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Abstract

Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex sets of constant description com-
plexity, and let π be a probability density function (density for short) over the non-negative reals.
For each i, let Ki be the Minkowski sum of Ci with a disk of radius ri, where each ri is a random
non-negative number drawn independently from the distribution determined by π. We show that
the expected complexity of the union of K1, . . . , Kn is O(n1+ε) for any ε > 0; here the constant of
proportionality depends on ε and on the description complexity of the sets in C, but not on π. If
each Ci is a convex polygon with at most s vertices, then we show that the expected complexity of
the union is O(s2n log n).

Our bounds hold in the stronger model in which we are given an arbitrary multi-set Θ =
{θ1, . . . , θn} of expansion radii, each a non-negative real number. We assign them to the mem-
bers of C by a random permutation, where all permutations are equally likely to be chosen; the
expectations are now with respect to these permutations.

We also present an application of our results to a problem that arises in analyzing the vulnera-
bility of a network to a physical attack.
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1 Introduction

Union of random Minkowski sums. Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex
sets of constant description complexity, i.e., the boundary of each Ci is defined by a constant number
of algebraic arcs of constant maximum degree. Let D(r) denote the disk of radius r centered at
the origin. We consider the setup where we are given a sequence r = 〈r1, . . . , rn〉 of non-negative
numbers, called expansion distances (or radii). We set Ki = Ci ⊕ D(ri), the Minkowski sum of Ci with
D(ri). The boundary of Ki, denoted by ∂Ki, consists of O(1) algebraic arcs of bounded degree. If Ci

is a convex polygon with s vertices, then ∂Ki is an alternating concatenation of line segments and
circular arcs, where each segment is a parallel shift, by distance ri, of an edge of Ci, and each circular
arc is of radius ri and is centered at a vertex of Ci; see Figure 1. We refer to the endpoints of the arcs
of ∂Ki as the vertices of Ki. Let K = {K1, . . . , Kn}, and let U = U(K) =

⋃n
i=1 Ki. The combinatorial

complexity of U, denoted by ψ(C, r), is defined to be the number of vertices of U, each of which is
either a vertex of some Ki or an intersection point of the boundaries of a pair of Ki’s, lying on ∂U. We
do not make any assumptions on the shape and location of the sets in C, except for requiring them to
be pairwise disjoint.

C1

C2

K1

K2

K3

K4

C4

C3

Figure 1. Pairwise-disjoint convex polygons and their Minkowski sums with disks of different radii. The vertices of the
union of these sums are highlighted.

Our goal is to obtain an upper bound on the expected combinatorial complexity of U, under a
suitable probabilistic model for choosing the expansion radii r of the members of C—see below for
the precise models that we will use.

Network vulnerability analysis. Our motivation for studying the above problems comes from the
problem of analyzing the vulnerability of a network to a physical attack (e.g., electromagnetic pulse
(EMP) attacks, military bombing, or natural disasters [13]), as studied in [2]. Specifically, let G =
(V,E) be a planar graph embedded in the plane, where V is a set of points in the plane and E =
{e1, . . . , en} is a set of n segments (often called links) with pairwise-disjoint relative interiors, whose
endpoints are points of V. For a point q ∈ R

2, let d(q, e) = minp∈e ‖q − p‖ denote the (minimum)
distance between q and e. Let ϕ : R≥0 → [0, 1] denote the edge failure probability function, so that the
probability of an edge e to be damaged by a physical attack at a location q is ϕ(d(q, e)). In this model,
the failure probability only depends on the distance of the point of attack from e. We assume that
1 − ϕ is a cumulative distribution function (cdf), or, equivalently, that ϕ(0) = 1, ϕ(∞) = 0, and ϕ is
monotonically decreasing. A typical example is ϕ(x) = max{1 − x, 0}, where the cdf is the uniform
distribution on [0, 1].
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(i) (ii)

Figure 2. Expected damage for a triangle network and Gaussian probability distribution function with (i) small variance,
(ii) large variance.

For each ei ∈ E, let fi(q) = ϕ(d(q, ei)). The function Φ(q,E) = ∑
n
i=1 fi(q) gives the expected

number of links of E damaged by a physical attack at a location q; see Figures 2 and 3. Set

Φ(E) = max
q∈R2

Φ(q,E).

Our ideal goal is to compute Φ(E) and a location q∗ such that Φ(q∗,E) = Φ(E). We refer to such
a point q∗ as a most vulnerable location for G. As evident from Figure 3, the function Φ can be
quite complex, and it is generally hard to compute Φ(E) exactly, so we focus on computing it ap-
proximately. More precisely, given an error parameter δ > 0, we seek a point q̃ ∈ R

2 for which
Φ(q̃,E) ≥ (1− δ)Φ(E) (a so-called approximately most vulnerable location). Agarwal et al. [2] proposed
a Monte Carlo algorithm for this task. As it turns out, the problem can be reduced to the problem of
estimating the maximal depth in an arrangement of random Minkowski sums of the form considered
above, under the density model, and its performance then depends on the expected complexity of
U(K). Here K is a collection of Minkowski sums of the form ei ⊕ D(ri), for a sample of edges ei ∈ E

and for suitable random choices of the ri’s, from the distribution 1 − ϕ. We adapt and simplify the
algorithm in [2] and prove a better bound on its performance by using the sharp (near-linear) bound
on the complexity of U(K) that we derive in this paper; see below and Section 5 for details.

Related work. (i) Union of geometric objects. There is extensive work on bounding the complexity
of the union of a set of geometric objects, especially in R

2 and R
3, and optimal or near-optimal

bounds have been obtained for many interesting cases. We refer the reader to the survey paper by
Agarwal et al. [5] for a comprehensive summary of most of the known results on this topic. For a
set of n planar objects, each of constant description complexity, the complexity of their union can be
Θ(n2) in the worst case, but many linear or near-linear bounds are known for special restricted cases.
For example, a fairly old result of Kedem et al. [16] asserts that the union of a set of pseudo-disks
in R

2 has linear complexity. It is also shown in [16] that the Minkowski sums of a set of pairwise-
disjoint planar convex objects with a fixed common convex set is a family of pseudo-disks. Hence,
in our setting, if all the ri’s were equal, the result of [16] would then imply that the complexity of
U(K) is O(n). On the other hand, an adversial choice of the ri’s may result in a union U with Θ(n2)
complexity; see Figure 4.
(ii) Network vulnerability analysis. Most of the early work on network vulnerability analysis con-
sidered a small number of isolated, independent failures; see, e.g., [9, 21] and the references therein.
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Figure 3. Expected damage for a complex fiber network. This figure is taken from [2].

Figure 4. A bad choice of expansion distances may cause U to have quadratic complexity.

Since physical networks rely heavily on their physical infrastructure, they are vulnerable to physical
attacks such as electromagnetic pulse (EMP) attacks as well as natural disasters [13, 25], not to men-
tion military bombing and other similar kinds of attack. This has led to recent work on analyzing
the vulnerability of a network under geographically correlated failures due to a physical attack at
a single location [1, 2, 19, 20, 25]. Most papers on this topic have studied a deterministic model for
the damage caused by such an attack, which assumes that a physical attack at a location x causes
the failure of all links that intersect some simple geometric region (e.g., a vertical segment of unit
length, a unit square, or a unit disk) centered at x. The impact of an attack is measured in terms of
its effect on the connectivity of the network, (e.g., how many links fail, how many pairs of nodes
get disconnected, etc.), and the goal is to find the location of attack that causes the maximum dam-
age to the network. In the simpler model studied in [2] and in the present paper, the damage is
measured by the number of failed links. This is a problem that both attackers and planners of such
networks would like to solve. The former for obvious reasons, and the latter for identifying the most
vulnerable portions of the network, in order to protect them better.

In practice, though, it is hard to be certain in advance whether a link will fail by a nearby physical
attack. To address this situation, Agarwal et al. [2] introduced the simple probabilistic framework
for modeling the vulnerability of a network under a physical attack, as described above. One of the
problems that they studied is to compute the largest expected number of links damaged by a physical
attack. They described an approximation algorithm for this problem whose expected running time
is quadratic in the worst case. A major motivation for the present study is to improve the efficiency
of this algorithm and to somewhat simplify it at the same time.
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Finally, we note that the study in this paper has potential applications in other contexts, where
one wishes to analyze the combinatorial and topological structure of the Minkowski sums (or rather
convolutions) of a set of geometric objects (or a function over the ambient space) with some kernel
function (most notably a Gaussian kernel), or to perform certain computations on the resulting con-
figuration. Problems of this kind arise in many applications, including statistical learning, computer
vision, robotics, and computational biology; see, e.g., [11, 17] and references therein.

Our models. We consider two probabilistic models for choosing the sequence r = 〈r1, . . . , rn〉 of
expansion distances:

The density model. We are given an arbitrary density (or a probability mass function) π over the
non-negative reals; for each 1 ≤ i ≤ n, we take ri to be a random value drawn independently from
the distribution determined by π.

The permutation model. We are given a multi-set Θ = {θ1, . . . , θn} of n arbitrary non-negative real
numbers. We draw a random permutation σ on [1 : n], where all permutations are equally likely to
be chosen, and assign ri := θσ(i) to Ci for each i = 1, . . . , n.

