x). This can be achieved with any software bigFloat package (e.g., GMP [14], MPFR [23]). We
define the “lax comparison”� on intervals whereby [a, b] � [a′, b′] holds iff a ≤ b′. Note that the “strict comparison”
would beb ≤ a′. We implement the test (1) using this lax comparison:

p(Sep(m(B), f)) � p(r(B) + r0) (2)

wherep = − lg r(B). Let Ĉ(B) be the “implemented” version of̃C(B).

L 2. Ĉ(B) is a soft predicate for C(B).

Proof. Recall thatφ(B) is the set of features belonging to the boxB. Supposêφ(B) is the set of features that belong
to B when we use the lax comparison�. The key observation is thatx ≤ y implies px � py. This shows that
φ(B) ⊆ φ̂(B). The lax comparison (2) implies that

Sep(m(B), f) − r(B) ≤ (r(B) + r0) + r(B)

or, Sep(m(B), f) ≤ 3 · r(B) + r0. This shows that the extra features inφ̂(B) must intersect the discW+(3B) (the outer
domain of 3B). If a sequence of boxesBi converges to a pointq asi → ∞, we see that̂φ(Bi)→ φ(q). This implies that
the approximate classification̂C(Bi) also converges toC(q). 2

¶6. Improvements. We can improve the convergenceof our soft predicates. In practice, and typical of subdivision
approaches, such improvements can be quite significant (e.g., see [39]). Let us define the setφ(B) slightly differently,
by recognizing two regimes for boxes. In the “smallB regime”, i.e.,r(B) < r0, we computeφ(B) as before. In
the “largeB regime”, i.e.,r(B) ≥ r0, we can defineφ(B) to comprise those features that intersect the boxαB where
α = 1 +

√
2r0/r(B). Checking if a feature intersectsαB is simple. This new definition should generally result in

smaller sizes forφ(B). For a simple implementation, condition (S1) could be omitted; its role is to provide an early
stuck decision.

5. Resolution Exactness

We have designed some non-trivial algorithms under our scheme. We now clarify what sort of algorithms these are.
Informally, our algorithms are “resolution complete”. There are slightly variant definitions, but a typical (e.g., [37])
definition says “a planner is resolution complete if it finds apath if one exists provided the resolution parameters are
selected small enough”. This definition does not4 say what happens if there is no path. Some formulations appear to
assume that the resolution is not given but the planner has tosearch for it. Of course, this search would not terminate
if there is no path. Our algorithms in Section4 (and in Section6 as well) have an explicit inputε > 0, called the
resolution parameter. It is essential thatε be different from 0. To use this parameter, we recall the concept of
“clearance”. Here is an attempt to define resolution completeness with a converse: (i)if there is a path with clearance
ε, the planner will find a free path, and (ii) if there is no path with clearanceε, it will report “NO PATH” . Taken
together, this pair of statements cannot be the correct, as it implies that, with sufficient resolution, we can detect the
case where the clearance is exactlyε, a feat that only Exact Methods can achieve (in which case we might as well
design algorithms withε = 0). What is missing in current discussions of resolution completeness is the concept of an
accuracy constantK > 1. We say that a planner isresolution-exactif there exists an (accuracy) constantK > 1 that
is independent of the input (but may depend on the algorithm)such that:

• If there is a path with clearanceKε, it outputs a path with clearanceε/K.
• If there is no path with clearanceε/K, it reports “NO PATH”.

What if the maximum clearance of free paths lies strictly in the range (ε/K,Kε]? According to this definition, the
planner is free to report a path or “NO PATH”. In our Theorem A below, we prove that this cannot be avoided!This
indeterminacy is the necessary price to pay for resolution-exactness. In our view, this price is not a serious one because
the user has the option to decrease theε parameter as desired. Of course, if we decreaseε to ε/K, the indeterminacy

4 In Computer Science, “completeness” concepts typically have some “if-and-only-if” connotation. Otherwise, they might be qualified as
“partial completeness”. E.g., “partial correctness” of programs, or “partial decidability” of problems, etc.

7

will reappear for input instances that only have paths with clearance in the range (ε/K2, ε]. But as argued in¶1, there
is no infinite regress if we know some hard engineering limitsof how much clearance a path should have.

The result of Theorem A below concerns our algorithm Exact FindPath in¶3 in the 2D case, assuming that all
boxes are squares and we use the exact classifier predicateC(B). Recall that in our E FP algorithm, we
subdivide a box only if its widthw(B) is larger thanthe input resolution parameterε > 0. So the smallest boxes in the
subdivision treeT have widtht with ε/2 < t ≤ ε. Now consider the “full expansion” of the subdivision treeT whose
leaves are of the smallest size possible. Recall from¶3 that a channel is a sequence (B1, . . . , Bm) whereBi , Bi+1 are
adjacent. We are interested in a free channel whereα ∈ B1 andβ ∈ Bm.

L 3. If there exists a motionµ with clearanceδ =
√

2ε, then our E FP algorithm outputs a path with
clearanceε/4.

Proof. Consider the “full expansion” ofT as mentioned above, where the leaves have a widtht with ε/2 < t ≤ ε.
Consider the subsetA of such leaves that coverµ. We claim that each leaf box inA is free: let p be a point inµ andBℓ
be the leaf box wherep lies; since the diagonal ofBℓ is

√
2t ≤

√
2ε = δ, Bℓ lies entirely within the “clearance region”

of p and thusBℓ is free. Therefore,A consists of free leaf boxes of widtht that coversµ; in other words,A is a free
channelΠ that coversµ.

β

t

2t

2t

P

t/2

t/2

t/2

t/2

t

a

bα

Figure 3: PathP from a to b with clearancet/2 > ε/4. A canonical pathP∗ consists ofαa, bβ and essential pathP, with essential clearancet/2.

