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Abstract

We propose to design new algorithms for motion planning jgmis using the well-known Domain Subdivision
paradigm, coupled with “soft” predicates. Unlike the ttamhal exact predicates in computational geometry, our
primitives are only exact in the limit. We introduce the watiof resolution-exact algorithmsin motion planning:
such an algorithm has an “accuracy” constidnt 1, and takes an arbitrary input “resolution” parameter O such
that: if there is a path with clearanée, it will output a path with clearance/K; if there are no paths with clearance
e/K, itreports “NO PATH". Besides the focus on soft predicates,framework also admits a variety of global search
strategies including forms of the A* search and probaliiliséarch.

Our algorithms are theoretically sound, practical, easintplement, without implementation gaps, and have
adaptive complexity. Our deterministic and probabilisti@tegies avoid the Halting Problem of current probatilis
cally complete algorithms. We develop the first provablytaeon-exact algorithms for motion-planning problems
in SE(2) = R? x S*. To validate this approach, we implement our algorithms thiedexperiments demonstrate the
efficiency of our approach, even compared to probabilisticrélyos.

Keywords: computational geometry; exact algorithms; subdivisigpathms; motion planning; robotics; soft
predicates; resolution-exact algorithms.

1. Introduction

A central problem of robotics is motion planning RO, 21, 10]. In the early 80’s there was strong interest in this
problem among computational geometdr§ [32]. This period saw the introduction of strong algorithmichieiques
with complexity analysis, and the careful investigatiortiod algebraic configuration space (C-space). In particular
Schwartz and Sharii3fl] showed that the method of algebraic cell decompositionusigersal solution for motion
planning. We introduced the retraction method24,[33, 34]. In the first survey of algorithmic motion planning(,
we also showed the universality of the retraction method.is Tethod is now commonly known as the road map
approach, popularized by Canrg] ivho showed that its algebraic complexity is in single exguiial time. Typical
of algorithms in Computational Geometry, these exact nmgianning algorithms assume a computational model in
which exact primitives are available in constant time. leménting these primitives exactly is non-trivial (certgin
not constant time), involving computation with algebraicmbers.

In the 1990s, interest shifted back to more practical tegpines. Today, the dominant approach is based on sam-
pling, usually combined with randomization. The most welbwn representative of the sampling approach is the
probabilistic roadmap method (PRM) [19]. The idea is to compute a partial road map by random samplirnige
C-space. PRMfbers a computational framework for a large class of algorithiioreover, many variantsf the basic
framework have been developed. s2#& [L0]. Most sampling methods take sample points in configuratjmace, but
the recent paper from Halperin’s grol28] takes sample (parametrized) subsets of configuratiorespa@n invited
talk at the IROS 2011 Workshop on Progress and Open ProbleMstion Planning, J.C. Latombe stated that the
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major open problem of sucBampling Methodsis that they do not know how to terminate when there is no free
path. In practice, one would simply time-out the algorithmt this leads to issues such as the “Climber’s Dilemma”
[16, p. 4] that arose in the work of Bretl (2005). We call this tiedting problem of PRM, viewed as the ultimate
form of what is popularly known as the “Narrow Passage ProbleL0, p. 216]. Latombe’s talk suggested promising
approaches such as Lazy PRB].[The theoretical foundation of PRM is based on two prinesplprobabilistic com-
pleteness, and fast convergence under certain “exparsiséassumptiond B] about the environment. It is unclear
how to check these assumptions on specific environmentsa Eomprehensive overview of motion planning, see
Lavalle [21] and Choset et al1[)].

In this paper, we turn to a third popular approadt] for motion planning, which we catbubdivision Methods
The general idea is to subdivide some bounded domgitypically a subset oRY. In motion planning, the domain
is a subset of configuration space. In its simplest form, tinelivision ofBg can be represented asabdivision tree,
which is a generalization of binary trees<£ 1) or quad-treesd= 2). An early reference for this approach is Brooks
and Lozano-Peres]. Recent subdivision references includis[2, 45, 12, 26]. Manocha’s group has been active
and highly successful in producing practical subdivisitgoathms for a variety of tasks, not just in motion planning
(e.g., B8, 36]). Domain subdivisions are sometimes known as “cell deausiipn” (e.g., £6€]), but we reserve “cell
decomposition” for the approaches based on partitioniegtinfiguration space into algebraic “cells” with bounded
combinatorial complexity that are directly correlatedwttie combinatorial features on the obstacles (€36, 40]). In
contrast to such cells, the boxes in subdivision approaateesiore related to “resolution”. Nevertheless, subdivisi
that takes into account combinatorial complexity may ba&se¢45, 46]. Such kinds of subdivision algorithmsfer
tantalizing opportunities for new kinds of complexity aygs. Examples of such analysis may be see2& 35, 7].

q1. Contributions of This Paper. Although subdivision algorithms have been widely used cptioners,
their theoretical foundations have so far been lackings plaper begins this task.

The notion of “resolution completeness” is widely used ie thotion planning literaturel D] but rarely analyzed
(Section &discusses some issues). Our first contribution is to intedhe concept ofesolution-exact(or e-exact)
planners. Such planners accept an inpasolution parametere > 0. The planner has accuracy constantK > 1,
independent of the input, such that if there is a path of elezeK ¢, it will output a path with clearance/K; if there is
no path of clearance/K, it will output “NO PATH”. As this paper shows, our definitiallows us to devise planners
that avoid the halting problem of PRM. MoreovBection 5notes that the usual concept of “resolution completeness
does not automatically solve the halting problem. But in igemse have we “solved” the halting problem? To be sure,
we arenotsolving the halting problem for exact motion planning — thisuld require exact computation, something
we wish to avoid in robatics. Insteaghexactness weakens the requirements for the “NO PATH” dutput is this
just a trick to solve the halting problem by fiat? No, we archa bur weakening is not only justifiable, but desirable:
good engineers know the limits of accuracy in their sensactjators, robot dimensions, etc. Path planning that
depends on accuracy beyond these limits is not realistén dangerous. Note that when we output “NO PATH”, we
guarantee that there exists no path with cleardtcghis is the contrapositive of the statement just menticaizal/e:

“if there is a path of clearand€e, it will output a path with clearance/K”); no similar guarantees can come from
PRM. With this information, users can choaskbased on engineering limits so that when we declare “NO PARE”
further search is warranted.

Our second contribution is the introductionsuift primitives for designing resolution-exact planners. Briefly, soft
primitives are suitable numerical approximations of exaetrd) primitives. Such primitives are perhaps nascent in
previous literature. But by making this idea explicit, weeapup many new possibilities, as well as lay the groundwork
for a systematic investigation of such algorithms. Suchijiives are relatively easy to implement correctly (i.eere
are no “implementation gaps” in such algorithms).

Third, we design new planners based on soft predicates. eTalgerithms are the first explicit examples of
resolution-exact planners. Our algorithms can use varseasch strategies, including probabilistic ones. Halting
is guaranteed even in our probabilistic planners.

Our final contribution is the development and implementatid the first resolution-exact algorithms for rigid
robots with configuration spa&&(2) = R? x St. Our experiments demonstrate thefieetiveness.

”

2. On Numerical Computational Geometry

Computational Geometry (CG) has traditionally conceerttainExact Methods The attractive features of exact
algorithms are well-known. The drawback of such methodsp®sed when we start to implement the algorithms. The
inability of Exact Methods to have wider impact on roboticsldields of Computational Sciences and Engineering



(CS&E) despite the fact that geometric reasoning is ceimthkese fields calls for a re-examination of our assumptions
We argue that Subdivision Algorithms, whiecombined with soft primitives, fer a pathway for CG’ers to design
new algorithms based on numerical approximations that@ttefractical and theoretically sound. Our soft primitives
do not entail error analysis in the style of numerical analysther, we rely on interval methoda7. Algorithms in
“Numerical CG” in this sense are distinctlyfiirent from the usual exact algorithms (s&8] for a general discussion).