Our goal is to prove sharp bounds on on the expected complexity of the union U(K) under these
two models. More precisely, for the density model, let ψ(C, π) denote the expected value of ψ(C, r),
where the expectation is taken over the random choices of r, made from π in the manner specified
above. Set ψ(C) = max ψ(C, π), where the maximum is taken over all probability density (mass)
functions. For the permutation model, in an analogous manner, we let ψ(C, Θ) denote the expected
value of ψ(C, r), where the expectation is taken over the choices of r, obtained by randomly shuffling
the members of Θ. Then, with a slight overloading of the notation, we define ψ(C) = max ψ(C, Θ),
where the maximum is over all possible choices of the multi-set Θ. We wish to obtain an upper
bound on ψ(C) under both models.

We note that the permutation model is more general than the density model, in the sense that
an upper bound on ψ(C) under the permutation model immediately implies the same bound on
ψ(C) under the density model. Indeed, consider some given density π, out of whose distribution
the distances ri are to be sampled (in the density model). Interpret such a random sample as a 2-
stage process, where we first sample from the distribution of π a multi-set Θ of n such distances, in
the standard manner of independent repeated draws, and then assign the elements of Θ to the sets
Ci using a random permutation (it is easily checked that this reinterpretation does not change the
probability space). Let r be the resulting sequence of expansion radii for the members of C. Using the
new interpretation, the expectation of ψ(C, r) (under the density model), conditioned on the fixed Θ,
is at most ψ(C) under the permutation model. Since this bound holds for every Θ, the unconditional
expected value of ψ(C, r) (under the density model) is also at most ψ(C) under the permutation
model. Since this holds for every density, the claim follows.

We do not know whether the opposite inequality also holds. A natural reduction from the permu-
tation model to the density model would be to take the input set Θ of the n expansion distances and
regard it as a discrete mass distribution (where each of its members can be picked with probability
1/n). But then, since the draws made in the density model are independent, most of the draws will
not be permutations of Θ, so this approach will not turn ψ(C) under the density model into an upper
bound for ψ(C) under the permutation model.

Our results. The main results of this paper are near-linear upper bounds on ψ(C) under the two
models discussed above. Since the permutation model is more general, in the sense made above,
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we state, and prove, our results in this model. We obtain (in Section 2) the following bound for the
general case.

Theorem 1.1. Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex sets of constant description com-
plexity in R

2. Then the value of ψ(C) under the permutation model, for any multi-set Θ of expansion radii,
is O(n1+ε), for any ε > 0; the constant of proportionality depends on ε and the description complexity of the
members of C, but not on Θ.

If C is a collection of convex polygons, we obtain a slightly improved bound by using a different,
more geometric argument.

Theorem 1.2. Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex polygons in R
2, where each Ci

has at most s vertices. Then the maximum value of ψ(C) under the permutation model, for any multi-set Θ of
expansion radii, is O(s2n log n).

For simplicity, we first prove Theorem 1.2 in Section 3 for the special case where C is a set of n seg-
ments with pairwise-disjoint relative interiors. Then we extend the proof, in a reasonably straightfor-
ward manner, to polygons in Section 4. The version involving segments admits a somewhat cleaner
proof, and is sufficient for the application to network vulnerability analysis.

Using the Clarkson-Shor argument [10], we also obtain the following corollary, which will be
needed for the analysis in Section 5.

Corollary 1.3. Let C = {C1, . . . , Cn} be a set of n pairwise-disjoint convex set of constant description compelx-
ity. Let r1, . . . , rn be the random expansion distances, obtained under the permutation model, for any multi-set
Θ of expansion radii, that are assigned to C1, . . . , Cn, respectively, and set K = {Ci ⊕ D(ri) | 1 ≤ i ≤ n}.
Then, for any 1 ≤ k ≤ n, the expected number of vertices in the arrangement A(K) whose depth is at most k
is O(n1+εk1−ε), for any ε > 0; the constant of proportionality depends on ε and the description complexity of
the members of C but not on Θ. If each Ci is a convex polygon with at most s vertices, then the bound improves
to O(s2nk log(n/k)).

Using Theorem 1.2 and Corollary 1.3, we present (in Section 5) an efficient Monte-Carlo δ-approximation
algorithm for computing an approximately most vulnerable location for a network, as defined ear-
lier. Our algorithm is a somewhat simpler, and considerably more efficient, variant of the algorithm
proposed by Agarwal et al. [2], and the general approach is similar to the approximation algorithms
presented in [3, 4, 6] for computing the depth in an arrangement of a set of objects. Specifically, we
establish the following result.

Theorem 1.4. Given a set E of n segments in R
2 with pairwise-disjoint relative interiors, an edge-failure-

probability function ϕ such that 1− ϕ is a cdf, and a constant 0 < δ < 1, one can compute, in O(δ−4n log3 n)
time, a location q̃ ∈ R

2, such that Φ(q̃,E) ≥ (1 − δ)Φ(E) with probability at least 1 − 1/nc, for arbitrarily
large c; the constant of proportionality in the running-time bound depends on c.

2 The Case of Convex Sets

In this section we prove Theorem 1.1. We have a collection C = {C1, . . . , Cn} of n pairwise-disjoint
compact convex sets in the plane, each of constant description complexity. Let Θ be a multi-set of n
non-negative real numbers 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn. We choose a random permutation σ of [1 : n],
where all permutations are equally likely to be chosen, put ri = θσ(i) for i = 1, . . . , n, and form the
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Minkowski sums Ki = Ci ⊕ D(ri), for i = 1, . . . , n. We put K = {K1, . . . , Kn}. We prove a near-linear
upper bound on the expected complexity of U(K), as follows.

Fix a parameter t, whose value will be determined later, and put ρ = θn−t, the (t + 1)-st largest
distance in Θ. Put C+ = {Ci ∈ C | σ(i) > n − t} and C− = {Ci ∈ C | σ(i) ≤ n − t}. That is, C+ is the
set of the t members of C that were assigned the t largest distances in Θ, and C− is the complementary
subset.

By construction, C+ is a random subset of C of size t (where all t-element subsets of C are equally
likely to arise as C+). Moreover, conditioned on the choice of C+, the set C− is fixed, and the subset
Θ− of the n − t distances in Θ that are assigned to them is also fixed. Furthermore, the permutation
that assigns the elements of Θ− to the sets in C− is a random permutation.

For each Ci ∈ C+, put K∗
i = Ci ⊕ D(ρ). Put (K∗)+ = {K∗

i | Ci ∈ C+}, and let U∗ denote the
union of (K∗)+. Note that U∗ ⊆ U, because K∗

i ⊆ Ki for each Ci ∈ C+. Since the Ci’s are pairwise-
disjoint and we now add the same disk to each of them, (K∗)+ is a collection of pseudo-disks [16],
and therefore U∗ has O(t) complexity.

LetV denote the vertical decomposition of the complement of U∗; it consists of O(t) pseudo-trapezoids,
each defined by at most four elements of (K∗)+ (that is, of C+). See [23] for more details concerning
vertical decompositions. For short, we refer to these pseudo-trapezoids as trapezoids.

In a similar manner, for each Ci ∈ C−, define K∗
i = Ci ⊕ D(ρ); note that Ki ⊆ K∗

i for each such
i. Put (K∗)− = {K∗

i | Ci ∈ C−}. Since C+ is a random sample of C of size t, the following lemma
follows from a standard random-sampling argument; see [18, Section 4.6] for a proof.

Lemma 2.1. With probability 1 − O
(

1
nc−4

)

, every (open) trapezoid τ of V intersects at most k := cn
t ln n of

the sets of (K∗)−, for sufficiently large c > 4.

For each trapezoid τ of V, let C−τ denote the collection of the sets Ci ∈ C− for which K∗
i crosses τ.

We form the union U−
τ of the “real” (and smaller) corresponding sets Ki, for Ci ∈ C−τ , and clip it to

within τ (clearly, no other set Ci ∈ C− can have its real expansion Ki meet τ). Finally, we take all the
“larger” sets Ci ∈ C+, and form the union of U−

τ with the corresponding “real” Ki’s, again clipping it
to within τ. The overall union U is the union of U∗ and of all the modified unions U−

τ , for τ ∈ V.
This divide-and-conquer process leads to the following recursive estimation of the expected com-

plexity of U. For m ≤ n, let C′ be any subset of m sets of C, and let Θ′ be any subset of m elements of Θ,
which we enumerate, with some abuse of notation, as θ1, . . . , θm. Let T(C′, Θ′) denote the expected
complexity of the union of the expanded regions Ci ⊕ D(θσ′(i)), for Ci ∈ C′, where the expectation is

over the random shuffling permutation σ′ (on (1, . . . , m)). Let T(m) denote the maximum value of
T(C′, Θ′), over all subsets C′ and Θ′ of size m each, as just defined.

Let us first condition the analysis on a fixed choice of C+. This determines U∗ and V uniquely.
Hence we have a fixed set of trapezoids, and for each trapezoid τ we have a fixed set C−τ of kτ = |C−τ |
sets, whose expansions by ρ meet τ. The set Θ−

τ of distances assigned to these sets is not fixed, but
it is a random subset of {θ1, . . . , θn−t} of size kτ ≤ cn

t ln n, where kτ depends only on τ. Moreover,
the assignment (under the original random permutation σ) of these distances to the sets in C−τ is a
random permutation. Hence, conditioning further on the choice of Θ−

τ , the expected complexity of
U−

τ , before its modification by the expansions of the larger sets of C+, and ignoring its clipping to
within τ, is

T(C−τ , Θ−
τ ) ≤ T(kτ) ≤ T

( cn

t
ln n

)

.