Since there exists a free channelΠ connectingα andβ, our E FP algorithm will findsomefree channel
Π′ connectingα andβ (Π′ is not necessarilyΠ, but at leastΠ exists as a candidate to be found by our algorithm). This
can be justified as follows: consider the subdivision treeT produced by our algorithm. It produces a subdivision of
ROI(T), and for each free boxB inA, there is a corresponding free leafB∗ in T that containsB. These free leavesB∗,
after pruning redundancies, yield a free channelΠ∗ that coversΠ. By definition of the correctness of any path finding
algorithms, a free channelΠ′ connectingα andβ will be found iff there exists a free channelΠ∗ connectingα andβ.

Note thatΠ′ consists of free aligned boxes connecting fromB(α), the free (aligned) box containingα, to B(β), the
free (aligned) box containingβ. Since each free box inΠ′ has width at leastt, we can construct a rectilinear pathP,
from the box centera of B(α) to the box centerb of B(β), through the free boxes inΠ′ where each point ofP is away
from the box boundary by a distance at leastt/2 (see Figure3 for an example), and thusP has clearancet/2 > ε/4.

Our final reported pathPf is given byPf = αa∪P∪bβ. It remains to show thatαa has clearanceε/4 (and similarly
for bβ by the same argument). The key point is to use the fact thatα belongs toµ and thus has a clearanceδ =

√
2ε.

We consider the following two cases.
Case (1): The width ofB(α) is t. Then for any pointq ∈ αa, d(α, q) is at most half of the diagonal ofB(α), i.e.,

d(α, q) ≤
√

2t/2 ≤
√

2ε/2 = δ/2. However,α has clearanceδ, and thusq ∈ αa has clearanceδ − d(α, q) ≥ δ/2 > ε/4.
Case (2): The width ofB(α) is at least 2t. We refer to Figure4, where the boundaries of the inner box and ofB(α)

are apart by a distancet/2. Clearly, any point ofαa lying inside the inner box has clearance at leastt/2 > ε/4. Now
consider the portion ofαa outside the inner box. Without loss of generality, suppose such portion lies in the green
shaded rectangle and the slope ofαa is in the range [0, 1] (for other cases the slopes are in the ranges (1,∞), [−1, 0),
and (−∞,−1) and symmetric arguments apply). Note thatw = t/2 andh ≤ w (since the slope ofαa is in [0, 1]), the
diagonal of the green shaded rectangle is at most

√
2t/2 ≤

√
2ε/2 = δ/2, i.e., any pointq ∈ αa lying in the green

shaded rectangle hasd(α, q) ≤ δ/2. Sinceα has clearanceδ, suchq has clearanceδ − d(α, q) ≥ δ/2 > ε/4. Therefore,
every point ofαa has clearanceε/4. 2

8

α

a
t/2

t/2

t/2

t/2

w
h

B()

α

Figure 4: Segmentαa has clearanceε/4.

We define anessential pathto be a path from the centera of a free boxB(α) containingα to the centerb of a
free boxB(β) containingβ (e.g., pathP in Figure3). A canonical path P∗ consists of line segmentsαa, bβ, and an
essential pathP from a to b. Note that the major task in motion planning is to find an essential pathP, while making
P canonical by addingαa andbβ is straightforward. We define theessential clearanceof a canonical path to be the
clearance of its essential path (see Figure3).

L 4. If there is no free canonical path with essential clearanceε/4, then ourE FP algorithm reports
“NO PATH”.

Proof. We prove the contrapositive: When our E FP algorithm finds a path, there exists a free canonical
path with essential clearanceε/4. Indeed, when our algorithm finds a free path, it finds a set offree aligned boxes
connecting fromB(α) to B(β). Since each such free box has width at leastt, we can construct an essential path, which
is a rectilinear pathP where each point ofP is away from the box boundary by a distance at leastt/2 (see Figure3).
Clearlyαa∪ P∪ bβ is a free canonical path with essential clearance at leastt/2 = ε/4. 2

Putting together Lemmas3 and4, we have the following results for 2D, assuming that all boxes are squares and
we use the exact classifier predicateC(B).

THEOREM A: [Hard Predicate]Let K0, k0 ≥ 1 and consider our plannerE FP.
(i) For K0 =

√
2, if there is a path with clearance K0ε, then our planner outputs a path with clearanceε/4.

(ii) For k0 = 4, if there is no free canonical path of essential clearanceε/k0, then our planner reports “NO PATH”.
The results in (i) and (ii) are tight in the following sense:
(i’) If K 0 <

√
2, there are obstacle inputsΩ admitting paths with clearance K0ε, but our planner reports “NO PATH”.

(ii’) If k 0 < 4, there are obstacle inputsΩ admitting no paths of clearanceε/k0 but our planner outputs a path.
Proof. (i) and (ii) are Lemmas3 and4 respectively.

(i’). Consider anyK0 <
√

2. We can have an obstacle inputΩ such that it admits a path with clearanceK0ε, where
α lies in the aligned boxB = B(α) of our subdivision tree, with widthw(B) = ε, but the robot center cannot be placed
in the red shaded triangle region (see Fig.5). Note that the diagonal ofB is

√
2ε andα can still have clearanceK0ε.

However,B is a mixed box withw(B) = ε and thus the expansion ofB fails. Therefore, our planner reports “NO
PATH”.

K0 ε

α

ε

ε

Figure 5: Proof of Theorem A (i’).