One limitation of numerical primitives is that they are orlymplete in the limit. They also cannot detect degen-
eracies unless we use zero boundd.[ Luckily for us, this is not an issue for resolution-exatamqmers and many
other applications. But there are some problems (e.g. iggtmh methods for Voronoi diagram89]) for which it is a
challenge to handle degeneracies using only soft predic@e the other hand, numerical methods have the advantage
of greater generality, being applicable to non-algebredbfems where exact solutions are generally unknown (see a
rare exception in9]). Numerical CG will open up completely new areas for CGers

The conventional wisdom of roboticists (see Choset el @l p. 202]) is that Subdivision Methods arffextive
only up to “medium” degrees of freedom (DOFs) while Samplingthods can befeective for much higher DOFs.
This remark is borne out by currently implemented plannBtg.we do not see any inherent reason for this gap. Use
of randomness is not a reason — as we will see, it is easy toylesghdom search strategies in Subdivision Methods.
We believe that the current reach of Subdivision Methods ation planning can be greatly extended with better
(perhaps randomized) search strategies. More generalyg the supposed limitation of subdivision extend beyond
motion planning? Pessimistic views of subdivision oftesuase that the size of subdivision trees is exponential in the
inverse resolution /. This only shows that adaptivity in subdivision is critic@ome recent examplegq, 6, 35
suggest that adaptive approaches can guarantee optimaizes, even in the worst case sense. Also the exploitation
of Newton-type techniques in subdivision is very promidiagy., R7]). All these point to many new opportunities for
algorithmic development in Numerical CG.

3. Subdivision Motion Planning

In this section, we illustrate our approach with a basic orofilanning problem. Fix a rigid rob& ¢ R? and an
obstacle se® ¢ RY. Both Ry andQ are closed sets. Initially we assumRgis ad-dimensional ball of radiug > 0.

Suppose we want to compute a motion from an initial configomat to some final configuratiof. One of the
best exact solutions whe®y is a ball is based on roadmaps (i.e., retraction approadbkfotitally, the casé = 2 was
the first exact roadmap algorithia4]. For polygonak, the roadmap isféciently computed as the Voronoi diagram
of line segments41, 13]. Ford = 3, itis clear that a similar exact solution is possible. Beitehwe see the limitations
of exact solutions: there is no known exact algorithm for¥heonoi diagram of polyhedral obstacleks] 39]. The
configuration spaceor CspacelS RY whenRy is a ball. In general, we Writ€spacd Ro) for the configuration of a robot
Ro. Leta,B € Cspace Thefootprint of Ry at e is the setRy[a] comprising those points ilRY occupied byRy in
configuratione (whereRy is centered atr). We saya is free if Ro[a] N Q is empty; it issemi-freeif it is not free
but Ro[a] does not intersect the interior 6f. Thusa is semi-free ifRp[«] is just touchingQ without penetrating it.
Finally « is stuck if it is neither free nor semi-free. Thus, every configurati® classified as free, stuck or semi-free.
We extend this classification to any s Cspace We sayB is free (resp. stuck) if everya € Bis free (resp., stuck).
Otherwise B is mixed (i.e., contains at least one semi-free configuration). W tlefined the (exact)assification
predicate C : 2Cs== — (FREE, STUCK, MIXED}. This classification goes back to the beginning of subdivishotion
planning in Brooks and Pere3][ Our goal in soft primitive design is to avoid this exact gicate.

Let Ctree = Ciree(Ro, Q) C Cspacedenote the set of free configurations. dotion from « to g is a continuous
mapu : [0,1] = CspaceWith £(0) = o andu(1) = 8. We callu afree motion or more simply, gath, if its range
{u(t) : t € [0, 1]} is contained irC+ce. For sets, B C RY, define theiseparationto be  p(A, B) := inf{|la—b|| : a € A,

b € B}. Theclearanceof a configuratiory € Cspaceis the separation betwe®a[y] andQ. Theclearanceof a pathu
is the minimum clearance gdt) for t € [0, 1].

2. Subdivision Trees. Our main data structure is a subdivision tfeaooted at a boBy € RY. The nodes
of 7~ are subboxes dBy, where boxes are closed subsets of full dimensipand each internal nodgis split into
2 (i = 1,...,d) congruent subboxes which form the childrenBf We remark that boxeB are axes-parallel and
not assumed to be square, witidth w(B) andlength ¢(B) defined to be the lengths of the shortest and longest side

3 Subdivision Algorithms could also be combined with hardrptives. But to exploit the full power of Subdivision Meth®e/e must consider
soft primitives.



(resp.). For convergence, we must assume thaagpect ratio ¢(B)/w(B) > 1 is bounded. Any box that can be
obtained as a descendant®fin a subdivision tree is said to lzdigned. Let m(B) denote themidpoint andradius
r(B) be the distance fromn(B) to any corner oB. For any real numbes > 0, lets- B (or sB) denote the congruent
box centered am(B) with radiuss- r(B). Two boxesB, B’ areadjacentif BN B’ is afacet F of B or of B’, where
facets refer to faces of co-dimension 1. Also,Dgi(r) denote theclosed ballcentered am with radiusr.

To allow domains of arbitrarily complex geometry, the infubur algorithm is an initial subdivision trég whose
leaves are arbitrarily markeaN or OFF. The set ofON-leaves forms aubdivision of the region-of-interestROI(7")
of the tree. Subsequently, can beexpandedat anyoN-leaf B, by splitting Binto 2 (1 < i < d) congruent subboxes
who become the children &.

q3. A Subdivision FindPath Algorithm. Our algorithm is givere > 0 and an initial7, rooted atBy. The
algorithm is parametrized by two subroutines: a classiticgbredicateC(B) for boxes, and a subroutirs@lit(B, €)
which returns a subdivision @ into 2 (for somei = 0, ..., d) congruent subboxes; the split subroutine is saifdiio
if w(B) < & (in this case = 0). Recall that we assume the aspect réfi) /w(B) to be bounded. We usE to search
for a path inBy N Cyree @s follows. LetV(7") denote the set of free leavesRAI(77). We define an undirected graph
G(7") with vertex seV(7") and edges connecting pairs of adjacent free boxes. We airathe connected components
of G(7") using the well-knowrnion-Find data structure ol (7°): givenB, B’ € V(7°), Find(B) returns the index of
the component containing, andUnion(B, B) merges the components Bfand ofB’.