Hence the last expression also bounds the unconditional expected complexity of the unmodified and
unclipped U−

τ (albeit still conditioned on the choice of C+). Summing this over all O(t) trapezoids τ
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of V, we get a bound of at most

atT
( cn

t
ln n

)

,

for a suitable absolute constant a. Since this bound holds for any choice of C+, it also bounds the un-
conditional expected value of the sum of the complexities of the unmodified unions U−

τ . To this we
need to add the complexity of U∗, which is O(t), the number of intersections between the boundaries
of the unions Uτ with the respective trapezoid boundaries, and the number of intersections between
the boundaries of the t larger expansions and the boundaries of all the expansions, that appear on the
boundary of U. The last two quantities are clearly both at most O(nt) (the constant in this latter ex-
pression depends on the description complexity of the sets in C). Altogether, we obtain the following
recurrence (reusing the constant a for simplicity).

T(n) ≤ atT
(cn

t
ln n

)

+ ant,

which holds when n is sufficiently large. When n is small, we use the trivial bound T(n) = O(n2).
With appropriate choice of parameters, the solution of this recurrence is T(n) ≤ An1+ε, for any

ε > 0, where A depends on ε and on the other constants appearing in the recurrence. For this, one

needs to choose t ≫ (log n)(1+ε)/ε, and then choose A sufficiently large so that the additive term is
significantly subsumed by the other terms, and so that the quadratic bound for small values of n is
also similarly subsumed. Leaving out the remaining routine details, we have thus established the
bound asserted in the theorem. ✷

3 The Case of Segments

Let E = {e1, . . . , en} be a collection of n line segments in the plane with pairwise-disjoint relative
interiors, and as in Section 2, let Θ be a multi-set of n non-negative real numbers 0 ≤ θ1 ≤ θ2 ≤
· · · ≤ θn. For simplicity, we assume that the segments in E are in general position, i.e., no segment
is vertical, no two of them share an endpoint, and no two are parallel. Moreover, we assume that
the expansion distances in Θ are positive and in “general position” with respect to E, so as to ensure
that, no matter which permutation we draw, the racetracks of K are also in general position—no pair
of them are tangent and no three have a common boundary point.1 Using the standard symbolic
perturbation techniques (see e.g. [23, Chapter 7]), the proof can be extended when E or Θ is not in
general position or when some of the expansion distances are 0; we omit here the routine details.

For each 1 ≤ i ≤ n, let ai, bi be the left and right endpoints, respectively, of ei (as mentioned, we
assume, with no loss of generality, that no segment in E is vertical). We draw a random permutation
σ of {1, . . . , n}, and, for each 1 ≤ i ≤ n, we put ri = θσ(i). We then form the Minkowski sums

Ki = ei ⊕ D(ri), for i = 1, . . . , n. We refer to such a Ki as a racetrack. Its boundary consists of two
semicircles γ−

i and γ+
i , centered at the respective endpoints ai and bi of ei, and of two parallel copies,

e−i and e+i , of ei; we use e−i (resp., e+i ) to denote the straight edge of Ki lying below (resp., above) ei.

Let a−i , a+i (resp., b−i , b+i ) denote the left (resp., right) endpoints of e−i , e+i , respectively. We regard Ki

as the union of two disks D−
i , D+

i of radius ri centered at the respective endpoints ai, bi of ei, and a

1When we carry over the analysis to the density model, the latter assumption will hold with probability 1 when π
is Lebesgue-continuous, but may fail for a discrete probability mass distribution. In the latter situation, we can use
symbolic perturbations to turn π into a density in general position, without affecting the asymptotic bound that we are
after.
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rectangle Ri of width 2ri having ei as a midline. The left endpoint ai splits the edge a−i a+i of Ri into

two segments of equal length, and similarly bi splits the edge b−i b+i of Ri into two segments of equal

lengths. We refer to these four segments aia
−
i , aia

+
i , bib

−
i , bib

+
i as the portals of Ri; see Figure 5(i). Set

K = {Ki | 1 ≤ i ≤ n}, D = {D+
i , D−

i | 1 ≤ i ≤ n}, and R = {Ri | 1 ≤ i ≤ n}.
As above, let U = U(K) denote the union of K. We show that the expected number of vertices on

∂U is O(n log n), where the expectation is over the choice of the random permutation σ that produces
the distances r1, . . . , rn.

Ri
γ+

i

ei

γ−
i

b−i

D+
i

bi

a−i
Ki

D−
i

e−i

ai

e+i b+ia+i

ζ

Ri

β
α

ξ

ei

ej

Rj

(i) (ii)

Figure 5. XXX (i) Segment ei, racetrack Ki, and its constituents rectangle Ri and disks D−
i , D+

i . (ii) Union of two racetracks.
α, β are RR-vertices, ζ is a CR-vertex, and ξ is a CC-vertex; α is a non-terminal vertex and β is a terminal vertex (because
of the edge of Rj it lies on, which ends inside Ri).

We classify the vertices of ∂U into three types (see Figure 5(ii)):

(i) CC-vertices, which lie on two semicircular arcs of the respective pair of racetrack boundaries;

(ii) RR-vertices, which lie on two straight-line edges; and

(iii) CR-vertices, which lie on a semicircular arc and on a straight-line edge.

Bounding the number of CC-vertices is trivial because they are also vertices of U(D), the union of
the 2n disks D−

i , D+
i , so their number is O(n) [5, 16]. We therefore focus on bounding the expected

number of RR- and CR-vertices of ∂U.

3.1 RR-vertices

Let v be an RR-vertex of U, lying on ∂Ri and ∂Rj, the rectangles of two respective segments ei and ej.

Denote the edges of Ri and Rj containing v as ηi ∈ {e−i , e+i } and ηj ∈ {e−j , e+j }, respectively. A vertex

v is terminal if either a subsegment of ηi connecting v to one of the endpoints of ηi is fully contained in
Kj, or a subsegment of ηj connecting v to one of the endpoints of ηj is fully contained in Ki; otherwise
v is a non-terminal vertex. For example, in Figure 5(ii), β is a terminal vertex, and α is a non-terminal
vertex. There are at most 4n terminal vertices on ∂U, so it suffices to bound the expected number of
non-terminal vertices.

Our strategy is first to describe a scheme that charges each non-terminal RR-vertex v to one of the
portals of one of the rectangles of R on whose boundary v lies, and then to prove that the expected
number of vertices charged to each portal is O(log n). The bound O(n log n) on the expected number
of (non-terminal) RR-vertices then follows.

Let v be a non-terminal RR-vertex lying on ∂Ri ∩ ∂Rj, for two respective input segments ei and ej.

To simplify the notation, we rename ei and ej as e1 and e2. Note that v is an intersection of e+1 or e−1
with e+2 or e−2 . Since the analysis is the same for each of these four choices we will say that v is the
intersection of e±1 with e±2 where e±1 (resp., e±2 ) is either e+1 (resp., e+2 ) or e−1 (resp., e−2 ).
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For i = 1, 2, let g±i denote the (unique) portion of e±i between v and an endpoint wi so that, locally

near v, g±i is contained in the second racetrack K3−i (that is, in R3−i). Now take Qi to be the rectangle

with g±i = vwi as one of its sides, and with the orthogonal projection of g±i onto ei as the opposite
parallel side. We denote this edge of Qi, which is part of ei, by Ei. We let Ai be the side perpendicular
to Ei and incident to wi. Note that Ai is one of the four portals of Ri. We denote by A∗

i the side of Qi

that is parallel to Ai (and incident to v). See Figure 6.
Each rectangle Qi, i = 1, 2, has a complementary rectangle Q′

i on the same side of ei, which is
openly disjoint from Qi, so that Qi ∪ Q′

i is the half of the rectangular portion Ri, between ei and e±i ,
of the full racetrack Ki.

w2

Q′
1

Q′
2

Q1

Q2

R2

E1

R1

A1

A2

E2

g±
2

g±
1

A∗
1

w1 A∗
2

v

Figure 6. The rectangles Q1 and Q2 defined for a non-terminal RR-vertex v.

Since Ei ⊂ ei for i = 1, 2, it follows that E1 and E2 are disjoint. Since v is a non-terminal RR-vertex,
w1 lies outside K2 and w2 lies outside K1. So, as we walk along the edge vwi of Qi from v to wi, we
enter, locally near v, into the other racetrack K3−i, but then we have to exit it before we get to wi. Note
that either of these walks, say from v to w1, may enter Q2 or keep away from Q2 (and enter instead
the complementary rectangle Q′

2); see Figures 6 and 8(i) for the former situation, and Figure 8(ii) for
the latter one.

Another important property of the rectangles Q1 and Q2, which follows from their definition, is
that they are “oppositely oriented”, when viewed from v, in the following sense. When we view
from v one of Q1 and Q2, say Q1, and turn counterclockwise, we first see E1 and then A1, and when
we view Q2 and turn counterclockwise, we first see A2 and then E2.

So far our choice of which among the segments defining v is denoted by e1 and which is denoted
by e2 was arbitrary. But in the rest of our analysis we will use e1 to denote the segment such that
when we view Q1 from v and turn counterclockwise, we first see E1 and then A1. The other segment
is denoted by e2.

The following lemma provides the key ingredient for our charging scheme.