(ii’). Supposek0 < 4. Letδ :=4− k0. We now construct an input for our algorithm. Let

B0 = [−4, 4] × [−4, 4], r0 < 1.9, ε = 4− (δ/2),

9

α = (−3, 1), β = (3, 1),

andΩ is the union of two half spaces,
{
(x, y) ∈ R

2 : y ≤ −u− r0

}
and
{
(x, y) ∈ R

2 : y ≥ 2+ u+ r0

}
for some small

u ∈ (0, 2− r0) to be determined. See Figure6, whereΩ is shown in yellow. Using an exact classification predicate,we

(−4,−4)

(4, 4)

α

β 1+ u
2

r0

r0

Figure 6: Proof of Theorem A (ii’).

will subdivide until we obtain a “linear” channel of boxes from B(α) to B(β) (shown in green in Figure6). Note that
each box in this channel has width 2 and the straightline pathfrom α to β has clearance 1+ u. So our algorithm will
output the straightline path fromα to β. Note that this path has clearance 1+ u (which is in fact the largest clearance
possible, but the algorithm does not actually know this clearance). We shall chooseu to fulfill

1+ u <
ε

k0
=

4− (δ/2)
4− δ , (3)

i.e., the largest clearance of any paths, 1+ u, is less thanε/k0, so thatΩ admits no paths of clearanceε/k0. Here (3) is
true iff u < (1/2)(δ/k0). Note that the ratioδ/k0 could be large, but recall thatu ∈ (0, 2− r0) (wherer0 < 1.9) from our
construction. So we can picku = min{(1/3)(δ/k0), 1.9− r0} to fulfill both conditions. 2

Theorem A implies an accuracy factorK = 4, but it is clear thatK can be reduced by adjusting our algorithm to
use the resolution parameterε in a more equitable way.

The general form of this result is perhaps no surprise, but the accuracy constants might not be what we initially ex-
pect, since we are talking about an “exact algorithm”. Thereare several sources for loss of accuracy: first, subdivision
boxes are “aligned” with the integer grid in the sense that their coordinates are dyadic numbers. Second, the width of
our smallest boxes, theε-MIXED boxes, lies betweenε/2 andε. The third is the use of soft predicates. In particular,
what is the accuracy of our prototype algorithm in¶3 when using the soft predicates of¶4? Recall from Lemma1 that
when boxes are squares, our soft predicateC̃ has an effectivity factorσ = 1/

√
2. In our algorithm, we can replace our

input resolution parameter with ¯ε = σε, i.e., we split boxes until the smallest box width is betweenε̄/2 andε̄ (between
σε/2 andσε).

L 5. If there exists a motionµ with clearanceδ =
√

2ε, then our algorithm using soft predicatẽC outputs a path
with clearanceσε/4.

Proof.This is a “soft version” of Lemma3. Consider the “full expansion” of our subdivision treeT ; now the smallest
boxes have widthσt (instead oft). Look at the subsetA of such leaf boxes that coverµ. For each such leaf boxBℓ, let
Bℓ/σ be the box centered atm(Bℓ) with width t. We claim thatBℓ/σ is free: letp be a point onµ that lies inBℓ; clearly
p also lies inBℓ/σ. Since the diagonal ofBℓ/σ is

√
2t ≤

√
2ε = δ, Bℓ/σ lies entirely within the “clearance region”

of p and thusBℓ/σ is free. Therefore, we haveC(Bℓ/σ) = FREE. By the effectivity factorσ for C̃, C(Bℓ/σ) = FREE
impliesC̃(Bℓ) = C̃(σ(Bℓ/σ)) = FREE. Therefore, we can usẽC to classify eachBℓ to be free, and thus to classifyA as
a free channelcoveringµ. This is the same as the free channelA coveringµ in the proof of Lemma3, but now each
channel box has widthσt rather thant. The rest of the proof of Lemma3 carries over, with the reported path having a
clearanceσε/4 rather thanε/4. 2

L 6. If there is no free canonical path with essential clearanceσε/4, then our algorithm using soft predicatẽC
reports “no path”.

10

Proof. This is a “soft version” of Lemma4. Again we prove the contrapositive: When our algorithm findsa path,
there exists a free canonical path with essential clearanceσε/4. The proof of Lemma4 carries over, but now each free
aligned box has widthσt rather thant, and thus the essential clearance is at leastσt/2 = σε/4. 2

We re-state Lemmas5 and6 together in the following.
THEOREM B: [Soft Predicate]With the same assumptions as Theorem A, but with the exact predicate C(B) replaced
by a soft predicatẽC(B) with effectivity factorσ, we have:
(i) For K0 =

√
2, if there is a path with clearance K0ε, then our planner outputs a path of clearanceσε/4.

(ii) For k0 = 4, if there is no free canonical path with essential clearanceσε/k0, then we report “NO PATH”.
This implies that the accuracy factorK now becomes 4/σ. In general, we have:

Corollary: If the Exact version of our planner has an accuracy factor ofK, then the Soft version of our planner using
a soft predicate with effectivity factorσ has an accuracy factor ofK/σ.

6. Rotational Degree of Freedom

In this section we develop resolution-exact algorithms forthe case where robotR1 ⊆ R
2 has a simple shape:R1

is a triangle that is contained in a circumscribing discR0 of radiusr0. Now, Cspace= S E(2) = R
2 × S1. Each box

B ⊆ Cspace is decomposed asR× Θ whereR ⊆ R
2 is a rectangle andΘ ⊆ S1 is an angular range. We also write

m(R), r(R),w(R) to denote the previously definedm(B), r(B),w(B). Two boxesB = R × Θ and B′ = R′ × Θ′ are
adjacent iff RandR′ are adjacent, andΘ andΘ′ are adjacent in the circular geometry ofS1.

(ii)

a′

c′

c

a

(i)

a a′

c

c′

b

b′
b′

b

B
C

A

Figure 7: Shaded areas represent round triangles: (i)aa′bb′cc′ with 3
straight edges, (ii)ab′cc′ with 2 straight edges. In (i), the round triangle
aa′bb′cc′ is T ∩ D whereT is the triangle (A,B,C) andD is the (white)
disk.

Figure 8: Enclosing circle of enclosing rectangle for obtuse trian-
gle: their rotation.

