Union of Random Minkowski Sums and Network Vulnerability Analysis*

Pankaj K. Agarwal ${ }^{\dagger}$

Sariel Har-Peled ${ }^{\ddagger}$ Haim Kaplan ${ }^{\S}$
Micha Sharir ${ }^{〔}$
April 1, 2019

Abstract

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of n pairwise-disjoint convex sets of constant description complexity, and let π be a probability density function (density for short) over the non-negative reals. For each i, let K_{i} be the Minkowski sum of C_{i} with a disk of radius r_{i}, where each r_{i} is a random non-negative number drawn independently from the distribution determined by π. We show that the expected complexity of the union of K_{1}, \ldots, K_{n} is $O\left(n^{1+\varepsilon}\right)$ for any $\varepsilon>0$; here the constant of proportionality depends on ε and on the description complexity of the sets in \mathcal{C}, but not on π. If each C_{i} is a convex polygon with at most s vertices, then we show that the expected complexity of the union is $O\left(s^{2} n \log n\right)$.

Our bounds hold in the stronger model in which we are given an arbitrary multi-set $\Theta=$ $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ of expansion radii, each a non-negative real number. We assign them to the members of \mathcal{C} by a random permutation, where all permutations are equally likely to be chosen; the expectations are now with respect to these permutations.

We also present an application of our results to a problem that arises in analyzing the vulnerability of a network to a physical attack.

[^0]
1 Introduction

Union of random Minkowski sums. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of n pairwise-disjoint convex sets of constant description complexity, i.e., the boundary of each C_{i} is defined by a constant number of algebraic arcs of constant maximum degree. Let $D(r)$ denote the disk of radius r centered at the origin. We consider the setup where we are given a sequence $\mathbf{r}=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ of non-negative numbers, called expansion distances (or radii). We set $K_{i}=C_{i} \oplus D\left(r_{i}\right)$, the Minkowski sum of C_{i} with $D\left(r_{i}\right)$. The boundary of K_{i}, denoted by ∂K_{i}, consists of $O(1)$ algebraic arcs of bounded degree. If C_{i} is a convex polygon with s vertices, then ∂K_{i} is an alternating concatenation of line segments and circular arcs, where each segment is a parallel shift, by distance r_{i}, of an edge of C_{i}, and each circular arc is of radius r_{i} and is centered at a vertex of C_{i}; see Figure 1 We refer to the endpoints of the arcs of ∂K_{i} as the vertices of K_{i}. Let $\mathcal{K}=\left\{K_{1}, \ldots, K_{n}\right\}$, and let $\mathcal{U}=\mathcal{U}(\mathcal{K})=\bigcup_{i=1}^{n} K_{i}$. The combinatorial complexity of \mathcal{U}, denoted by $\psi(\mathcal{C}, \mathbf{r})$, is defined to be the number of vertices of \mathcal{U}, each of which is either a vertex of some K_{i} or an intersection point of the boundaries of a pair of K_{i} 's, lying on $\partial \mathcal{U}$. We do not make any assumptions on the shape and location of the sets in \mathcal{C}, except for requiring them to be pairwise disjoint.

Figure 1. Pairwise-disjoint convex polygons and their Minkowski sums with disks of different radii. The vertices of the union of these sums are highlighted.

Our goal is to obtain an upper bound on the expected combinatorial complexity of \mathcal{U}, under a suitable probabilistic model for choosing the expansion radii \mathbf{r} of the members of \mathcal{C}-see below for the precise models that we will use.