We associate witli™ a priority queue = Qg to store all the mixed leavéswith widthw(B) > . Let7.getNexf)
remove a box irQ of highest “priority”. This priority is discussed below. Vdenote byBox-(«a) (resp.Box-(5)) the
leaf box in7~ containinga (resp.B). Let B be Box-(a) or Box-(B) or a leaf box returned by .getNexf). We will
expandB as follows: first callSplit(B, ). If Split(B, &) fails, we returnfail (note that it never fails iB is a box
returned by7.getNexf)). Otherwise, each of the subboxBsreturned bySplit(B, ) is made a child oB. We
label B" with the predicatec(B’). If C(B’) = FREE, we insertB’ into V(7") and into the union-find structure, and
for eachB” € V(7") adjacent toB’, we add an edgel(, B”) to the graphG(7") and callUnion(B’, B”). Finally, if
C(B’) = MIXED andw(B’) > &, we insertB’ into Q. Thus, mixed boxes of width ¢ are discarded (Eectively regarded
asSTUCK). Now we are ready to present a simple but useful subdivisigorithm:

FindPath:
Input: Configurationg, 8, tolerances > 0, box B, € R¢.
Output: Path fromu to 8 in Freg(Ry, Q) N Bo.
Initialize a subdivision tre& with only a rootB,.
1. While Box-(a) # FREE)
If (Expand Box-(e) fails) Return("No Path”).
2. While Box-(B) # FREE)
If (Expand Box-(B) fails) Return("No Path”).
3. While Find(Box-(@)) # Find(Box-(B)))
If Qs is empty, Return("No Path”)
* B «— 7 .getNexf)
ExpandB
4, Compute a channé from Box-(«) to Box-(B).
Generate a patR from P and Returrip)

In Step 4, thechannel P is a sequencel, . . ., By) of boxes whereB;, B;,; are adjacent. We also cd# an F-
channelsince theB;’s are all free. We easily convert an F-channel into a pathréectory) which is a parametrized
pathP : [0, 1] — Csreefroma to. Itis also easy to produdthat satisfies reasonable constraints such as smoothness.
This ability to generate a path is a benefit of subdivisionhods over pure algebraic methods. Freeness is essential
for our use of the extremelyfigcient Union-Find data structure. The use of Union-Find wappsed in 21].

In contrast to F-channels, Zhu-Latomi] usesM-channels (comprised offREE or MIXED leaf boxes). Their
idea is to attempt to find an F-channel along the “shortestthdnnel, by expanding all tiéIXED boxes in the
channel. Subsequent researchers (Barbehenn-HutchRjsomd Zhang-Manocha-Kind]) continued this approach.
Barbehenn and Hutchinso8, [1] introduced the highly &icient Dijkstra or the related A* search. The challenge in
their approach is how tofciently update the A*-structure after expansions alongukehannel.

The routine7 .getNexf) in Step (*) is not fully specified; the correctness of ouarpier also does not depend
on 7 .getNexf). Nevertheless, it is critical for performance. There ar@ny possible strategies for implementing
getNexf). For instancegetNexf) may return a random box in the queue, or use the BFS straféggan implement



a Dijkstra-like or A* strategy by lettingietNex¢) return a mixed leaf that is adjacent to the connected compioof
Box-(@). By alternating between two or more of these strategiegetvé@ybrid strategies. Another idea is to use some
entropy criteria. Recent work on shortest-path algorithSIS road systemsfters many other heuristics.

Our FindPath algorithm is not our claim to novelty. Nevel#iss, it has interesting features, including great
potential for adaptivity through itgetNexf) strategy. In contrast, non-adaptive uniform grid apphess (e.g.,41,
p. 185]) is widely used. Although grids are superficially g&mto subdivisions, grids use point-based operationsavhi
our theory is based on box (interval) operations (see §etniform grid translates into breadth-first search styate
for getNexf), but we can do much better.

4. Let us Design Soft Predicates!

The preceding FindPath is based on the exact pred@d@ge Our main interest in the Subdivision Method lies
in its ability to replaceC(B) by some “soft” versiorC(B) which is easy to compute and correct in the limit. We now
formalize this.

q4. Soft Predicates. Let C(B) be a box predicate that returns a valu¢HREE, STUCK, MIXED} . We callC a soft
version of C if two conditions hold:

(A1) It is conservative i.e.,C(B) # MIXED impliesC(B) = C(B). N
(A2) Itis convergent i.e., if {Bj : 1 =1,2,..., 00} converges to a configuration thenC(B;) = C(y) for
large enougt.

We need a quantitative measure of the convergence rate. £ et @ 1 and8 be any class of boxes. A soft versién
of C is said to ber-effective (or haveeffectivity factor o) for 8 if C(B) = FREE impliesC(cB) = FREE for all Be B
(recall thatoB is the congruent box centeredra{B) with radiuse - r(B)). One might imagine a stronger condition
thatC(B) # MIXED impliesC(oB) # MIXED for all B € B, but our current definition stices for our main Theorem A.
For example, we will prove that our soft predicates belowetiiective for any clas® of boxes with bounded aspect
ratio.

ro+r(B)
B o
~J/ro - r(B) X
r(B) "
W\’(B)J
S
@) W (B) (b)

Figure 1: (a) DomaingVv*(B) andW~(B). (b) Condition (S1) holds.

We now design soft predicat€sassuming? ¢ R? is a polyhedral set, and the boundarybfs partitioned into a
simplicial complex comprising relatively open cells of batmension. For simplicity, assungde= 2. These cells are
calledfeaturesof Q. The features of dimensions 0 and 1 are catiedhersandedgeqresp.). Each boB is associated
with three sets: iteuter domain W*(B), inner domain W~(B), andfeature set¢(B). When the roboR, C R? is
a ball of radiusrg, W*(B) ¢ R? andW~(B) C R? are defined as the diskBmg)(ro + r(B)) and Dmg)(ro — r(B)),
respectively. See FigutKa). If ro < r(B), thenW~(B) is empty. Also¢(B) comprises the features 6fthat intersect
W*(B). We callB simple if one of the following conditions holds:

(SO)Its feature sep(B) is empty. Equivalently, no feature 6f intersects its outer domaiv* (B).
(S1)Some feature of2 intersects its inner domaWw~(B). Thus (S1) holds in the FigutKb) because of
the red triangle obstacle.

The soft predicat€ can now be defined: for our purposes, we only need to d EX( for aligned boxes3. Thus
we can use induction by depth. Bfis non-simple, declar€(B) = MIXED. Else if (S1) holds, declai€(B) = STUCK.
Otherwise, (S0) holds and cleatByis either free or stuck, and we defi@éB) = C(B) accordingly.



We now come to computing(B), but only in the context wherB is a leaf of a subdivision tree. ObserveBifis
a child of B, thenW*(B’) is contained inN*(B). This implies the followinglistributional approach of computing
¢(B) is valid: when we expan®, we can distribute the features ¢ifB) to each of its children. Note that a feature
can be given to more than one child, or to no child (when itrsgets now*(B’)). Moreover, we can check the
conditions (S1) and (S0) during this distribution. Finaify(S0) holds, we determin€(B) as follows:C(B) = FREE
(resp.STUCK) iff m(B) is outside (resp. inside) the obstafleTo decide between these two cases, note that by a linear
search of the non-empty s¢¢B.paren), we can find the featuré in ¢(B.paren that is closest tan(B). We have 2
possibilities: (1)f is an edge. Assume that edges are oriented so that we care deséid) a orientation test whether
m(B) is inside or outsid& in the neighborhood of. (2) f is a corner. We calf a convex(resp.,concave corner
if, for any suficiently small ballD centered af, the seD N Q is a convex (resp., concave) set. Every corner is either
convex or concave. Moreovef,is convex ff m(B) is outsideQ (iff B is free).

Suppos& is given as the union of a set of polygons that may overlap &itiiation arises in Section 7). Moreover,
¢(B) is defined to comprise features in these (possibly overap)molygons. We extend the above FREEUCK
test for (S0) as follows: again linearly seai{B.parenf), and foreachobstacle polygos appearing inp(B.parent),
find the featuref C dS that is closest tan(B). Thenm(B) is outsideQ (andB is free) if m(B) is outsideall such
polygonssS.