¶7. ε-Smallness. We discuss the issue ofsplitting B = R× Θ: we can obviously simply splitB into 8 congruent
children. However there are two issues. First of all, we may want to avoid splitting the angular range whenB is in
the “large regime”: as long asw(R) ≥ r0, we can approximateR1 by the discR0 and ignore the rotational degree of
freedom. SoB is split into 4 children (based on splittingRbut notΘ). WhenB is in the “small regime”, i.e.,w(R) < r0,
we begin to split the angular range. But here, we want to treatΘ differently fromR. To understand this, recall that we
previously do not split a boxR whenw(R) ≤ ε. Let us say thatR is ε-small if w(R) ≤ ε. We need a similar criterion
for Θ: sayΘ is ε-small if |Θ| ≤ ε/r0. This assumes that angles are in radians, andΘ is represented as an interval
[θ1, θ2] ⊆ [0, 2π]; also |Θ| is defined asθ2 − θ1. Finally, we say thatB = R× Θ is ε-small if both R andΘ areε-small.
We now define our procedureSplit(B, ε) as follows: to splitB, we splitRandΘ separately. These are not split if they
are alreadyε-small. Thus, splittingB will result in 2i children fori = 0, 1, 2, 3. The following justifies our definition
of ε-smallness:

L 7. Assume0 < ε ≤ π/2. If B = R× Θ is ε-small and R is a square, then the Hausdorff distance between the
footprints of R1 at any two configurations in B is at most(1+

√
2)ε.

Proof. This result uses the fact that if we rotateR1 by θ about the center ofR0, then the vertices ofR1 move by at
most 2r0 sin(θ/2) ≤ r0θ ≤ ε since sinθ ≤ θ for θ in the said range. Also, the translational distance betweenany two
configurations inB is at most

√
2ε. 2

11

¶8. Soft Predicate for Rotation. We now design a soft versioñC of C. The strategy follows the case of disc
robot: we define the feature setφ(B) associated with a boxB = R× Θ as comprising those features ofΩ that intersect
the setW+(B) whereW+(B) is a “round triangle” associated withB. We callRT a round triangle if it is given as the
intersection of a discD with a triangular regionT (see Fig.7).

For any real numbers, we denote thes-expansionof various shapesS ⊆ R
2 by (S)s. If S = D(m, r) is a disc,

(D)s :=D(m, r + s). If S a convex polygonP, then (P)s is the polygon obtained by shifting each defining line of its
edges in an outward normal direction by a distance ofs. Typically, P is a triangle or a box. Finally, ifS is a round
triangleRT = D ∩ T, then (RT)s = (D)s∩ (T)s. Note that (RT)s depends on the representationD andT. Usually we
haves≥ 0; if s< 0, thenRT is shrunk and (RT)s may be the empty set.

Consider a configuration (m, θ) ∈ Cspace; the footprintR1[m, θ] is a triangle inDm(r0). Let RT(m,Θ) be the convex
hull of the union of these footprints asθ ranges overΘ. Note thatRT(m,Θ) is a round triangle. In Fig.7, we show
RT(m,Θ) for two choices ofR1. We define theouter domain W+(B) to be ther(B)-expansion ofRT(m(B),Θ). As
before, thefeature setφ(B) is defined as those features ofΩ that intersectW+(B). Finally, we definẽC(B) usingφ(B)
as before. Computing̃C(B) in the context of expanding a subdivision tree is also similar.

L 8. C̃ is a soft version of C for the robot R1. AlsoC̃ is effective for the class of squares.

¶9. Improvements. We can improve by providing some heuristic for quick detection of stuck boxes, in analogy
to Property (S1) for a disc robot. For any boxB, we can define aninner domain W−(B) such that if any feature
intersectsW−(B), thenB is stuck. IndeedW−(B) can be defined to be a suitable triangle: in Fig.7(i), W−(B) is the
triangle bounded by the linesab′, bc′ andca′.

Our definition ofR0 as the circumscribing circle forR1 can lead to extremely large radiusr0 whenR1 is a very
thin obtuse triangle. We describe an alternative: whenR1 is obtuse, we will defineR0 as the smallest disc containing
R1. Choose the robot origin to be the center of this newR0. Thus, the longest side ofR1 will be a diameter ofR0, and
one vertex ofR1 will be in the interior ofR0. This is illustrated in Fig.8 where the red and blue vertices ofR1 define
a diameter of the circleC, but the green vertex lies on a concentric inner circleC′. The interior ofC′ is pink in this
figure. If we slightly rotate the robotR1 counter-clockwise about the center ofC, the boundary of the area swept by
R1 will include a small arc ofC′. The convex hull of this swept area will comprise of 3 arcs, two arcs fromC and
one arc fromC′. We can again construct a soft predicate based on such a convex hull, but this variation has not been
implemented.

7. Experimental Results

We have implemented in C++ the planner for disc and triangle robots described in this paper. Our code, data and
experiments are freely distributed with theCore Library5 and is available on our project web page. The platform
for the experiments was a Linux Fedora 16 OS with a 3.4GHz Intel Quad Core CPU, and 16GB RAM. Our current
implementation does not apply the technique of “lax comparison” in ¶5. Instead, we use machine arithmetic. This is
because in our examples, the subdivision boxes are large enough that machine arithmetic suffices. In the future, we
plan to provide error estimates to justify this expedient.

Figs.9 and10 show the GUI interface of our implementation of the disc and triangle robots, respectively. Since
Cspace= R

2 for a disc, it is straightforward to visualize the box classification in a subdivision, as illustrated in Fig.9.
For a triangle robot, each boxB ⊆ Cspace= R

2×S1 has the formB = Bt × Br whereBt is the translational component.
The color ofB is projected ontoBt. We display a blended color of all boxes that project toBt.