Lemma 3.1. Let v be a non-terminal RR-vertex. Then, in the terminology defined above, one of the edges,
say E1, has to intersect either the portal A2 of the other rectangle Q2, or the portal A′

2 of the complementary
rectangle Q′

2.

Proof. For i = 1, 2, we associate with Qi a viewing arc Γi, consisting of all orientations of the rays
that emanate from v and intersect Qi. Each Γi is a quarter-circular arc (of angular span 90◦), which
is partitioned into two subarcs ΓA

i , ΓE
i , at the orientation at which v sees the opposite vertex of the

corresponding rectangle Qi; ΓA
i (resp., ΓE

i ) is the subarc in which we view Ai (resp., Ei). See Figure 7.
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A2

E2

A1

E1

v

Γ1

Γ2

E

E

A

A

Figure 7. The two viewing arcs Γ1, Γ2, their partitions into ΓE
1 , ΓA

1 and ΓA
2 , ΓE

2 , and their overlap.

Moreover, the opposite orientations of Q1 and Q2 mean that, as we trace these arcs in counter-
clockwise direction, ΓE

1 precedes ΓA
1 , whereas ΓE

2 succeeds ΓA
2 . That is, the clockwise endpoint of Γ1

is adjacent to ΓE
1 and we call it the E-endpoint of Γ1, and the counterclockwise endpoint of Γ1, called

the A-endpoint, is adjacent to ΓA
1 . Symmetrically, the clockwise endpoint of Γ2 is its A-endpoint and

is adjacent to ΓA
2 , and its counterclockwise endpoint is the E-endpoint, adjacent to ΓE

2 . See Figures 7
and 8.

v

E1

w1

w2 A1 Q1

E2

A2

Q2

A∗
1

A∗
2 v

E1

w1

w2

A2E2

Q2

Q1
A∗

2

A∗
1

A1

(i) (ii)

Figure 8. (i) One possible interaction between Q1 and Q2. The overlap is of type AA, the intersection Γ0 of the viewing
arcs is delimited by the orientations of ~vw1 and ~vw2. (i) Another possible interaction between Q1 and Q2. The overlap is
of type EE, the intersection Γ0 of the viewing arcs does not contain the orientations of ~vw1 and ~vw2.

Finally, the overlapping of Q1 and Q2 near v mean that the arcs Γ1 and Γ2 overlap too. Let Γ0 :=
Γ1 ∩ Γ2.

The viewing arcs Γ1 and Γ2 can overlap in one of the following two ways.

AA-overlap: The clockwise and the counterclockwise endpoints of Γ0 are the A-endpoints of Γ2 and
Γ1, respectively. See Figure 8(i).

EE-overlap: The clockwise and the counterclockwise endpoints of Γ0 are the E-endpoints of Γ1 and
Γ2, respectively. See Figure 8(ii).

We now assume that none of the four intersections (between one of the segments and a suitable
portal of the other rectangle), mentioned in the statement of the lemma, occur. We reach a contradic-
tion by showing that under this assumption neither type of overlap can happen.
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AA-overlap. For i = 1, 2, let ρi(θ), for θ ∈ Γi, denote the length of the intersection of Qi with the ray
emanating from v in direction θ. Note that ρi is bimodal: it increases to its maximum, which occurs
at the direction to the vertex of Qi opposite to v, and then decreases back (each of the two pieces is a
simple trigonometric function of θ).

Write Γ0 = [α, β]. Since the overlap of Γ1 and Γ2 is an AA-overlap α is the orientation of ~vw2, and
we have ρ2(α) > ρ1(α) (we have to exit Q1 before we reach w2). Symmetrically, we have ρ2(β) <

ρ1(β). See Figure 8(i). Hence, by continuity, there must exist θ ∈ Γ0 where ρ1(θ) = ρ2(θ).

E1, A2 A1, A2 A1, E2

ρ2

ρ1

βα

Figure 9. Illustrating the argument that ρ1 and ρ2 cannot intersect in an AA-overlap.

We claim however that this is impossible. Indeed, by taking into account the partitions Γ1 =
ΓE

1 ∪ ΓA
1 , Γ2 = ΓA

2 ∪ ΓE
2 , and by overlaying them within Γ0, we see that Γ0 is partitioned into at most

three subarcs, each being the intersection (within Γ0) of one of ΓE
1 , ΓA

1 with one of ΓA
2 , ΓE

2 . See Figure 9

(and also Figure 7, where the overlap has only two subarcs, of ΓE
1 ∩ ΓE

2 and ΓA
1 ∩ ΓE

2 ). Since E1 and E2

are disjoint, and since, by assumption, no E-edge of any rectangle intersects the A-edge of the other
rectangle, the intersection ρ1(θ) = ρ2(θ) can only occur within ΓA

1 ∩ ΓA
2 . As we trace Γ0 from α to

β, we start with ρ2 > ρ1, so this still holds as we reach ΓA
1 ∩ ΓA

2 . However, the bimodality of ρ1, ρ2

and the different orientations of Q1, Q2 mean that ρ1 is decreasing on ΓA
1 , whereas ρ2 is increasing on

ΓA
2 , so no intersection of these functions can occur within ΓA

1 ∩ ΓA
2 , a contradiction that shows that an

AA-overlap is impossible.

EE-overlap. We follow the same notations as in the analysis of AA-overlaps, but use different argu-
ments, which bring to bear the complementary rectangles Q′

1, Q′
2.

Consider the clockwise endpoint α of Γ0, which, by construction, is the E-endpoint of Γ1, incident
to ΓE

1 . Consider first the subcase where ρ1(α) > ρ2(α). That is, the edge A∗
1 of Q1 connecting v to E1

crosses and exits Q2 before reaching E1; it may exit Q2 either at E2 (as depicted in Figure 8(ii)) or at
A2 (as depicted in Figure 10).

If A∗
1 exits Q2 at E2 then we follow E2 into the complementary rectangle Q′

1. By our assumption
(that no intersection as stated in the lemma occurs) E2 cannot exit Q′

1 through its anchor side A′
1 (as

depicted in Figure 11(i)). So E2 must end inside Q′
1, at an endpoint q2 (see Figure 11(ii)). But then the

right angle q2w2v must either cross the anchor A′
1 twice, or be fully contained in Q′

1. In the latter case
w2 lies in Q′

1 ⊂ R1, contrary to the assumption that v is non-terminal, and in the former case w2 lies
in the disk with A′

1 as a diameter, which is also contained in K1, and again we have a contradiction.
If A∗

1 exits Q2 at A2, the argument is simpler, because then w2 is contained in the disk with A∗
1

as a diameter, which is contained in K1, again contrary to the assumption that v is non-terminal (see
Figure 10).
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E1

E2

A2

A1

w2

Q2

w1 v

A∗
1

Q1

E1

E2

A1

w2

w1 v

Q2
A2

Q1

A∗
1

(i) (ii)

Figure 10. (i) Another instance of an EE-overlap. (ii) The intersection of the viewing arcs; it consists of three subarcs (in
counterclockwise order): ΓE

1 ∩ ΓA
2 , ΓA

1 ∩ ΓA
2 , and ΓA

1 ∩ ΓE
2 . Here w2 lies in the diametral disk (not drawn) spanned by the

edge A∗
1 of Q1.

A′
1

vw1

w2

A2

E1

A1
E2

Q1

Q′
1

Q2

A′
1

q2

vw1

w2

A2

E1

A1

Q1

Q′
1

E2

Q2

(i) (ii)

Figure 11. Another instance of an EE-overlap. The intersection of the viewing arcs consists of just ΓE
1 ∩ ΓE

2 . (i) E2 crosses
the anchor A′

1 of the complementary rectangle Q′
1. (ii) E2 ends inside Q′

1.

A fully symmetric argument leads to a contradiction in the case where ρ1(β) < ρ2(β). It therefore
remains to consider the case where ρ1(α) < ρ2(α) and ρ1(β) > ρ2(β). Here we argue exactly as in
the case of AA-overlaps, using the bimodality of ρ1 and ρ2, that this case cannot happen. (Figure 9
depicts the situation in this case too.) Specifically, there has to exist an intersection point of ρ1 and ρ2

within Γ0, and it can only occur at ΓA
1 ∩ ΓA

2 . But over this subarc ρ1 is decreasing and ρ2 is increasing,
and we enter this subarc with ρ1 < ρ2, so these functions cannot intersect within this arc. This
completes the argument showing that our assumption implies that an EE-overlap is not possible.

We conclude that one of the intersections stated in the lemma must exist.

The charging scheme. We charge v to a portal (A2 or A′
2) of R2 that intersects E1 or to a portal (A1

or A′
1) of R1 that intersects E2. At least one such intersection must exist by Lemma 3.1. A useful

property of this charging, which will be needed in the next part of the analysis, is given by the
following lemma.

Lemma 3.2. Let v be a non-terminal RR-vertex, lying on ∂Ri ∩ ∂Rj, which is charged to a portal hj of Rj.
Then ei, traced from its intersection with hj into Rj, gets further away from ej.
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ej

ei

q′

Ri

q

hj

hi Rj

v

Figure 12. Illustrating the proof of Lemma 3.2. Only the lower portions of Ri and Rj are shown.

Proof. Suppose to the contrary that ei approaches ej and assume, without loss of generality, that ej is

horizontal, that v lies on e−j , and that hj is the left-lower portal of Rj. In this case ei has positive slope.