Lemma 1. The predicateC is a soft version of C for the ball robotoRc R2. When boxes are square8, has an
effectivity factoro = 1/ V2. More generally, if our boxes have aspect ratio at most 1, then the gectivity factor is
o=1/V1+a2.

Proof. To see the #ectivity factor for square boxes, suppose t64B) = FREE for some squar®. Referring to

Figure 2: Hfectivity factor I/ V2.

Figure2, we see that the region bounded by the outer four red segraedtthe outer four red circular arcs does not
intersect the obstacle s@t Clearly, the dotted circle also does not intergeciNote that this dotted circle is centered
at m(B) with radiusr(B) = r + rp, and it is the boundary of the outer domaifi (o-B) of box o-B whose radius is,
wherer = r(B)/ V2. This means that = 1/ V2 and we hav€(cB) = FREE. ThereforeC has an &ectivity factor

o = 1/ V2. In general, leB be a rectangular box with dimensions & 2ew. If Bis free, there is a disc centered at
m(B) of radiusw + rg that does not interse€t. This disc is the outer domain ofB whereo = 1/ V1 + 2. O

The proof easily generalizes to ball robots in every dimemsiVe can now use the soft predic&énstead of the
exact predicat€ to get a resolution-exact algorithm. This will be proveddwel Of course, doing this for the disc
robot is no great achievement since the exact algorithmtisaig quite practical too. But it lays the groundwork for
generalization to more complicated robots for which exaethads are no longer viable.

q5. Implementability.  We claim that our algorithm is easy to implement correctlye Wave designed our
predicates so that they are reduced to comparison of “distbetween sets. In particular, a feattiis in ¢(B) iff

Sep(m(B), f) < r(B) +ro (1)

where &p(A, B) is the separation between s&tsandB. Notice that ) is a comparison of two exact (!) expressions.
There are implicit square roots in these expressions, sxatt @nplementation would be expensive. But we are
not obliged to implement soft predicates exactly — this adrbe said for hard predicates. We provide a simple
implementation method: for any numerical expressiget 0(x) or Ox denote any closed intervad,[b] that contains

x. If the interval has width at most'2, we also write[J,(x). Assume that for any expression x and any given p, we



can compute somé(x). This can be achieved with any software bigFloat package, @18 [14], MPFR [23]). We
define the “lax comparisor? on intervals wherebyd] b] < [a’, b'] holds iff a < b’. Note that the “strict comparison”
would beb < &'. We implement the testl] using this lax comparison:

Op(Sep(m(B), f)) < Op(r(B) + ro) )
wherep = —Igr(B). Let C(B) be the “implemented” version &(B).
LEMMA 2. 6(8) is a soft predicate for (B).

Proof. Recall thatp(B) is the set of features belonging to the bBx Supposes(B) is the set of features that belong
to B when we use the lax comparisen The key observation is that < y implies Opx < Opy. This shows that
#(B) C #(B). The lax comparisor2] implies that

Sep(m(B), f) —r(B) < (r(B) +ro) + r(B)

or, Sep(m(B), f) < 3-r(B) + ro. This shows that the extra featuresi{B) must intersect the disé/*(3B) (the outer
domain of 3B). If a sequence of boxeg; converges to a poitasi — oo, we see thap(Bj) — ¢(q). This implies that
the approximate classificatid®(B;) also converges t&(q). |

J6. Improvements. We can improve the convergence of our soft predicates. ktipea and typical of subdivision
approaches, such improvements can be quite significant ¢egB9]). Let us define the set(B) slightly differently,
by recognizing two regimes for boxes. In the “smBlregime”, i.e.,r(B) < ro, we computep(B) as before. In
the “largeB regime”, i.e.,r(B) > ro, we can defing(B) to comprise those features that intersect the @Bxvhere
a@ = 1+ V2ro/r(B). Checking if a feature intersectsB is simple. This new definition should generally result in
smaller sizes fop(B). For a simple implementation, condition (S1) could be ¢ait its role is to provide an early
stuck decision.

5. Resolution Exactness

We have designed some non-trivial algorithms under ourmseh&Ve now clarify what sort of algorithms these are.
Informally, our algorithms are “resolution complete”. Taeare slightly variant definitions, but a typical (e.®7])
definition says “a planner is resolution complete if it findgadh if one exists provided the resolution parameters are
selected small enough”. This definition does*rszsty what happens if there is no path. Some formulations appea
assume that the resolution is not given but the planner hssaieh for it. Of course, this search would not terminate
if there is no path. Our algorithms in Sectidn(and in Sectior6 as well) have an explicit input > 0, called the
resolution parameter. It is essential that be diferent from 0. To use this parameter, we recall the concept of
“clearance”. Here is an attempt to define resolution conepless with a converse: (f)there is a path with clearance
g, the planner will find a free pathand (ii) if there is no path with clearance, it will report “NO PATH”. Taken
together, this pair of statements cannot be the correct,iagplies that, with sfficient resolution, we can detect the
case where the clearance is exaetlya feat that only Exact Methods can achieve (in which case wétas well
design algorithms witls = 0). What is missing in current discussions of resolution plateness is the concept of an
accuracy constantk > 1. We say that a planner igsolution-exactif there exists an (accuracy) constéat- 1 that
is independent of the input (but may depend on the algoriguah that:

e If there is a path with clearandés, it outputs a path with clearanegK.
e If there is no path with clearanegK, it reports “NO PATH".

What if the maximum clearance of free paths lies strictlyhia tange £/K, Ke]? According to this definition, the
planner is free to report a path or “NO PATH”. In our Theorem éldw, we prove that this cannot be avoidédiis
indeterminacy is the necessary price to pay for resoluggaetnessin our view, this price is not a serious one because
the user has the option to decreasedlparameter as desired. Of course, if we decredse:/K, the indeterminacy

4 In Computer Science, “completeness” concepts typicallyersome “if-and-only-if” connotation. Otherwise, they riche qualified as
“partial completeness”. E.g., “partial correctness” adgmams, or “partial decidability” of problems, etc.



will reappear for input instances that only have paths wigu@nce in the range (K2, £]. But as argued iff1, there
is no infinite regress if we know some hard engineering limitsow much clearance a path should have.

The result of Theorem A below concerns our algorithm ExantiPath in{3 in the 2D case, assuming that all
boxes are squares and we use the exact classifier pre@ilte Recall that in our kact FinoParu algorithm, we
subdivide a box only if its widthv(B) is larger thanthe input resolution parameter> 0. So the smallest boxes in the
subdivision tre¢~ have widtht with £/2 < t < . Now consider the “full expansion” of the subdivision trewvhose
leaves are of the smallest size possible. Recall ff@rthat a channel is a sequend® (..., By) whereB;, Bj,1 are
adjacent. We are interested in a free channel wherd3; andg € By,

Lemma 3. If there exists a motiop with clearances = V2s, then our Exacr FinoParu algorithm outputs a path with
clearances/4.

Proof. Consider the “full expansion” of” as mentioned above, where the leaves have a widtith /2 < t < &.
Consider the subset of such leaves that covar We claim that each leaf box ifl is free: let p be a point inu andB,
be the leaf box wherp lies; since the diagonal & is V2t < V2s = 6, B, lies entirely within the “clearance region”
of p and thusB; is free. ThereforeA consists of free leaf boxes of widttihat coversg; in other words,A is afree
channelll that coversu.

t/2

t2

Figure 3: PattP from a to b with clearance/2 > £/4. A canonical pattP* consists ofra, b3 and essential path, with essential clearandg2.