We implemented the following three search strategies:Breadth First Search (BFS), Random (RAN), andGreedy
Best First (GBF). In BFSandRandom, we follow the original scheme described in¶3, where a union-find data structure
is used to determine if the leaf boxesBoxT (α) andBoxT (β) belong to the same connected component of the adjacency
graph comprising theFREE-leaves inT . TheMIXED-leaves of width> ε are stored in a priority queueQ as candidates
for expansion. The only difference between these two strategies is thatBFSpicks a box inQ with themaximum size
to expand, whileRandompicks arandombox in Q to expand.

In GBF, we donot use a union-find data structure; rather, we maintain a setSα of leaves ofT which areFREE
and connected toBoxT (α). Boxes inSα are said to be “marked”. A path is detected as soon asBoxT (β) is marked.
Initially, BoxT (α) is the only marked box. The priority queueQ contains all theFREE- or MIXED-leaves ofT that

5 http://cs.nyu.edu/exact/core/download/core/.

12

Figure 9: Subdivision for disc robot. Color scheme: Green=FREE,
Red=STUCK, Yellow=ε-largeMIXED, Grey=ε-smallMIXED.

Figure 10: Subdivision for triangular robot: translational boxes show
blended colors.

are on the “fringe” ofSα (a “fringe box” is unmarked but adjacent to some marked box).The priority of a boxB in
the queue is the “distance” fromB to β. In case of a disc robot, this “distance” is the Euclidean distance fromm(B)
to β ∈ R

2. In case of a triangle robot, letB = Bt × A whereBt ⊆ R
2 is the translational component ofB, andA an

angular range. Similarly,β = (βt, θ) whereβt ∈ R
2. Then “distance” is the Euclidean distance betweenm(Bt) andβt.

Moreover,Q is a min-priority queue, so that box with the smallest distance toβ has highest priority. We terminate
with “NO PATH” if Q is empty; otherwise letB be a box extracted fromQ for expansion. There are two cases: (1) If
B is free, we markB (i.e., add it to the setSα) and for each neighborB′ of B, we pushB′ into Q if it is unmarked and
is eitherFREE or MIXED. (2) If B is mixed, we first check its width. If the width is≤ ε, we discardB. Otherwise we
expandB, and for each childB′ of B, we pushB′ into Q if it is adjacent to a marked box and is eitherFREE or MIXED.

We use four input files: bugtrap, input150, input200, input300. Each file represents the environment as a set of
polygons (not necessarily disjoint) within a 512 x 512 bounding box. The file inputNNN (where NNN=150, 200 or
300) contains NNN randomly generated triangles. Three of these environments are shown in Figs.11, 12, 13. The
polygons edges are shown in white (Fig.11) or in blue (Figs.12-13). The paths found by our GBF search strategy are
also shown (“NO PATH” in Fig.11). We can see that the triangles may overlap, which can be handled by our approach
easily.

In the following we present two tables. The top table shows the statistics of running our planners for disc and trian-
gle robots on each input. The starting and ending configurationsα andβ are shown as (x, y) for disc robot and (x, y, θ)
for triangle robot. The disc robot is specified as disc(r,Z) wherer is the robot radius andZ ∈ {BFS,GBF,RAN}
indicates the search strategy. Similarly, the triangle robot is specified by tri(r,Z). Whenever the randomized strat-
egy Z = RAN is used, the statistics is the average of 5 runs; these are reproducibly encoded in Makefile targets in
Core Library. Of the 3 strategies, we see thatGBF is consistently the fastest. We have columns reporting the num-
ber of free, stuck, and mixed boxes. There were two kinds of mixed boxes: those of width> ε and the rest. Note that
when the number of mixed boxes of width> ε is zero (last column), this implies ‘NO PATH’. Excluding thecases of
“ExpandingBoxT (α) fails” and “ExpandingBoxT (β) fails” (trivial cases of ‘NO PATH’), the converse is true only for
theBFS or Randomsearch strategy.6 We explicitly mark the entries in the last column with an asterisk (*) to indicate
‘NO PATH’.

We also directly compared our triangle robot with theGBF strategy (the instances of the top-table entries in bold,
also shown in Figs.11-13) with PRM and RRT, and show the results in the bottom table. For PRM, we ran the
benchmark package OOPSMP [25], and the running times are shown as preprocessing, query, and total times in the
table. For RRT, we ran OOPSMP (denoted “RRT-OOP” in the table), the code by Prof. Jyh-Ming Lien (denoted “RRT-
JML” in the table) of the robotics group in George Mason University, and the MSL library from Prof. Steven Lavalle’s
group in University of Illinois (UIUC). MSL did not seem to work well for our datasets of bounding boxes 512 x 512
(all its examples are of small bounding boxes 100 x 100) so we do not include its results in the table.

We remark that our only parameter isε > 0. For PRM, OOPSMP requires user-chosen parameters like number of

6 We donot include the instances of such trivial cases of ‘NO PATH’ in our tables here.

13

Figure 11: Bugtrap. Figure 12: Input200: 200 random triangles.

Figure 13: Input300: 300 random triangles.

sample points, budgeted times for preprocessing and query,with default values 5000 points, 5s and 5s. Ideally, one
would like to have an automatic process to find an optimal number of sample points that can result in a free path (if
one exists). Unfortunately, the PRM of OOPSMP is poorly designed for such experiments, since each run needs user
interactions to specify the parameters and other settings,and hence we were not able to make the process automatic.
We did experiment with one instance, on bugtrap with triangle robot of radius 22 (i.e., the instance with No. 7, bugtrap
(22), in the two tables): we first tried with 1000 sample points (33ms), no path found, then increased for another
1000 samples (another 34ms) to get 2000 samples, still no path. We then repeated the incremental process: another
1000 samples were added (another 34ms) to get 3000 samples total, no path; finally, after adding 1000 more samples
(another 36ms, 4000 samples total), a free path was found (via query) in 3ms. Overall, the incremental sampling
up to 4000 points took 137ms overall, plus the final query timeof 3ms, thus a total of 140ms (plus much longer user
interaction time!). For all other runs of PRM, we just used the default values (5000 samples), and increased the number
of samples if 5000 was not enough to find a path. For RRT, the RRTof OOPSMP (RRT-OOP) does not allow the user
to fine-tune any parameters, while RRT-JML provides additional flexibility to adjust parameters such as step size and
goal bias, for which we tried for each instance to find reasonable values to use; the resulting number of samples are
also shown in the table.