See Figure 12.
Let q denote the endpoint of hj incident to ej and let q′ denote the lower endpoint of hj. (Note

that q′ is wj if v is charged to the portal Aj of Rj which is also a portal of Qj and q′ is the endpoint
of A′

j, the portal of the complementary rectangle Q′
j, otherwise.) Since v is a non-terminal RR-vertex,

the segment ~vq′, as we trace it from v, enters Ri (this follows as ei has positive slope) and then exits
it before reaching q′. The exit point lies on a suitable portal hi of Ri. Since ei intersects hj, it follows
that hi must also cross hj. But then q′ must lie inside the diametral disk spanned by hi, and thus it
lies inside Ki, a contradiction that completes the proof.

The expected number of vertices charged to a portal. Fix a segment of E, denote it as e0, and
rename the other segments as e1, . . . , en−1. Assume, for simplicity, that e0 is horizontal. We bound the
expected number of vertices charged to the lower-left portal, denoted by g, of the rectangle R0 (which
is incident to the left endpoint, a0, of e0); symmetric arguments will apply to the other three portals of
R0. Given a specific permutation (r0, . . . , rn−1) of the input set of distances Θ, let χRR(g; r0, . . . , rn−1)
denote the number of vertices charged to g if ei is expanded by ri, for i = 0, . . . , n − 1. We wish to
bound χ̄RR(g), the expected value of χRR(g; r0, . . . , rn−1) with respect to the random choice of the ri’s,
as effected by randomly shuffling them (by a random permutation acting on Θ).

We first fix a value r (one of the values θi ∈ Θ) of r0 and bound χ̄RR(g | r), the expected number
of vertices charged to g conditioned on the choice r0 = r; the expectation is taken over those permu-
tations that fix r0 = r; they can be regarded as random permutations of the remaining elements of Θ.
Then we bound χ̄RR(g) by averaging the resulting bound over the choice of r0.

So fix r0 = r. Set K0 = e0 ⊕ D(r), and let ℓ−0 denote the line supporting e−0 . We have g = a0a−0 , and
observe that all these quantities depend only on r0, so they are now fixed. By our charging scheme,
if a vertex v ∈ ∂R0 ∩ ∂Rj is charged to the portal g, then v ∈ e−0 , and ej intersects g. Furthermore, by
Lemma 3.2, the slope of ej is negative. Let Eg ⊆ E \ {e0} be the set of segments that intersect g and
have negative slopes; the set Eg depends on the choice of r0 = r but not on (the shuffle of) r1, . . . , rn−1.

For a fixed permutation (r1, . . . , rn−1), set Kg = {Kl := el ⊕ D(rl) | el ∈ Eg} and Ug = U(Kg)∩ e−0 .
We call a vertex of Ug an R-vertex if it lies on ∂Ri for some ei ∈ Eg (as opposed to lying on some
semicircular arc). If a non-terminal RR-vertex v is charged to the portal g, then v is an R-vertex of
Ug (for the specific choice r0 = r). It thus suffices to bound the expected number of R-vertices on Ug,
where the expectation is taken over the random shuffles of r1, . . . , rn−1.

Consider a segment ei ∈ Eg. If ℓ−0 ∩ ei 6= ∅ then we put qi = ℓ
−
0 ∩ ei. If ℓ−0 ∩ ei = ∅, then let

λi denote the line perpendicular to ei through bi (the right endpoint of ei), and define qi to be the
intersection of λi with ℓ

−
0 . (We may assume that qi lies to the right of a−0 , for otherwise no expansion
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of ei will be such that Ri intersects the edge e−0 .) Define r∗i = 0 if ℓ−0 ∩ ei 6= ∅ and r∗i = |biqi| otherwise.
For simplicity, write Eg as 〈e1, . . . , em〉, for some m < n, ordered so that q1, . . . , qm appear on ℓ

−
0 from

right to left in this order; see Figure 13. We remark that q1, . . . , qm are independent of the values
of r1, . . . , rm, and that the order e1, . . . , em may be different from the order of the intercepts of these
segments along g (e.g., see the segments e1 and e2 in Figure 13).

Figure 13. Segments in Eg and the points that they induce on ℓ
−
0 .

For i = 1, . . . , m, let ri be, as above, the (random) expansion distance chosen for ei, and set Ji =
Ri ∩ ℓ

−
0 . If ri ≤ r∗i then Ji = ∅, and if ri > r∗i then Ji is an interval containing qi. Let U0 be the union

of the intervals Ji, and let µ(r; r1, . . . rm) be the number of connected components of U0. Clearly,
each R-vertex of Ug is an endpoint of a component of U0, which implies that χRR(g; r, r1, . . . , rn−1) ≤
2µ(r; r1, . . . , rm). It therefore suffices to bound µ̄(r), the expected value of µ(r; r1, . . . , rm) over the
random shuffles of r1, . . . , rm.

For each ei ∈ Eg, let βi be the length of the segment connecting a−0 to its orthogonal projection on

ei. As is easily checked, we have βi < r. It is also clear that if ri ≥ βi then the entire segment qia
−
0 is

contained in Ki.

Lemma 3.3. In the preceding notations, the expected value of µ̄(r) is O(log n).

Proof. Assume that r = θn−k+1, for some k ∈ {1, . . . , n}. We claim that is this case µ̄(r) ≤ n/(k + 1).
For i = 1, . . . , m, if ri > r then ri > βi and therefore a−0 ∈ Ji. Hence, if i is the smallest index for

which ri > r (assuming that such an index exists), then U0 has at most i connected components: the
one containing Ji and at most i − 1 intervals to its right.

Recall that we condition the analysis on the choice of r0 = r, and that we are currently assuming
that r0 is the k-th largest value of Θ. For this fixed value of r0, the set Eg is fixed.

Order the segments in E0 := E \ e0 by placing first the m segments of Eg in their order as defined
above, and then place the remaining n−m− 1 segments in an arbitrary order. Clearly this reshuffling
of the segments does not affect the property that the expansion distances in Θ0 := Θ \ {r} that are
assigned to them form a random permutation of Θ0.

In this context, µ̄(r) is upper bounded by the expected value of the index j of the first segment ej

in E0 that gets one of the k − 1 distances larger than r. (In general, the two quantities are not equal,
because we set µ(r; r1, . . . , rm) = m when j is greater than m, that is, in case no segment of Eg gets a
larger distance.)

As is well known, the expected value of j is n/k (this follows, e.g., as in [12, p. 175, Problem 2]),
from which our claim follows. (Note that the case k = 1 is special, because no index can get a larger
value, but the resulting expectation, namely n, serves as an upper bound for µ̄(r).)
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Figure 14. Illustration of the proof of Lemma 3.5.

Since r = θn−k+1 with probability 1/n, for every k, we have

E[µ̄(r)] =
n

∑
k=1

1

n
· µ̄(θn−k+1) ≤

1

n

n

∑
k=1

n

k
=

n

∑
k=1

1

k
= O(log n).

Putting it all together. Lemma 3.3 proves that the expected number of non-terminal vertices of U
charged to a fixed portal of some rectangle in R is O(log n). By Lemma 3.1, each non-terminal RR-
vertex of U is charged to one of the 4n portals of the rectangles in R. Repeating this analysis for all
these 4n portals, the expected number of non-terminal RR-vertices in U is O(n log n). Adding the
linear bound on the number of terminal RR-vertices, we obtain the following result.

Lemma 3.4. The expected number of RR-vertices of U(K) is O(n log n).

3.2 CR-vertices

Next, we bound the expected number of CR-vertices of U. Using a standard notation, we call a vertex
v ∈ U lying on ∂Ki ∩ ∂Kj regular if ∂Ki and ∂Kj intersect at two points (one of which is v); otherwise
v is called irregular. By a result of Pach and Sharir [22], the number of regular vertices on ∂U is
proportional to n plus the number of irregular vertices on ∂U. Since the expected number of RR- and
CC-vertices on ∂U is O(n log n), the number of regular CR-vertices on ∂U is O(n log n + κ), where κ
is the number of irregular CR-vertices on ∂U. It thus suffices to prove that κ = O(n log n).

Geometric properties of CR-vertices. We begin by establishing a few simple geometric lemmas.

Lemma 3.5. Let D and D′ be two disks of respective radii r, r′ and centers o, o′. Assume that r′ ≥ r and that
o′ ∈ D. Then D′ ∩ ∂D is an arc of angular extent at least 2π/3, centered at the radius vector of D from o
through o′.

Proof. We may assume that D is not fully contained in D′, for otherwise the claim is trivial. Consider
then the triangle oo′p, where p is one of the intersection points of ∂D and ∂D′. Put |oo′| = d ≤ r, and
let ∠o′op = θ; see Figure 14. Then

cos θ =
r2 + d2 − r′2

2dr
≤

d2

2dr
=

d

2r
≤

1

2
.

Hence θ ≥ π/3. Since the angular extent of D′ ∩ ∂D is 2θ, the claim follows. The property concerning
the center of the arc D′ ∩ ∂D is also obvious.
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Corollary 3.6. Let D and D′ be two disks of radii r and r′ and centers o and o′, respectively, let D1 be a sector
of D of angle π/3, and let γ1 denote the circular portion of ∂D1. (a) If o′ ∈ D1 and r < r′ then γ1 is fully
contained in D′. (b) If o′ /∈ D1 then either D′ is disjoint from γ1 or D′ ∩ γ1 consists of one or two arcs, each
containing an endpoint of γ1.