Since there exists a free chaniietonnectingr andg, our Exact FinoParu algorithm will find somefree channel
IT" connectingr andp (IT" is not necessarilyl, but at leastI exists as a candidate to be found by our algorithm). This
can be justified as follows: consider the subdivision tfeproduced by our algorithmlt produces a subdivision of
ROI(7), and for each free boR in (A, there is a corresponding free Iegifin 7~ that containg. These free leave?',
after pruning redundancies, yield a free chariiiethat coverdl. By definition of the correctness of any path finding
algorithms, a free channBl' connectingr andg will be found iff there exists a free chanrét connectingr andp.

Note thatll’ consists of free aligned boxes connecting frB(n), the free (aligned) box containing to B(B), the
free (aligned) box containing. Since each free box i’ has width at leadf, we can construct a rectilinear pa@h
from the box centea of B(«) to the box centeb of B(B), through the free boxes i’ where each point dP is away
from the box boundary by a distance at le@&t(see Figur@& for an example), and thiBhas clearancg2 > ¢/4.

Our final reported patR is given byP; = @aUPUbg. It remains to show thafa has clearance/4 (and similarly
for bg by the same argument). The key point is to use the factittmiongs tqu and thus has a clearanée= V2s.
We consider the following two cases.

Case (1): The width oB(«) is t. Then for any poing] € a@, d(«, q) is at most half of the diagonal &(«), i.e.,
d(a, q) < V2t/2 < V2s/2 = §/2. Howeverg has clearancé, and thusy € @a has clearancé— d(a, q) > 6/2 > &/4.

Case (2): The width oB(«) is at least 2 We refer to Figurel, where the boundaries of the inner box andB@f)
are apart by a distandg2. Clearly, any point o&a lying inside the inner box has clearance at lég3t> /4. Now
consider the portion aa outside the inner box. Without loss of generality, suppagg ortion lies in the green
shaded rectangle and the slopexafis in the range [01] (for other cases the slopes are in the ranges§1[-1, 0),
and (o, —1) and symmetric arguments apply). Note that t/2 andh < w (since the slope d#a is in [0, 1]), the
diagonal of the green shaded rectangle is at m@y2 < V2s/2 = §/2, i.e., any poing € aa lying in the green
shaded rectangle hdé, ) < 6/2. Sincex has clearancé, suchg has clearancé — d(«e, q) > 6/2 > /4. Therefore,
every point ofea has clearance/4. |
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B(a)
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Figure 4: Segmernia has clearance/4.

We define aressential pathto be a path from the centerof a free boxB(«) containinga to the centeb of a
free boxB(B) containings (e.g., pathP in Figure3). A canonical path P* consists of line segmeni&, bs, and an
essential patt® from ato b. Note that the major task in motion planning is to find an esakpathP, while making
P canonical by addinga andbg is straightforward. We define thessential clearancef a canonical path to be the
clearance of its essential path (see Figd)te

Lemma 4. If there is no free canonical path with essential clearan¢4, then ourExacr FinoPara algorithm reports
“NO PATH".

Proof. We prove the contrapositive: When oux4er FinoPara algorithm finds a path, there exists a free canonical
path with essential clearaneg¢4. Indeed, when our algorithm finds a free path, it finds a séteaf aligned boxes
connecting fronB(«) to B(B). Since each such free box has width at léaste can construct an essential path, which
is a rectilinear path® where each point d? is away from the box boundary by a distance at |¢&5{(see Figure).
Clearly@au P U bg is a free canonical path with essential clearance at t¢ast /4. |

Putting together Lemmedand4, we have the following results for 2D, assuming that all lsoaee squares and
we use the exact classifier predicetd).

THEOREM A: [Hard Predicatel.et Ko, ko > 1 and consider our planneExact FiNpParH.
(i) For Ko = V2, if there is a path with clearanceg&, then our planner outputs a path with clearang@.
(i) For ko = 4, if there is no free canonical path of essential clearange), then our planner reports “NO PATH”.
The results in (i) and (ii) are tight in the following sense:
(i If K o < V2, there are obstacle inpufd admitting paths with clearanceg, but our planner reports “NO PATH".
(i) If ko < 4, there are obstacle input® admitting no paths of clearance/ky but our planner outputs a path.
Proof. (i) and (ii) are Lemmas8 and4 respectively.

(). Consider anyKo < V2. We can have an obstacle ingisuch that it admits a path with clearari¢g:, where
«a lies in the aligned boB = B(«) of our subdivision tree, with widtiw(B) = &, but the robot center cannot be placed
in the red shaded triangle region (see Hj.Note that the diagonal d is V2¢ anda can still have clearandée.
However,B is a mixed box withw(B) = ¢ and thus the expansion & fails. Therefore, our planner reports “NO
PATH”.

Figure 5: Proof of Theorem A (1").

(ii"). Supposeky < 4. Lets:=4 — kg. We now construct an input for our algorithm. Let

Bo=[-4.4]x[-4.4] ro<19, &=4-(5/2)



a = (_3’ 1)’ ﬂ = (3’ 1),

andQ is the union of two half space$(x.y) € R? :y < —u—ro} and{(x,y) e R?: y = 2+ u + o} for some small
u € (0,2-rg) to be determined. See FiguBewhereQ is shown in yellow. Using an exact classification predica,

(4.4

o

B ]1+u

o

(~4.-4)

Figure 6: Proof of Theorem A (ii").

will subdivide until we obtain a “linear” channel of boxe®in B(a) to B(8) (shown in green in Figur6é). Note that
each box in this channel has width 2 and the straightline frath « to 8 has clearance 4 u. So our algorithm will
output the straightline path fromto 3. Note that this path has clearance 1 (which is in fact the largest clearance
possible, but the algorithm does not actually know thisraree). We shall chooseto fulfill

1+u< % = % (3)
i.e., the largest clearance of any paths, 4, is less thar/ky, so thatQ admits no paths of clearanegk,. Here @) is
true iff u < (1/2)(6/ko). Note that the ratié/ky could be large, but recall thate (0, 2 —rg) (whererg < 1.9) from our
construction. So we can pieck= min{(1/3)(5/ko), 1.9 — ro} to fulfill both conditions. O

Theorem A implies an accuracy factdr= 4, but it is clear thaK can be reduced by adjusting our algorithm to
use the resolution parametein a more equitable way.

The general form of this result is perhaps no surprise, lidtituracy constants might not be what we initially ex-
pect, since we are talking about an “exact algorithm”. Tlageeseveral sources for loss of accuracy: first, subdivision
boxes are “aligned” with the integer grid in the sense thairttoordinates are dyadic numbers. Second, the width of
our smallest boxes, theMIXED boxes, lies betwees/2 ande. The third is the use of soft predicates. In particular,
what is the accuracy of our prototype algorithni{Bwhen using the soft predicates{#f? Recall from Lemma that
when boxes are squares, our soft predi€tes an ectivity factoro = 1/ V2. In our algorithm, we can replace our
input resolution parameter with= ¢, i.e., we split boxes until the smallest box width is betweghande (between
oe/2 andoe).

Lemma 5. If there exists a motiop with clearances = V2, then our algorithm using soft predica2outputs a path
with clearancere/4.