From the top portion of the bottom table, we see that our running times are competitive with PRM and RRT: among
the 8 instances listed, we are the fastest in 4 of them, and thesecond fastest in another 3 of them; for the remaining
instance we are the third. In some cases we are much faster than all others. In particular, for the instance of ‘NO
PATH’ (No. 8), our method stopped and reported ‘NO PATH’ easily in 746ms, while for PRM we gave up after trying
125000 samples (32375ms), for RRT-JML we gave up after trying the run of 500000 samples (134912ms), and for
RRT-OOP we gave up after using up the maximum allowed run-time of 60000ms. Clearly our method is much more
advantageous.

Finally, we compared our disc robot with PRM and RRT-OOP (we do not have the RRT-JML code for disc robot).
For both PRM and RRT-OOP, the robot must be a polygon; we approximated the disc robot by a same-radius regular

14

20-gon. The results are shown in the bottom portion of the bottom table. Note that for the row of No. 4, PRM used
25000 samples since no path was found for 5000 samples. For the row of No. 5, which is an instance of ‘NO PATH’,
for PRM we gave up after using 125000 samples, and for RRT-OOPwe gave up after using up the maximum allowed
run-time of 60000ms. From the table, we can see that clearly our method is significantly faster than all others in all
instances.

No. Obstacle robot α β eps time free stuck mixed mixed
(input) (radius) (x, y, θ) (x, y, θ) (ms) ≤ ε > ε

1 bugtrap disc(14,GBF) 200,350 60,50 1 16 3867 2076 3403 462
2 disc(14,GBF) 200,350 60,50 2 10 1779 943 1750 275
3 disc(14,GBF) 200,350 60,50 4 5 854 460 801 151 (*)
4 disc(15,GBF) 200,350 60,50 0.5 30 8036 4193 6887 913
5 disc(25,GBF) 200,350 60,50 1 18 3260 1709 2984 415 (*)
6 tri(14,GBF) 200,350,0 60,50,0 5 245 19394 26 31121 220
7 tri(22,GBF) 200,350,0 60,50,0 5 482 39482 1556 57546 3880
8 tri(50,GBF) 200,350,0 60,50,0 5 746 55864 4153 79411 9025 (*)
9 input150 disc(7,RAN) 200,270 20,20 2 428 6892 10082 8027 1955
10 tri(7,GBF) 200,270,0 20,20,0 5 10 945 0 1334 360
11 tri(7,BFS) 200,270,0 20,20,0 5 1349 152841 366 0 608432
12 tri(7,RAN) 200,270,0 20,20,0 5 315 32179 1028 101322 32477
13 tri(7,GBF) 325,425,0 20,20,0 5 216 10233 129 19382 1389
14 input200 disc(5,BFS) 130,460 20,20 2 16 2590 4891 0 5636
15 disc(5,GBF) 130,460 20,20 2 15 283 99 230 131
16 tri(5,GBF) 130,460,0 20,20,0 2 89 16866 160 0 29602
17 tri(5,BFS) 130,460,0 20,20,0 2 1742 182866 1036 0 747445
18 tri(5,RAN) 130,460,0 20,20,0 2 3940 331830 7044 0 1408722
19 input300 disc(7,BFS) 230,210 480,10 4 23 3785 11284 7465 0 (*)
20 disc(7,BFS) 230,210 480,10 1 35 6439 15339 0 11052
21 disc(3,GBF) 230,210 480,10 1 29 3986 1760 3529 1001
22 tri(7,GBF) 230,210,0 480,10,0 4 32 5212 0 0 11686
23 tri(7,BFS) 230,210,0 480,10,0 4 2101 110005 667 0 899054
24 tri(7,RAN) 230,210,0 480,10,0 4 7470 371119 8539 0 2694907
25 tri(7,GBF) 10,500,0 480,10,0 4 478 25893 106 42274 2245

No. Obstacle Tri(GBF) PRM RRT-JML RRT-OOP
input file Time No. of Prep. Query Total No. of Step Goal Time Time
(robot radius) (ms) Samples (ms) (ms) (ms) Samples Size Bias (ms) (ms)

6 bugtrap (14) 245 5000 256 3 259 37009 0.05 0.5 922 277
7 bugtrap (22) 482† 5000 270 3 273 156276 0.01 0.1 24092 796
8 (*) bugtrap (50) 746 125000 32368 7 32375 500000 0.01 0.1 134912 60000
10 input150 (7) 10 5000 176 2 178 4309 0.05 0.5 270 17
13 input150 (7) 216 5000 176 2 178 7635 0.05 0.5 375 62
16 input200 (5) 89 5000 203 5 208 18757 0.05 0.5 1624 151
22 input300 (7) 32† 5000 145 0.3 145.3 3538 0.05 0.5 398 14
25 input300 (7) 478† 5000 145 0.3 145.3 57619 0.05 0.5 2390 945

Obstacle Disc(GBF) PRM RRT-JML RRT-OOP
input file Time No. of Prep. Query Total No. of Step Goal Time Time
(robot radius) (ms) Samples (ms) (ms) (ms) Samples Size Bias (ms) (ms)

4 bugtrap (15) 30 25000 2135 9 2144 N/A 3979
5 (*) bugtrap (25) 18 125000 22594 3 22597 N/A 60000
15 input200 (5) 15 5000 23438 7 23445 N/A 2335
21 input300 (3) 29 5000 765 2 767 N/A 1129

Table 1: In the top table, the effect of increasingε is seen in the first three rows. The ’NO PATH’ instances are marked with “(*)” in the last column.
In the bottom table, each row is an instance of the row in the top table with the corresponding line number (the “No.” entry). Among the running
times of various methods, the winner is shown in bold, and ourresults marked with “†” are the second fastest. The ’NO PATH’ instances are marked
with “(*)” in the first column.