Proof. The first claim (a) follows from the preceding lemma, since D′ ∩ ∂D is an arc of angular extent
at least 2π/3 centered at a point on γ1. For (b), D′ ∩ ∂D is a connected arc δ, whose center lies in

direction ~oo′ and thus outside γ1, and D′ ∩γ1 = δ ∩γ1. The intersection of two arcs of the same circle
consists of zero, one, or two connected subarcs. In the first case the claim is obvious. In the third case,
each of the arcs δ, γ1 must contain both endpoints of the other arc, so (b) follows. In the second case,
the only situation that we need to rule out is when δ ∩ γ1 is contained in the relative interior of γ1, so
δ, and its center, are contained in γ1, contrary to assumption. Hence (b) holds in this case too.

Fix a segment of E, call it e0, and rename the other segments to be e1, . . . , en−1. ∂K0 has two
semicircular arcs, each corresponding to a different endpoint of e0. We fix one of the semicircular
arcs of K0 and denote it by γ0. Let r0 be the random distance assigned to e0, let D0 be the disk of
radius r0 containing γ0 on its boundary, and let H0 ⊂ D0 be the half-disk spanned by γ0.

Partition H0 into three sectors of angular extent π/3 each, denoted as H01, H02, H03. Let γ0i ⊂ γ0

denote the arc bounding H0i, for i = 1, 2, 3. Here we call a vertex v ∈ ∂U formed by γ0i ∩ ∂Kj,
for some j, a terminal vertex if Kj contains one of the endpoints of γ0i, and a non-terminal vertex
otherwise. There are at most six terminal vertices on γ0, for an overall bound of 12n on the number
of such vertices, so it suffices to bound the (expected) number of non-terminal irregular CR-vertices
on each subarc γ0i, for i = 1, 2, 3.

Let E(r0) denote the set of all segments ej 6= e0 that intersect the disk D0, and, for i = 1, 2, 3, let
Ei(r0) ⊆ E(r0) denote the set of all segments ej 6= e0 that intersect the sector H0i. Set mi := mi(r0) =
|Ei(r0)|. Segments in E(r0) \ Ei(r0) intersect D0 but are disjoint from H0i. (The parameter r0 is to
remind us that all these sets depend (only) on the choice of r0.)

Lemma 3.7. Let ej ∈ E \ E(r0). If U has a CR-vertex v ∈ γ0i ∩ ∂Kj, for some i = 1, 2, 3, then v is either a
regular vertex or a terminal vertex.

Proof. Let c denote the center of D0, and consider the interaction between Kj and D0. We split into
the following two cases.
Case 1, rj ≤ r0: Regard D0 as D∗

0 ⊕ D(rj), where D∗
0 is the disk of radius r0 − rj centered at c. By

assumption, D∗
0 and ej are disjoint, implying that D0 and Kj are pseudo-disks (cf. [16]), that is, their

boundaries intersect in two points, one of which is v; denote the other point as v′.
If only v lies on γ0, then v must be a terminal vertex, so assume that both v and v′ lie on γ0. We

claim that ∂Kj and ∂K0 can intersect only at v and v′, implying that v is regular. Indeed, v and v′

partition ∂Kj into two connected pieces. One piece is inside D0, locally near v and v′, and cannot
intersect ∂Ki in a point other than v and v′ without intersecting D0 in a third point (other than v and
v′), contradicting that D0 and Kj are pseudo-disks. The other connected piece of ∂Kj between v and
v′ is separated from ∂Ki \ γ0 by the line through v and v′ and therefore cannot contain intersections
other than v and v′ between ∂Kj and ∂Ki. See Figure 15(a).
Case 2, rj > r0: Let K∗

j = ej ⊕ D(rj − r0). Kj can now be regarded as K∗
j ⊕ D(r0). If c 6∈ K∗

j , then by

the result of [16], D0 = c ⊕ D(r0) and Kj are pseudo-disks; see Figure 15(b). Therefore, the argument
given above for the case where r0 ≥ rj implies the lemma in this case as well. Finally, c ∈ K∗

j implies

that Kj contains D0, so this case cannot occur (it contradicts the existence of v). See Figure 15(c).

Using Lemmas 3.5 and 3.7, we obtain the following property.
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ejv
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v′
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v

(a) (b)
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c

K∗
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Figure 15. (a): The case when r0 ≥ rj and ∂Kj ∩ γ0 contains the two intersection points of ∂D0 and ∂Kj. (b) The case when
rj > r0 and c 6∈ K∗

j . (c) The case when rj > r0 and c ∈ K∗
j .

Lemma 3.8. Let v ∈ γ0i ∩ ∂Kj be a non-terminal, irregular CR-vertex of U. Then (i) ej ∈ Ei(r0), and (ii) for
all el ∈ Ei(r0), rl < r0.

Proof. Lemma 3.7 implies that ej ∈ E(r0). Suppose first that ej ∈ E(r0) \ Ei(r0). Pick a point o′ ∈
ej ∩ D0, which exists by assumption, and note that Kj contains the disk D′ of radius rj centered at o′.
Part (b) of Corollary 3.6 implies that D′ intersects γ0i at an arc or a pair of arcs, each containing an
endpoint of γ0i, i.e., v is a terminal vertex, contrary to assumption. We can therefore conclude that
ej ∈ Ei(r0). Part (a) of Corollary 3.6 implies that rl < r0 for all el ∈ Ei(r0), because otherwise we
would have γ0i ⊂ Kl and γ0i would not contain any vertex of ∂U.

The expected number of non-terminal vertices on γ0. We are now ready to bound the expected
number of non-terminal irregular CR-vertices of U that lie on the semi-circular arc γ0 of K0. Note that
γ0 is not fixed, as it depends on the value of r0. Let χCR(γ0; r0, r1, . . . , rn−1) denote the number of non-
terminal irregular vertices on γ0, assuming that ri is the expansion distance of Ki, for i = 0, . . . , n − 1.
Our goal is to bound

χ̄CR(γ0) = E[χCR(γ0; r0, . . . , rn−1)]

where the expectation is over all the random permutations assigning these distances to the seg-
ments of E. As for RR-vertices, we first fix the value of r0 to, say, r, and bound χCR(γ0 | r), the
expected value of χCR(γ0, r, r1, . . . , rn−1), where the expectation is taken over the random shuffles of
r1, . . . , rn−1, and then bound χ̄CR(γ0) by averaging over the choice of r0.

Lemma 3.9. Using the notation above, χ̄CR(γ0) = O(log n).

Proof. Following the above scheme, suppose that the value r0 is indeed fixed to r, so γ0 and γ0i,
1 ≤ i ≤ 3, are fixed. As above, set mi = |Ei(r)|, for i = 1, 2, 3; the sets Ei(r) and their sizes mi

are also fixed. We bound the expected number of non-terminal irregular vertices on γ0i, for a fixed
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i ∈ {1, 2, 3}. By Lemma 3.8, any such vertex lies on the boundary of J0, the intersection of γ0i with
the union of {Kl | el ∈ Ei(r)}. Equivalently, it suffices to bound the expected number of connected
components of J0 that lie in the interior of γ0i. By Lemma 3.8, if rl ≥ r for any el ∈ Ei(r), then there
are no such components.

Assume that r = θn−k+1 for some k ∈ {1, . . . , n}. To bound χCR(γ0 | r), we first bound the
probability p that all the mi radii that are assigned to the segments of Ei(r) are smaller than r. We
have

p =
(n−k

mi
)

(n−1
mi

)
=

(n − k)(n − k − 1) · · · (n − k − mi + 1)

(n − 1)(n − 2) · · · (n − mi)

=

(

1 −
k − 1

n − 1

)(

1 −
k − 1

n − 2

)

· · ·

(

1 −
k − 1

n − mi

)

<

(

1 −
k − 1

n − 1

)mi

< e−(k−1)mi/(n−1).

That is, with probability 1 − p there are no connected components. Note that 1 − p = 0 when k =
1. In the complementary case, when all the mi radii under consideration are smaller than r, we
pessimistically bound the number of connected components by 2mi — each segment of Ei(r) can
generate at most two connected components. In other words, when k ≥ 2, the expected number of
connected components of J0 is at most

2mi p < 2mie
−(k−1)mi/(n−1) =

2(n − 1)

k − 1
·
(

((k − 1)mi/(n − 1))e−(k−1)mi/(n−1)
)

<
2(n − 1)

e(k − 1)
,

because the maximum value of the expression xe−x is e−1. The bound is 2mi ≤ 2(n − 1) when k = 1.
Since r = θn−k+1 with probability 1/n for every k, we have

E[χ̄CR(γ0)] = E[χCR(γ0 | r)] =
n

∑
k=1

1

n
· E[χCR(γ0 | θn−k+1)]

≤
1

n

[

2(n − 1) +
n

∑
k=2

2(n − 1)

e(k − 1)

]

= O

(

n

∑
k=1

1

k

)

= O(log n).

Summing this bound over all three subarcs of γ0 and adding the constant bound on the number
of terminal (irregular) vertices, we obtain that the expected number of irregular CR-vertices of U on
γ0 is O(log n). Summing these expectations over the 2n semicircular arcs of the racetracks in K, and
adding the bounds on the number of regular CR-vertices we obtain the following lemma.

Lemma 3.10. The expected number of CR-vertices on U(K) is O(n log n).