Proof. This is a “soft version” of Lemma&. Consider the “full expansion” of our subdivision trée now the smallest
boxes have widtlrt (instead ot). Look at the subsefi of such leaf boxes that cover For each such leaf bd;, let
B,/o be the box centered ati(B,) with width t. We claim thaB, /o is free: letp be a point oru that lies inBy; clearly

p also lies inB,/c. Since the diagonal d,/o is V2t < V2 = 6, B//c lies entirely within the “clearance region”
of p and thusB,/c is free. Therefore, we hav®B,/o) = FREE. By the dfectivity factoro for C, C(B;/c) = FREE
impliesC(B,) = C(c(B;/o)) = FREE. Therefore, we can usgto classify eactB, to be free, and thus to classif§ as
afree channelcoveringu. This is the same as the free chanfietoveringu in the proof of Lemma&, but now each
channel box has widtbrt rather thart. The rest of the proof of Lemm#carries over, with the reported path having a
clearancers/4 rather tharz/4. O

Lemma 6. If there is no free canonical path with essential clearaneg4, then our algorithm using soft predica@
reports “no path”.
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Proof. This is a “soft version” of Lemmd. Again we prove the contrapositive: When our algorithm fiadsath,
there exists a free canonical path with essential clearanté. The proof of Lemmd carries over, but now each free
aligned box has widthrt rather thart, and thus the essential clearance is at led& = o¢/4. O

We re-state Lemmasand6 together in the following.
THEOREM B: [Soft PredicateWVith the same assumptions as Theorem A, but with the exatitate QB) replaced
by a soft predicat€(B) with efectivity factoro, we have:
(i) For Ko = V2, if there is a path with clearancegs, then our planner outputs a path of clearance/4.
(ii) For ko = 4, if there is no free canonical path with essential clearanegky, then we report “NO PATH”.

This implies that the accuracy factirnow becomes 4r. In general, we have:
Corollary: If the Exact version of our planner has an accuracy factdt,ahen the Soft version of our planner using
a soft predicate withféectivity factoro- has an accuracy factor &f/o.

6. Rotational Degree of Freedom

In this section we develop resolution-exact algorithmstii@r case where rob&; ¢ R? has a simple shapé&;
is a triangle that is contained in a circumscribing digcof radiusro. Now, Cspace= SEH2) = R2 x S1. Each box
B C Cspaceis decomposed &R x ® whereR C R? is a rectangle an® < S is an angular range. We also write
M(R), r(R), w(R) to denote the previously defined(B), r(B), w(B). Two boxesB = Rx ® andB’ = R x @ are
adjacentiff RandR are adjacent, an@ and®’ are adjacent in the circular geometryf.

(if)
Figure 8: Enclosing circle of enclosing rectangle for obttisan-

Figure 7: Shaded areas represent round trianglesia(@' cc’ with 3 gle: their rotation.

straight edges, (i’ cc’ with 2 straight edges. In (i), the round triangle
aabb'cc is T n D whereT is the triangle A, B,C) andD is the (white)
disk.

7. e-Smallness. We discuss the issue splitting B = Rx ©: we can obviously simply spliB into 8 congruent
children. However there are two issues. First of all, we maypiio avoid splitting the angular range whBris in
the “large regime”: as long as(R) > ro, we can approximat®; by the discRy and ignore the rotational degree of
freedom. SaB s split into 4 children (based on splittiigbut not®). WhenBis in the “small regime”, i.e Ww(R) < ro,
we begin to split the angular range. But here, we want to ®editferently fromR. To understand this, recall that we
previously do not split a boR whenw(R) < . Let us say thaR is e-small if W(R) < . We need a similar criterion
for ®: say® is e-small if |®] < &/ro. This assumes that angles are in radians, @rnsl represented as an interval
[61,62] C [0, 2x]; also|@®] is defined a®, — 6;. Finally, we say thaB = Rx @ is e-small if both Rand® ares-small.
We now define our procedugplit(B, ) as follows: to spliB, we splitR and® separately. These are not split if they
are already-small. Thus, splittingd will result in 2 children fori = 0, 1, 2, 3. The following justifies our definition
of e-smallness:

Lemma 7. Assumé < ¢ < /2. If B = Rx @ is e-small and R is a square, then the Hausfidistance between the
footprints of R at any two configurations in B is at madt+ V2)e.

Proof. This result uses the fact that if we rotde by 6 about the center dRy, then the vertices oR; move by at
most 2¢Sin@/2) < rof < e since sirg < 6 for 6 in the said range. Also, the translational distance betvesgrtwo
configurations irB is at most2e. O
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8. Soft Predicate for Rotation. We now design a soft versidd of C. The strategy follows the case of disc
robot: we define the feature sgB) associated with a boB = R x ® as comprising those features@fthat intersect
the setW*(B) whereW*(B) is a “round triangle” associated wis. We callRT around triangle if it is given as the
intersection of a dis® with a triangular regio (see Fig.7).

For any real numbes, we denote the-expansionof various shapeS c R? by (S)S. If S = D(m,r) is a disc,
(D)5:=D(m,r + s). If S a convex polygorP, then @)% is the polygon obtained by shifting each defining line of its
edges in an outward normal direction by a distance. ofypically, P is a triangle or a box. Finally, i§ is a round
triangleRT = DN T, then RT)® = (D)° N (T)>. Note that RT)® depends on the representatidrandT. Usually we
haves > 0; if s< 0, thenRT is shrunk andRT)® may be the empty set.

Consider a configuratiomy, 6) € Cspacs the footprintR;[m, 6] is a triangle inDi(ro). Let RT(m, ®) be the convex
hull of the union of these footprints &sranges ove®. Note thatRT(m, ®) is a round triangle. In Figz, we show
RT(m, ®) for two choices oRR;. We define theouter domain W*(B) to be ther(B)-expansion oRT(m(B), ®). As
before, thefeature setg(B) is defined as those features@that intersect* (B). Finally, we defineC(B) usings(B)
as before. Computing(B) in the context of expanding a subdivision tree is also simil

Lemma 8. C is a soft version of C for the robot,RAIsoC is gfective for the class of squares.

99. Improvements. We can improve by providing some heuristic for quick detattf stuck boxes, in analogy
to Property (S1) for a disc robot. For any b8xwe can define amner domain W-(B) such that if any feature
intersectsN~(B), thenB is stuck. IndeedV~(B) can be defined to be a suitable triangle: in F@), W~ (B) is the
triangle bounded by the linedy, bc andca.

Our definition ofRy as the circumscribing circle fd&; can lead to extremely large radiugwhenR; is a very
thin obtuse triangle. We describe an alternative: wRers obtuse, we will defin®, as the smallest disc containing
R;. Choose the robot origin to be the center of this i@wThus, the longest side &; will be a diameter oy, and
one vertex oR; will be in the interior ofRy. This is illustrated in Fig8 where the red and blue verticesRf define
a diameter of the circl€, but the green vertex lies on a concentric inner ci€le The interior ofC’ is pink in this
figure. If we slightly rotate the robd®; counter-clockwise about the center@fthe boundary of the area swept by
Ry will include a small arc ofZ’. The convex hull of this swept area will comprise of 3 arcs &vcs fromC and
one arc fronC’. We can again construct a soft predicate based on such axcbhulebut this variation has not been
implemented.

7. Experimental Results

We have implemented in-G+ the planner for disc and triangle robots described in thgepaOur code, data and
experiments are freely distributed with there Library® and is available on our project web page. The platform
for the experiments was a Linux Fedora 16 OS with a 3.4GH2 tmd Core CPU, and 16GB RAM. Our current
implementation does not apply the technique of “lax congmari in 5. Instead, we use machine arithmetic. This is
because in our examples, the subdivision boxes are largeghrtbat machine arithmetic Sices. In the future, we
plan to provide error estimates to justify this expedient.