8. Conclusions

The motion planning literature has a bipolar nature – many algorithms are theoretically sound but unimple-
mentable, others are practical but lack theoretical foundations or proper implementation. The dominant approach
based on randomization offer some theoretical guarantees but they have issues: there are no guarantees in case of NO
PATH, and “expansiveness” assumptions [18] are non-verifiable. This paper takes up the classic subdivision paradigm
to develop a theoretically sound alternative. To aid the development of such algorithms, we introduce soft predicates
and demonstrated their use in subdivision planners. We introduced the concept of resolution-exact planners, and de-
signed the first examples of such algorithms. We also show theinherent indeterminacy of resolution-exactness. Finally,
our implementations validate the claims that our theory is practical; the experiments demonstrate that our approach is
competitive with PRM in speed, despite our much stronger guarantees.

15

According to Zhang et al. [45], implementations of exact motion planning algorithms areonly known for simple
planer robots (like ladders or discs) and up to 3 degrees of freedom. Thus it is important to pay attention to imple-
mentability. We propose to give up exactness for the weaker notion of resolution-exactness. Little is lost by this step,
since exact algorithms are ill-matched to the inherent inaccuracies of physical systems. But we have much to gain:
Subdivision algorithms are more holistic, integrating theconcerns of topological correctness with geometric accuracy
into one algorithm.

The techniques of this paper can be extended to robots with complex geometry (e.g., the “gear” robot [45]). We
could decompose the complex robot geometry into a union of (possibly overlapping) triangles. If we now have soft
predicates for each of the triangle robots, we could composethem into a soft predicate for the complex robot. This
remarkable decomposition property of soft predicates has no analogue in exact algorithms. A subtlety is that the
triangle robots are not free to choose its origin; this freedom was exploited in Section6 above. This extension will be
described in a followup work.

Several open problems are raised by this research. (1) Clearly, a more general theory of subdivision planners can
be developed; see our companion paper [44] where many of the ideas here are generalized. (2) We can extend our work
to subdivision ofSE(3) = R

3 × SO(3), and believe this too can be competitive with PRM. Note that no general exact
algorithms have been implemented forSE(3). (3) Note that we have not tried to compute the connected components
of STUCK boxes. Doing this can lead to fast termination in the case of “NO PATH”. However, maintaining this
information runs into interesting issues of computationaltopology. Edelsbrunner and Delfinado’s work on computing
the Betti number of a 3-complex offers some clues here [11]. (4) General investigation of various search strategies,
including probabilistic ones is needed.

We plan to explore other variants of our search strategies with an eye to simplicity, implementability, and correct-
ness. Our approach can be extended to more demanding motion planning problems such as kinodynamic problems or
those with differential constraints.

Acknowledgments

We thank Prof. Jyh-Ming Lien and his student Zhonghua Xi for sharing their RRT code with us, which was used
to conduct some of the experiments in this paper.

References

[1] M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion planning by dynamically maintaining
single-source shortest paths trees.IEEE Trans. Robotics and Automation, 11(2), 1995.

[2] M. Barbehenn and S. Hutchinson. Toward an exact incremental geometric robot motion planner. InProc.
Intelligent Robots and Systems 95., volume 3, pages 39–44, 1995. 1995 IEEE/RSJ Intl. Conf., 5–9, Aug 1995.
Pittsburgh, PA, USA.

[3] R. Bohlin and L. Kavraki. A randomized algorithm for robot path planning based on lazy evaluation. In P. Parda-
los, S. Rajasekaran, and J. Rolim, editors,Handbook on Randomized Computing, pages 221–249. Kluwer Aca-
demic Publishers, 2001.

[4] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, and M. Mason. Robot Motion: Planning and Control.
MIT Press, 1982.

[5] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with rotation. In
Proc. 8th Intl. Joint Conf. on Artificial intelligence - Volume 2, pages 799–806, San Francisco, CA, USA, 1983.
Morgan Kaufmann Publishers Inc.

[6] M. Burr and F. Krahmer. SqFreeEVAL: An (almost) optimal real-root isolation algorithm.J. Symbolic Compu-
tation, 47(2):153–166, 2012.

[7] M. Burr, F. Krahmer, and C. Yap. Continuous amortization: A non-probabilistic adaptive analysis technique.
Electronic Colloquium on Computational Complexity (ECCC), TR09(136), December 2009.

[8] J. Canny. Computing roadmaps of general semi-algebraicsets.The Computer Journal, 36(5):504–514, 1993.

16

[9] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. Yap. Shortest paths for disc obstacles is computable. In21st
ACM Symp. on Comp. Geom., pages 116–125, 2005. June 5-8, Pisa, Italy.

[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT Press, Boston, 2005.

[11] C. Delfinado and H.Edelsbrunner. An incremental algorithm for Betti numbers of simplicial complexes on the
3-sphere.Computer Aided Geom. Design, 12:771–784, 1995.

[12] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning: Robots
with decoupled dynamics bounds.Algorithmica, 14:443–479, 1995.

[13] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.

[14] GNU MP Homepage, Since 1991. GNU MP (=GMP) is a free C++ library for arbitrary precision arithmetic on
integers, rationals and floating point numbers. URLhttp://gmplib.org.