Combining Lemma 3.4, Lemma 3.10, and the linear bound on the number of CC-vertices, com-
pletes the proof of Theorem 1.2 for the case of segments.
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4 The Case of Polygons

In this section we consider the case where the objects of C are n convex polygons, each with at most s
vertices. For simplicity, we prove Theorem 1.2 when each Ci is a convex s-gon—if Ci has fewer than s
vertices, we can split some of its edges into multiple edges so that it has exactly s vertices. We reduce
this case to the case of segments treated above. A straightforward reduction that just takes the edges
of the s-gons as our set of segments does not work since edges of the same polygon are all expanded
by the same distance. Nevertheless, we can overcome this difficulty as follows.

Let C = {C1, . . . , Cn} be the n given polygons, and consider a fixed assignment of expansion
distances ri to the polygons Ci. For each i, enumerate the edges of Ci as ei1, ei2, . . . , eis; the order
of enumeration is not important. Let v be a vertex of U, lying on the boundaries of Ki and Kj, for
some 1 ≤ i < j ≤ n. Then there exist an edge eip of Ci and an edge ejq of Cj such that v lies on
∂(eip ⊕ D(ri)) and on ∂(ejq ⊕ D(rj)); the choice of eip is unique if the portion of ∂Ki containing v is a
straight edge, and, when that portion is a circular arc, any of the two edges incident to the center of
the corresponding disk can be taken to be eip. A similar property holds for ejq.

The following stronger property holds too. For each 1 ≤ p ≤ s, let Cp be the set of edges
{e1p, e2p, . . . , enp}, and let Kp = {e1p ⊕ D(r1), . . . , enp ⊕ D(rn)}. Then, as is easily verified, our vertex
v is a vertex of the union U(Kp ∪Kq). Moreover, for each p, the expansion distances ri of the edges
eip of Cp are all the elements of Θ, each appearing once, and their assignment to the segments of Cp

is a random permutation. Fix a pair of indices 1 ≤ p < q ≤ s, and note that each expansion distance ri

is assigned to exactly two segments of Cp ∪ Cq, namely, to eip and eiq.
We now repeat the analysis given in the preceding section for the collection Cp ∪ Cq, and make

the following observations. First, the analysis of CC-vertices remains the same, since the complexity
of the union of any family of disks is linear.

Second, in the analysis of RR- and CR-vertices, the exploitation of the random nature of the dis-
tances ri comes into play only after we have fixed one segment (that we call e0) and its expansion
distance r0, and consider the expected number of RR-vertices and CR-vertices on the boundary of
K0 = e0 ⊕ D(r0), conditioned on the fixed choice of r0. Suppose, without loss of generality, that e0

belongs to Cp. We first ignore its sibling e′0 in Cq (from the same polygon), which receives the same

expansion distance r0; e′0 can form only O(1) vertices of U with e0.2 The interaction of e0 with the
other segments of Cp behaves exactly as in Section 3, and yields an expected number of O(log n)
RR-vertices of U(Kp) charged to the portals of R0 and an expected number of O(log n) CR-vertices
charged to circular arcs of K0. Similarly, The interaction of e0 with the other segments of Cq (excluding
e′0) is also identical to that in Section 3, and yields an additional expected number of O(log n) vertices
of U({e0} ∪Kq) charged to an portals and circular arcs of K0. Since any vertex of U(Kp ∪Kq) involv-
ing e0 must be one of these two kinds of vertices, we obtain a bound of O(log n) on the expected
number of such vertices, and summing this bound over all segments e0 of Cp ∪ Cq, we conclude that
the expected complexity of U(Kp ∪Kq) is O(n log n). (Note also that the analysis just given manages
to finesse the issue of segments sharing endpoints.)

Summing this bound over all O(s2) choices of p and q, we obtain the bound asserted in Theo-
rem 1.2. The constant of proportionality in the bound that this analysis yields is O(s2).

2As a matter of fact, e0 and e′0 do not generate any vertex of the full union U(C), but they might generate vertices of
U(Cp ∪ Cq).
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Figure 16. Discretizing the function fe for an edge e.

5 Network Vulnerability Analysis

Let E = {e1, . . . , en} be a set of n segments in the plane with pairwise-disjoint relative interiors, and
let ϕ : R≥0 → [0, 1] be an edge failure probability function such that 1 − ϕ is a cdf. For each segment
ei, define the function fi : R

2 → [0, 1] by fi(q) = ϕ(d(q, ei)), for q ∈ R
2, where d(q, ei) is the distance

from q to ei, and set

Φ(q,E) =
n

∑
i=1

fi(q).

In this section we present a Monte-Carlo algorithm, which is an adaptation and a simplification of
the algorithm described in [2], for computing a location q̃ such that Φ(q̃,E) ≥ (1 − δ)Φ(E), where
0 < δ < 1 is some prespecified error parameter, and where

Φ(E) = max
q∈R2

Φ(q,E).

The expected running time of the algorithm is a considerable improvement over the algorithm in [2];
this improvement is a consequence of the bounds obtained in the preceding sections.

To obtain the algorithm we first discretize each fi by choosing a finite family Ki of super-level sets
of fi (each of the form {q ∈ R

2 | fi(q) ≥ t}), and reduce the problem of computing Φ(E) to that of
computing the maximum depth in the arrangement A(K) of K =

⋃

i Ki. Our algorithm then uses a
sampling-based method for estimating the maximum depth in A(K), and thereby avoids the need to
construct A(K) explicitly.

In more detail, set m = ⌈2n/δ⌉. For each 1 ≤ j < m, let rj = ϕ−1(1− j/m), and let, for i = 1, . . . , n,
Kij = ei ⊕ D(rj) be the racetrack formed by the Minkowski sum of ei with the disk of radius rj

centered at the origin. Note that rj increases with j. Set ϕ̃ = {rj | 1 ≤ j < m}, Ki = {Kij | 1 ≤ j < m},
and K =

⋃

1≤i≤n Ki. See Figure 16. Note that we cannot afford to, and indeed do not, compute K

explicitly, as its cardinality (which is quadratic in n) is too large.
For a point q ∈ R

2 and for a subset X ⊆ K, let ∆(q,X), the depth of q with respect to X, be the
number of racetracks of X that contain q in their interior, and let

∆(X) = max
q∈R2

∆(q,X).

The following lemma (whose proof, which is straightforward, can be found in [2]) shows that the
maximum depth of K approximates Φ(E)
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Lemma 5.1 (Agarwal et al. [2]). (i) Φ(q,E) ≥
∆(q,K)

m
≥ Φ(q,E)− 1

2δ for each point q ∈ R
2.

(ii) Φ(E) ≥
∆(K)

m
≥ (1 − 1

2δ)Φ(E).

By Lemma 5.1, it suffices to compute a point q̃ of depth at least (1 − 1
2δ)∆(K) in A(K); by (i) and

(ii) we will then have

Φ(q̃,E) ≥
∆(q̃,K)

m
≥ (1 − 1

2δ)
∆(K)

m
≥ (1 − 1

2δ)2Φ(E) > (1 − δ)Φ(E).

We describe a Monte-Carlo algorithm for computing such a point q̃, which is a simpler variant of
the algorithm described in [6] (see also [4]), but we first need the following definitions.

For a point q ∈ R
2 and for a subset X ⊆ K, let ω(q,X) = ∆(q,X)

|X|
be the fractional depth of q with

respect to X, and let

ω(X) = max
q∈R2

ω(q,X) =
∆(X)

|X|
.

We observe that ∆(K) ≥ m − 1 because the depth near each ei is at least m − 1. Hence,

ω(K) ≥
m − 1

|K|
=

m − 1

(m − 1)n
=

1

n
. (1)

Our algorithm estimates fractional depths of samples of K and computes a point q̃ such that
ω(q̃,K) ≥ (1 − 1

2 δ)ω(K). By definition, this is equivalent to ∆(q̃,K) ≥ (1 − 1
2δ)∆(K), which is what

we need.

We also need the following concept from the theory of random sampling.
For two parameters 0 < ρ, ε < 1, we call a subset A ⊆ K a (ρ, ε)-approximation if the following

holds for all q ∈ R
2:

|ω(q,K)− ω(q,A)| ≤

{

εω(q,K) if ω(q,K) ≥ ρ

ερ if ω(q,K) < ρ.
(2)

This notion of (ρ, ε)-approximation is a special case of the notion of relative (ρ, ε)-approximation de-
fined in [14] for general range spaces with finite VC-dimension. The special case at hand applies to
the so-called dual range space (K, R

2), where the ground set K is our collection of racetracks, and
where each point q ∈ R

2 defines a range equal to the set of racetracks containing q; here ∆(q,K) is the
size of the range defined by q, and ω(q,K) is its relative size. Since (K, R

2) has finite VC-dimension
(see, e.g., [23]), it follows from a result in [14] that, for any integer b, a random subset of size

ν(ρ, ε) :=
cb

ε2ρ
ln n (3)

is a (ρ, ε)-approximation of K with probability at least 1− 1/nb, where c is a sufficiently large constant
(proportional to the VC-dimension of our range space). In what follows we fix b to be a sufficiently
large integer, so as to guarantee (via the probability union bound) that, with high probability, all the
samplings that we construct in the algorithm will have the desired approximation property.

The algorithm works in two phases. The first phase finds a value ρ ≥ 1/n such that ω(K) ∈ [ρ, 2ρ].
The second phase exploits this “localization” of ω(K) to compute the desired point q̃.
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The first phase performs a decreasing exponential search: For i ≥ 1, the i-th step of the search
tests whether ω(K) ≤ 1/2i. If the answer is YES, the algorithm moves to the (i + 1)-st step; otherwise
it switches to the second phase. Since we always have ω(K) ≥ 1/n (see (1)), the first phase consists
of at most ⌈log2 n⌉ steps.