Network vulnerability analysis. Our motivation for studying the above problems comes from the problem of analyzing the vulnerability of a network to a physical attack (e.g., electromagnetic pulse (EMP) attacks, military bombing, or natural disasters [13]), as studied in [2]. Specifically, let $\mathcal{G}=$ (V, \mathcal{E}) be a planar graph embedded in the plane, where V is a set of points in the plane and $\mathcal{E}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ is a set of n segments (often called links) with pairwise-disjoint relative interiors, whose endpoints are points of V. For a point $q \in \mathbb{R}^{2}$, let $d(q, e)=\min _{p \in e}\|q-p\|$ denote the (minimum) distance between q and e. Let $\varphi: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ denote the edge failure probability function, so that the probability of an edge e to be damaged by a physical attack at a location q is $\varphi(d(q, e))$. In this model, the failure probability only depends on the distance of the point of attack from e. We assume that $1-\varphi$ is a cumulative distribution function (cdf), or, equivalently, that $\varphi(0)=1, \varphi(\infty)=0$, and φ is monotonically decreasing. A typical example is $\varphi(x)=\max \{1-x, 0\}$, where the cdf is the uniform distribution on $[0,1]$.

Figure 2. Expected damage for a triangle network and Gaussian probability distribution function with (i) small variance, (ii) large variance.

For each $e_{i} \in \mathcal{E}$, let $f_{i}(q)=\varphi\left(d\left(q, e_{i}\right)\right)$. The function $\Phi(q, \mathcal{E})=\sum_{i=1}^{n} f_{i}(q)$ gives the expected number of links of \mathcal{E} damaged by a physical attack at a location q; see Figures 2and 3. Set

$$
\Phi(\varepsilon)=\max _{q \in \mathbb{R}^{2}} \Phi(q, \varepsilon)
$$

Our ideal goal is to compute $\Phi(\mathcal{E})$ and a location q^{*} such that $\Phi\left(q^{*}, \mathcal{E}\right)=\Phi(\mathcal{E})$. We refer to such a point q^{*} as a most vulnerable location for \mathcal{G}. As evident from Figure 3, the function Φ can be quite complex, and it is generally hard to compute $\Phi(\mathcal{E})$ exactly, so we focus on computing it approximately. More precisely, given an error parameter $\delta>0$, we seek a point $\tilde{q} \in \mathbb{R}^{2}$ for which $\Phi(\tilde{q}, \mathcal{E}) \geq(1-\delta) \Phi(\mathcal{E})$ (a so-called approximately most vulnerable location). Agarwal et al. [2] proposed a Monte Carlo algorithm for this task. As it turns out, the problem can be reduced to the problem of estimating the maximal depth in an arrangement of random Minkowski sums of the form considered above, under the density model, and its performance then depends on the expected complexity of $\mathcal{U}(\mathcal{K})$. Here \mathcal{K} is a collection of Minkowski sums of the form $e_{i} \oplus D\left(r_{i}\right)$, for a sample of edges $e_{i} \in \mathcal{E}$ and for suitable random choices of the $r_{i}{ }^{\prime}$ s, from the distribution $1-\varphi$. We adapt and simplify the algorithm in [2] and prove a better bound on its performance by using the sharp (near-linear) bound on the complexity of $\mathcal{U}(\mathcal{K})$ that we derive in this paper; see below and Section 5 for details.

Related work. (i) Union of geometric objects. There is extensive work on bounding the complexity of the union of a set of geometric objects, especially in \mathbb{R}^{2} and \mathbb{R}^{3}, and optimal or near-optimal bounds have been obtained for many interesting cases. We refer the reader to the survey paper by Agarwal et al. [5] for a comprehensive summary of most of the known results on this topic. For a set of n planar objects, each of constant description complexity, the complexity of their union can be $\Theta\left(n^{2}\right)$ in the worst case, but many linear or near-linear bounds are known for special restricted cases. For example, a fairly old result of Kedem et al. [16] asserts that the union of a set of pseudo-disks in \mathbb{R}^{2} has linear complexity. It is also shown in [16] that the Minkowski sums of a set of pairwisedisjoint planar convex objects with a fixed common convex set is a family of pseudo-disks. Hence, in our setting, if all the r_{i} 's were equal, the result of [16] would then imply that the complexity of $\mathcal{U}(\mathcal{K})$ is $O(n)$. On the other hand, an adversial choice of the r_{i} 's may result in a union \mathcal{U} with $\Theta\left(n^{2}\right)$ complexity; see Figure 4.
(ii) Network vulnerability analysis. Most of the early work on network vulnerability analysis considered a small number of isolated, independent failures; see, e.g., [9, 21] and the references therein.