Figs.9 and10 show the GUI interface of our implementation of the disc amahgle robots, respectively. Since
Cspace= R? for a disc, it is straightforward to visualize the box cléissition in a subdivision, as illustrated in Fig.
For a triangle robot, each bdX< Cspace= R? x S has the fornB = B, x B, whereB, is the translational component.
The color ofB is projected ontd3;. We display a blended color of all boxes that projecBto

We implemented the following three search strategirgadth First Search (BFSRandom (RAN)andGreedy
Best First (GBF) In BFSandRandomwe follow the original scheme described|i®y where a union-find data structure
is used to determine if the leaf boxBsx-(a) andBox-(8) belong to the same connected component of the adjacency
graph comprising thBREE-leaves in7". TheMIXED-leaves of width> ¢ are stored in a priority queu@ as candidates
for expansion. The only ffierence between these two strategies is Bi@ picks a box inQ with themaximum size
to expand, whildRandonpicks arandombox in Q to expand.

In GBF, we donot use a union-find data structure; rather, we maintain a&seif leaves of7~ which areFREE
and connected tBox-(«). Boxes inS, are said to be “marked”. A path is detected as sooBa@s-(8) is marked.
Initially, Box-() is the only marked box. The priority que@@contains all theFREE- or MIXED-leaves of7 that

5 httpy/cs.nyu.edtexactcorgdownloadcord.
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Figure 9: Subdivision for disc robot. Color scheme: GrefREE, Figure 10: Subdivision for triangular robot: translatibhexes show
Red=STUCK, Yellow=¢-largeMIXED, Grey=e-smallMIXED. blended colors.

are on the “fringe” ofS, (a “fringe box” is unmarked but adjacent to some marked b@kje priority of a boxB in
the queue is the “distance” froBto 5. In case of a disc robot, this “distance” is the Euclideamagise fromm(B)
to 8 € R2. In case of a triangle robot, |& = B; x A whereB; C R? is the translational component Bf andA an
angular range. Similarlyg = (3, §) whereg; € R2. Then “distance” is the Euclidean distance betwaéB,) ands;.
Moreover,Q is a min-priority queue, so that box with the smallest distato has highest priority. We terminate
with “NO PATH” if Q is empty; otherwise leB be a box extracted from® for expansion. There are two cases: (1) If
Bis free, we markB (i.e., add it to the se$,) and for each neighbd’ of B, we pushB’ into Q if it is unmarked and

is eitherFREE or MIXED. (2) If B is mixed, we first check its width. If the width s ¢, we discardB. Otherwise we
expandB, and for each child’ of B, we pushB’ into Q if it is adjacent to a marked box and is eittRREE or MIXED.

We use four input files: bugtrap, input150, input200, in@@3Each file represents the environment as a set of
polygons (not necessarily disjoint) within a 512 x 512 bangdox. The file inputNNN (where NNN150, 200 or
300) contains NNN randomly generated triangles. Three @ddéhlenvironments are shown in Figg, 12, 13. The
polygons edges are shown in white (Flg) or in blue (Figs12-13). The paths found by our GBF search strategy are
also shown (“NO PATH” in Figll). We can see that the triangles may overlap, which can bdéahbg our approach
easily.

In the following we present two tables. The top table showssthtistics of running our planners for disc and trian-
gle robots on each input. The starting and ending configansti andg are shown asx(y) for disc robot andX, y, 6)
for triangle robot. The disc robot is specified as dis€) wherer is the robot radius and € {BFS,GBF, RAN}
indicates the search strategy. Similarly, the triangleotab specified by tri(, Z). Whenever the randomized strat-
egyZ = RANis used, the statistics is the average of 5 runs; these aredwgibly encoded in Makefile targets in
Core Library. Of the 3 strategies, we see ti@BF is consistently the fastest. We have columns reporting time-n
ber of free, stuck, and mixed boxes. There were two kinds gkthboxes: those of width ¢ and the rest. Note that
when the number of mixed boxes of widthe is zero (last column), this implies ‘NO PATH'. Excluding tkases of
“ExpandingBox-(«) fails” and “ExpandingBox-(8) fails” (trivial cases of ‘NO PATH’), the converse is truelgifior
the BFS or Randorrsearch strategy/We explicitly mark the entries in the last column with an &ste(*) to indicate
‘NO PATH'.

We also directly compared our triangle robot with thBF strategy (the instances of the top-table entries in bold,
also shown in Figs11-13) with PRM and RRT, and show the results in the bottom tabler FRM, we ran the
benchmark package OOPSMP5], and the running times are shown as preprocessing, quaiytosal times in the
table. For RRT, we ran OOPSMP (denoted “RRT-OOP” in the Jabie code by Prof. Jyh-Ming Lien (denoted “RRT-
JML" in the table) of the robotics group in George Mason Unsity, and the MSL library from Prof. Steven Lavalle’s
group in University of Illinois (UIUC). MSL did not seem to wowell for our datasets of bounding boxes 512 x 512
(all its examples are of small bounding boxes 100 x 100) soavead include its results in the table.

We remark that our only parameterds- 0. For PRM, OOPSMP requires user-chosen parameters likbeuof

6 We donotinclude the instances of such trivial cases of ‘NO PATH’ im tables here.
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Figure 13: Input300: 300 random triangles.

sample points, budgeted times for preprocessing and qwéhydefault values 5000 points, 5s and 5s. Ideally, one
would like to have an automatic process to find an optimal remolb sample points that can result in a free path (if
one exists). Unfortunately, the PRM of OOPSMP is poorly giesd for such experiments, since each run needs user
interactions to specify the parameters and other settargbhence we were not able to make the process automatic.
We did experiment with one instance, on bugtrap with triamgbot of radius 22 (i.e., the instance with No. 7, bugtrap
(22), in the two tables): we first tried with 1000 sample pgi(83ms), no path found, then increased for another
1000 samples (another 34ms) to get 2000 samples, still to peée then repeated the incremental process: another
1000 samples were added (another 34ms) to get 3000 samialesitopath; finally, after adding 1000 more samples
(another 36ms, 4000 samples total), a free path was fourmdg{ery) in 3ms. Overall, the incremental sampling
up to 4000 points took 137ms overall, plus the final query toh&ms, thus a total of 140ms (plus much longer user
interaction time!). For all other runs of PRM, we just useel default values (5000 samples), and increased the number
of samples if 5000 was not enough to find a path. For RRT, the &RIOPSMP (RRT-OOP) does not allow the user
to fine-tune any parameters, while RRT-JML provides add#idlexibility to adjust parameters such as step size and
goal bias, for which we tried for each instance to find reabtmealues to use; the resulting number of samples are
also shown in the table.

From the top portion of the bottom table, we see that our mmtimes are competitive with PRM and RRT: among
the 8 instances listed, we are the fastest in 4 of them, ansettend fastest in another 3 of them; for the remaining
instance we are the third. In some cases we are much fasteathathers. In particular, for the instance of ‘NO
PATH’ (No. 8), our method stopped and reported ‘NO PATH’ Baisi 746ms, while for PRM we gave up after trying
125000 samples (32375ms), for RRT-JML we gave up aftergritire run of 500000 samples (134912ms), and for
RRT-OOP we gave up after using up the maximum allowed rue-6f60000ms. Clearly our method is much more
advantageous.

Finally, we compared our disc robot with PRM and RRT-OOP (w@&dt have the RRT-JML code for disc robot).
For both PRM and RRT-OOP, the robot must be a polygon; we appeded the disc robot by a same-radius regular
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20-gon. The results are shown in the bottom portion of théobotable. Note that for the row of No. 4, PRM used
25000 samples since no path was found for 5000 samples. &oowhof No. 5, which is an instance of ‘NO PATH’,
for PRM we gave up after using 125000 samples, and for RRT-@©®Bave up after using up the maximum allowed
run-time of 60000ms. From the table, we can see that clearyrethod is significantly faster than all others in all
instances.