At the i-th step of the first phase, we fix the parameters ρi = 1/2i and ε = 1/8, and construct a
(2ρi, ε)-approximation of K by choosing a random subset Ri ⊂ K of size νi = ν(2ρi, ε) = O(2i log n).
We construct A(Ri), e.g., using the randomized incremental algorithm described in [23, Chapter 4]
and compute ω(Ri) by traversing the arrangement A(Ri). Then, if

ω(Ri) ≤ (1 − 2ε)ρi =
3
4ρi ,

we continue to step i+ 1 of the first phase. Otherwise, we switch to the second phase of the algorithm
(which is described below). The following lemma establishes the important properties of the first
phase.

Lemma 5.2. When the algorithm reaches step i of the first phase, we have ω(K) ≤ ρi−1 and ω(K) is within
the interval [ω(Ri)−

1
4 ρi, ω(Ri) +

1
4ρi].

Proof. The proof is by induction on the steps of the algorithm. Assume that the algorithm is in step i.
Then by induction ω(K) ≤ ρi−1 = 2ρi (for i = 1 this is trivial since ρi−1 = 1). This, together with Ri

being a (2ρi, ε)-approximation of K, implies by (2) that

ω(K) = ω(q∗,K) ≤ ω(q∗,Ri) + 2ερi ≤ ω(Ri) + 2ερi = ω(Ri) +
1
4ρi, (4)

where q∗ is a point satisfying ω(q∗,K) = ω(K). Furthermore, using (2) again (in the opposite direc-
tion), we conclude that

ω(K) ≥ ω(qi ,K) ≥ ω(qi ,Ri)− 2ερi = ω(Ri)−
1
4 ρi,

where qi is a point satisfying ω(qi ,Ri) = ω(Ri). So we conclude that ω(K) is in the interval specified
by the lemma.

The algorithm continues to step i + 1 if ω(Ri) ≤ 3
4ρi. But then by (4) we get that ω(K) ≤ 3

4ρi +
1
4 ρi = ρi as required.

Suppose that the algorithm decides to terminate the first phase and continue to the second phase,
at step i. Then, by Lemma 4.2, we have that ω(K) ∈ [ω(Ri)−

1
4ρi, ω(Ri) +

1
4ρi]. Since, by construc-

tion, ω(Ri) > 3
4ρi, the ratio between the endpoints of this interval is at most 2, as is easily checked,

so if we set ρ = ω(Ri)−
1
4ρi then ω(K) ∈ [ρ, 2ρ] as required upon entering the second phase.

In the second phase, we set ρ = ω(Ri)−
1
4ρi and ε = δ/4, and construct a (ρ, ε)-approximation

of K by choosing, as above, a random subset R of size ν = ν(ρ, ε) = O(2i log n). We compute A(R),
using the randomized incremental algorithm in [23], and return a point q̃ ∈ R

2 of maximum depth
in A(R).

This completes the description of the algorithm.

Correctness. We claim that ω(q̃,K) ≥ (1 − 1
2δ)ω(K). Indeed, let q∗ ∈ R

2 be, as above, a point of
maximum depth in A(K). We apply (2), use the fact that ω(q∗,K) ≥ ρ, and consider two cases. If
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ω(q̃,K) ≥ ρ then

ω(q̃,K) ≥
ω(q̃,R)

1 + 1
4 δ

≥
ω(q∗,R)

1 + 1
4δ

≥
1 − 1

4 δ

1 + 1
4 δ

ω(q∗,K)

≥(1 − 1
2δ)ω(q∗ ,K) = (1 − 1

2δ)ω(K).

On the other hand, if ω(q̃,K) < ρ then

ω(q̃,K) ≥ω(q̃,R)− δ
4ρ ≥ ω(q∗,R)− δ

4 ρ

≥(1 − δ
4)ω(q∗,K)− δ

4ρ

≥(1 − δ
4)ω(q∗,K)− δ

4ω(q∗,K)

=(1 − 1
2δ)ω(K).

Hence in both cases the claim holds. As argued earlier, this implies the desired property

Φ(q̃,E) ≥ (1 − δ)Φ(E).

Running time. We now analyze the expected running time of the algorithm. We first note that we
do not have to compute the set K explicitly to obtain a random sample of K. Indeed, a random
racetrack can be chosen by first randomly choosing a segment ei ∈ E, and then by choosing (inde-
pendently) a random racetrack of Ki. Hence, each sample Ri can be constructed in O(νi) time, and
the final sample R in O(ν) time.

To analyze the expected time taken by the i-th step of the first phase, we bound the expected
number of vertices in A(Ri).

Lemma 5.3. The expected number of vertices in the arrangement A(Ri) is O(2i log3 n).

Proof. By Lemma 5.2 if we perform the i-th step of the first phase then ω(K) ≤ ρi−1 = 2ρi. Therefore,
using (2) we have

ω(Ri) ≤ ω(K) + 2ερi ≤ 2ρi + 2ερi < 3ρi.

Therefore, ∆(Ri) = ω(Ri)|Ri| ≤ 3ρiνi = O(log n). The elements in Ri are chosen from K using
the 2-stage random sampling mechanism described above, which we can rearrange so that we first
choose a random sample Ei of segments, and then, with this choice fixed, we choose the random
expansion distances. This allows us to view Ri as a set of racetracks over a fixed set Ei of segments,
each of which is the Minkowski sum of a segment of Ei with a disk of a random radius, where the
radii are drawn uniformly at random and independently from the set ϕ̃. There is a minor technical
issue: we might choose in Ei the same segment e ∈ E several times, and these copies of e are not
pairwise-disjoint. To address this issue, we slightly shift these multiple copies of e so as to make
them pairwise-disjoint. Assuming that E is in general position and that the cdf defining ϕ is in
“general position” with respect to the locations of the segments of E, as defined in Section 3, this will
not affect the asymptotic maximum depth in the arrangement of the sample.

By Corollary 1.3, applied under the density model and conditioned on a fixed choice of Ei, the
expected value of |A(Ri)| is

E[|A(Ri)|] = O(∆(Ri)νi log n) = O(2i log3 n),

implying the same bound for the unconditional expectation too.
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The expected time spent in constructing A(Ri) by the randomized incremental algorithm in [23] is

O(νi log νi + |A(Ri)|) = O(2i log3 n). Hence, the i-th step of the first phase takes O(2i log3 n) expected
time. Summing this bound over the steps of the first phase, we conclude that the expected time spent

in the first phase is O(n log3 n).
In the second phase, |R| = O( 1

δ2ρ
log n) = O( n

δ2 log n), and the same argument as above, using

(2), implies that

ω(R) ≤ max{(1 + δ
4)ω(K), ω(K) + δ

4ρ} = O(ρ);

where the latter bound follows as ω(K) ∈ [ρ, 2ρ]. Hence, ∆(R) = ω(R) · |R| = O( 1
δ2 log n), and the

expected size of A(R) is thus O(∆(R) · |R| log n) = O( n
δ4 log3 n). Since this dominates the cost of the

other steps in this phase, the second phase takes O( n
δ4 log3 n) expected time.

Putting everything together, we obtain that the expected running time of the procedure is O( n
δ4 log3 n),

and it computes, with high probability, a point q̃ such that Φ(q̃,E) ≥ (1 − δ)Φ(E). This completes
the proof of Theorem 1.4.

6 Discussion

We have shown that if we take the Minkowski sums of the members of a family of pairwise-disjoint
convex sets, each of constant description complexity, with disks whose radii are chosen using a suit-
able probabilistic model, then the expected complexity of the union of the Minkowski sums is near
linear. This generalizes the result of Kedem et al. [16] and shows that the complexity of the union of
Minkowski sums is quadratic only if the expansion distances are chosen in an adversial manner. Our
model is related to the so-called realistic input models, proposed to obtain more refined bounds on the
performance of a variety of geometric algorithms [8]. There are also some similarities between our
model and the framework of smoothed analysis [24].

A natural collection of open problems is to tighten the bounds in our theorems or prove cor-
responding lower bounds. In particular, the following questions arise. (i) The O(n1+ε) bound of
Theorem 1.1 is unlikely to be tight. Is it possible to prove an O(n log n) upper bound as we did
for polygons in Theorem 1.2? (ii) Can the bound in Theorem 1.2 be improved from O(s2n log n) to
O(sn log n)? (iii) Is the bound of Theorem 1.2 asymptotically tight, even for segments, or could one
prove a tighter o(n log n) bound? maybe even linear?

Another interesting direction for future research is to explore other problems that can benefit from
our model. For example, we believe that the expected complexity of the multiplicatively-weighted
Voronoi diagram of a set of points in R

2 is near-linear if the weights are chosen using one of our
models, and we plan to investigate this problem. Recall that if the weights are chosen by an adversary,
then the complexity is quadratic [7].

Finally, it would be useful to prove, or disprove, that the density and permutation models are
equivalent, in the sense that the value of ψ(C) is asymptotically the same under both models for any
family C of pairwise-disjoint convex sets. Nevertheless, it is conceivable that there is a large class of
density functions for which the density model yields a better upper bound.

Acknowledgments. The authors thank Emo Welzl for useful discussions concerning the two prob-
abilistic models used in the paper.
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