[15] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics. In J. E. Goodman and J. O’Rourke, editors,Handbook of
Discrete and Computational Geometry, chapter 41, pages 755–778. CRC Press LLC, 1997.

[16] K. Hauser. Motion planning for legged and humanoid robots. PhD thesis, Stanford University, Dec 2008.
Department of Computer Science.

[17] M. Hemmer, O. Setter, and D. Halperin. Constructing theexact Voronoi diagram of arbitrary lines in three-
dimensional space. InAlgorithms – ESA 2010, volume 6346 ofLecture Notes in Computer Science, pages
398–409. Springer Berlin/ Heidelberg, 2010.

[18] D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic roadmap planning.
Int’l. J. Robotics Research, 25(7):627–643, 2006.

[19] L. Kavraki, P. Švestka, C. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces.IEEE Trans. Robotics and Automation, 12(4):566–580, 1996.

[20] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, 1991.

[21] S. M. LaValle.Planning Algorithms. Cambridge University Press, Cambridge, 2006.

[22] R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[23] MPFR Homepage, Since 2000. URLhttp://www.mpfr.org/. MPFR is a C++-library for multi-precision
floating-point computation with exact rounding modes.

[24] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of a disc.J. Algorithms, 6:104–
111, 1985. Also, Chapter 6 inPlanning, Geometry, and Complexity, eds. Schwartz, Sharir and Hopcroft, Ablex
Pub. Corp., Norwood, NJ. 1987.

[25] E. Plaku, K. Bekris, and L. Kavraki. OOPS for motion planning: An online open-source programming system.
In IEEE Intl. Conf. Robotics and Automation, pages 3711–3716, 2007.

[26] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic motion planning and its applications.SIAM
J. Computing, 30:161–190, 2000.

[27] M. Sagraloff. When Newton meets Descartes: A simple and fast algorithm toisolate the real roots of a polyno-
mial. In Proc. ISSAC 2012, pages 297–304, 2012.

[28] M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex root isolation. In I. Z. Emiris,
editor,36th Int’l Symp. Symbolic and Alge. Comp., pages 353–360, 2011. June 8-11, San Jose, California.

[29] O. Salzman, M. Hemmer, B. Raveh, and D. Halperin. Motionplanning via manifold samples. InProc. European
Symp. Algorithms (ESA), 2011.

17

[30] J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. the case of a two-dimensional rigid polygonal
body moving amidst polygonal barriers.Communications on Pure and Applied Mathematics, 36:345–398, 1983.

[31] J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General techniques for computing topological
properties of real algebraic manifolds.Advances in Appl. Math., 4:298–351, 1983.

[32] J. T. Schwartz, M. Sharir, and J. Hopcroft, editors.Planning, Geometry and Complexity of Robot Motion. Ablex
Series in Artificial Intelligence. Ablex Publishing Corp.,Norwood, New Jersey, 1987.

[33] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder I: topological
analysis.Communications in Pure and Applied Math., XXXIX:423–483, 1986. Also: NYU-Courant Institute,
Robotics Lab., No. 32, Oct 1984.

[34] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder II: efficient compu-
tation of the diagram.Algorithmica, 2:27–59, 1987. Also: NYU-Courant Institute, Robotics Lab., No. 33, Oct
1984.

[35] V. Sharma and C. Yap. Near optimal tree size bounds on a simple real root isolation algorithm. In37th Int’l
Symp. Symbolic and Alge. Comp.(ISSAC’12), pages 319 – 326, 2012. Jul 22-25, 2012. Grenoble, France.

[36] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. Topology preserving surface extraction using adaptive
subdivision. InProc. Symp. on Geometry Processing (SGP’04), pages 235–244, 2004.

[37] G. Varadhan and D. Manocha. Star-shaped roadmaps - a deterministic sampling approach for complete motion
planning. InRobotics: Science and Systems, pages 25–32, 2005.

[38] G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral models.Graph. Models,
68(4):343–355, 2006.

[39] C. Yap, V. Sharma, and J.-M. Lien. Towards Exact Numerical Voronoi diagrams. In9th Proc. Int’l. Symp. of
Voronoi Diagrams in Science and Engineering (ISVD)., pages 2–16. IEEE, 2012. Invited Talk. June 27-29, 2012,
Rutgers University, NJ.

[40] C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap, editors,Advances in Robotics, Vol. 1:
Algorithmic and geometric issues, volume 1, pages 95–143. Lawrence Erlbaum Associates, 1987.

[41] C. K. Yap. AnO(n logn) algorithm for the Voronoi diagram for a set of simple curve segments.Discrete and
Comp. Geom., 2:365–394, 1987. Also: NYU-Courant Institute, Robotics Lab., No. 43, May 1985.

[42] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,Handbook of Discrete
and Computational Geometry, chapter 41, pages 927–952. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition,
2004.

[43] C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt, and S. Näher, editors,Efficient Algorithms,
volume 5760 ofLect. Notes in C.S., pages 308–407. Springer-Verlag, 2009.

[44] C. K. Yap. Soft Subdivision Search in Motion Planning. In Proceedings, Robotics Challenge and Vision Work-
shop (RCV 2013), 2013.Best Paper Award, sponsored by Computing Community Consortium (CCC). Robotics
Science and Systems Conference (RSS 2013), Berlin, Germany, June 27, 2013. The full paper is available from:
http://cs.nyu.edu/exact/papers/.

[45] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labelling and path non-existence computation using C-
obstacle query.Int’l. J. Robotics Research, 27(11–12), 2008.

[46] D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path planning.IEEE Transactions
on Robotics and Automation, 7:9–20, 1991.

18

	Introduction
	On Numerical Computational Geometry
	Subdivision Motion Planning
	Let us Design Soft Predicates!
	Resolution Exactness
	Rotational Degree of Freedom
	Experimental Results
	Conclusions