No. | Obstacle || robot a B eps || time | free stuck mixed mixed
(input) (radius) (x,y,6) (x,y,6) (ms) <g > g

1 bugtrap disc(14,GBF) 200,350 60,50 1 16 3867 2076 3403 462

2 disc(14,GBF) 200,350 60,50 2 10 1779 943 1750 275

3 disc(14,GBF) 200,350 60,50 4 5 854 460 801 151 (*)

4 disc(15,GBF) | 200,350 60,50 0.5 30 8036 4193 6887 913

5 disc(25,GBF) | 200,350 60,50 1 18 3260 1709 2984 415 (*)

6 tri(14,GBF) 200,350,0| 60,50,0 | 5 245 19394 26 31121 220

7 tri(22,GBF) 200,350,0| 60,50,0 | 5 482 39482 1556 57546 3880

8 tri(50,GBF) 200,350,0| 60,50,0 | 5 746 55864 | 4153 79411 9025 (*)

9 input150 disc(7,RAN) 200,270 20,20 2 428 6892 10082 | 8027 1955

10 tri(7,GBF) 200,270,0| 20,200 | 5 10 945 0 1334 360

11 tri(7,BFS) 200,270,0| 20,200 | 5 1349 | 152841 | 366 0 608432

12 tri(7,RAN) 200,270,0| 20,200 | 5 315 32179 1028 101322 | 32477

13 tri(7,GBF) 325,425,0| 20,20,0 | 5 216 10233 129 19382 1389

14 input200 disc(5,BFS) 130,460 20,20 2 16 2590 4891 0 5636

15 disc(5,GBF) 130,460 20,20 2 15 283 99 230 131

16 tri(5,GBF) 130,460,0] 20,20,0 | 2 89 16866 160 0 29602

17 tri(5,BFS) 130,460,0 20,20,0 | 2 1742 | 182866 | 1036 0 747445

18 tri(5,RAN) 130,460,0| 20,20,0 | 2 3940 | 331830 | 7044 0 1408722

19 input300 [| disc(7,BFS) 230,210 480,10 | 4 23 3785 11284 | 7465 0 (%)

20 disc(7,BFS) 230,210 480,10 | 1 35 6439 15339 | 0 11052

21 disc(3,GBF) 230,210 480,10 1 29 3986 1760 3529 1001

22 tri(7,GBF) 230,210,0| 480,100 4 32 5212 0 0 11686

23 tri(7,BFS) 230,210,0| 480,10,0| 4 2101 | 110005 | 667 0 899054

24 tri(7,RAN) 230,210,0| 480,10,0| 4 7470 | 371119 | 8539 0 2694907

25 tri(7,GBF) 10,500,0 | 480,10,0| 4 478 25893 106 42274 2245
No. Obstacle Tri(GBF) PRM RRT-JML RRT-OOP

input file Time No. of Prep. | Query | Total No. of Step | Goal | Time Time

(robot radius) (ms) Samples | (ms) (ms) (ms) Samples | Size | Bias | (ms) (ms)
6 bugtrap (14) 245 5000 256 3 259 37009 0.05 | 0.5 922 277
7 bugtrap (22) 4827 5000 270 3 273 156276 0.01 | 0.1 24092 796
8(% bugtrap (50) 746 125000 | 32368 | 7 32375 500000 0.01 | 0.1 134912 || 60000
10 input150 (7) 10 5000 176 2 178 4309 0.05 | 0.5 270 17
13 input150 (7) 216 5000 176 2 178 7635 0.05 | 0.5 375 62
16 input200 (5) 89 5000 203 5 208 18757 0.05| 0.5 1624 151
22 input300 (7) 32F 5000 145 0.3 145.3 3538 0.05| 0.5 398 14
25 input300 (7) 4787 5000 145 0.3 145.3 57619 0.05| 0.5 2390 945

Obstacle Disc(GBF) PRM RRT-JML RRT-OOP

input file Time No. of Prep. | Query | Total No. of Step | Goal | Time Time

(robot radius) (ms) Samples | (ms) (ms) (ms) Samples | Size | Bias | (ms) (ms)
4 bugtrap (15) 30 25000 2135 | 9 2144 N/A 3979
5(*) | bugtrap (25) 18 125000 | 22594 | 3 22597 N/A 60000
15 input200 (5) 15 5000 23438 | 7 23445 N/A 2335
21 input300 (3) 29 5000 765 2 767 N/A 1129

Table 1: In the top table, thefect of increasing is seen in the first three rows. The '"NO PATH' instances arekethwith “(*)” in the last column.

In the bottom table, each row is an instance of the row in tpedble with the corresponding line number (the “No.” ent#mong the running
times of various methods, the winner is shown in bold, andesults marked with{” are the second fastest. The 'NO PATH'’ instances are marked
with “(*)” in the first column.

8. Conclusions

The motion planning literature has a bipolar nature — magprithms are theoretically sound but unimple-
mentable, others are practical but lack theoretical fotioda or proper implementation. The dominant approach
based on randomizatiorffer some theoretical guarantees but they have issues: tleene guarantees in case of NO
PATH, and “expansiveness” assumptioh8|[are non-verifiable. This paper takes up the classic susidiviparadigm
to develop a theoretically sound alternative. To aid thesttigsment of such algorithms, we introduce soft predicates
and demonstrated their use in subdivision planners. Wedntred the concept of resolution-exact planners, and de-
signed the first examples of such algorithms. We also shomttezent indeterminacy of resolution-exactness. Finally
our implementations validate the claims that our theory&fical; the experiments demonstrate that our approach is
competitive with PRM in speed, despite our much strongerantaes.

15



According to Zhang et al4f], implementations of exact motion planning algorithms @né known for simple
planer robots (like ladders or discs) and up to 3 degreeseefifym. Thus it is important to pay attention to imple-
mentability. We propose to give up exactness for the weadgom of resolution-exactness. Little is lost by this step,
since exact algorithms are ill-matched to the inherentdneacies of physical systems. But we have much to gain:
Subdivision algorithms are more holistic, integrating to@cerns of topological correctness with geometric aayura
into one algorithm.

The techniques of this paper can be extended to robots witiplex geometry (e.g., the “gear” robetq]). We
could decompose the complex robot geometry into a unionaggjply overlapping) triangles. If we now have soft
predicates for each of the triangle robots, we could compuem into a soft predicate for the complex robot. This
remarkable decomposition property of soft predicates lmaamalogue in exact algorithms. A subtlety is that the
triangle robots are not free to choose its origin; this faradvas exploited in SectioBabove. This extension will be
described in a followup work.

Several open problems are raised by this research. (1)IZlaanore general theory of subdivision planners can
be developed; see our companion pagd}{vhere many of the ideas here are generalized. (2) We canagte work
to subdivision ofSE(3) = R® x S0(3), and believe this too can be competitive with PRM. Not tho general exact
algorithms have been implemented 8#(3). (3) Note that we have not tried to compute the conneat@dponents
of STUCK boxes. Doing this can lead to fast termination in the caseN®d ‘PATH”. However, maintaining this
information runs into interesting issues of computatidopblogy. Edelsbrunner and Delfinado’s work on computing
the Betti number of a 3-complexfers some clues her&]]. (4) General investigation of various search strategies,
including probabilistic ones is needed.

We plan to explore other variants of our search strategidsam eye to simplicity, implementability, and correct-
ness. Our approach can be extended to more demanding mézioring problems such as kinodynamic problems or
those with diferential constraints.
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