Figure 3. Expected damage for a complex fiber network. This figure is taken from [2].

Figure 4. A bad choice of expansion distances may cause \mathcal{U} to have quadratic complexity.

Since physical networks rely heavily on their physical infrastructure, they are vulnerable to physical attacks such as electromagnetic pulse (EMP) attacks as well as natural disasters [13, 25], not to mention military bombing and other similar kinds of attack. This has led to recent work on analyzing the vulnerability of a network under geographically correlated failures due to a physical attack at a single location [1, 2, 19, 20, 25]. Most papers on this topic have studied a deterministic model for the damage caused by such an attack, which assumes that a physical attack at a location x causes the failure of all links that intersect some simple geometric region (e.g., a vertical segment of unit length, a unit square, or a unit disk) centered at x. The impact of an attack is measured in terms of its effect on the connectivity of the network, (e.g., how many links fail, how many pairs of nodes get disconnected, etc.), and the goal is to find the location of attack that causes the maximum damage to the network. In the simpler model studied in [2] and in the present paper, the damage is measured by the number of failed links. This is a problem that both attackers and planners of such networks would like to solve. The former for obvious reasons, and the latter for identifying the most vulnerable portions of the network, in order to protect them better.

In practice, though, it is hard to be certain in advance whether a link will fail by a nearby physical attack. To address this situation, Agarwal et al. [2] introduced the simple probabilistic framework for modeling the vulnerability of a network under a physical attack, as described above. One of the problems that they studied is to compute the largest expected number of links damaged by a physical attack. They described an approximation algorithm for this problem whose expected running time is quadratic in the worst case. A major motivation for the present study is to improve the efficiency of this algorithm and to somewhat simplify it at the same time.

Finally, we note that the study in this paper has potential applications in other contexts, where one wishes to analyze the combinatorial and topological structure of the Minkowski sums (or rather convolutions) of a set of geometric objects (or a function over the ambient space) with some kernel function (most notably a Gaussian kernel), or to perform certain computations on the resulting configuration. Problems of this kind arise in many applications, including statistical learning, computer vision, robotics, and computational biology; see, e.g., [11, 17] and references therein.

Our models. We consider two probabilistic models for choosing the sequence $\mathbf{r}=\left\langle r_{1}, \ldots, r_{n}\right\rangle$ of expansion distances:
The density model. We are given an arbitrary density (or a probability mass function) π over the non-negative reals; for each $1 \leq i \leq n$, we take r_{i} to be a random value drawn independently from the distribution determined by π.
The permutation model. We are given a multi-set $\Theta=\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ of n arbitrary non-negative real numbers. We draw a random permutation σ on $[1: n]$, where all permutations are equally likely to be chosen, and assign $r_{i}:=\theta_{\sigma(i)}$ to C_{i} for each $i=1, \ldots, n$.

Our goal is to prove sharp bounds on on the expected complexity of the union $\mathcal{U}(\mathcal{K})$ under these two models. More precisely, for the density model, let $\psi(\mathcal{C}, \pi)$ denote the expected value of $\psi(\mathcal{C}, \mathbf{r})$, where the expectation is taken over the random choices of \mathbf{r}, made from π in the manner specified above. Set $\psi(\mathcal{C})=\max \psi(\mathcal{C}, \pi)$, where the maximum is taken over all probability density (mass) functions. For the permutation model, in an analogous manner, we let $\psi(\mathcal{C}, \Theta)$ denote the expected value of $\psi(\mathcal{C}, \mathbf{r})$, where the expectation is taken over the choices of \mathbf{r}, obtained by randomly shuffling the members of Θ. Then, with a slight overloading of the notation, we define $\psi(\mathcal{C})=\max \psi(\mathcal{C}, \Theta)$, where the maximum is over all possible choices of the multi-set Θ. We wish to obtain an upper bound on $\psi(\mathcal{C})$ under both models.

We note that the permutation model is more general than the density model, in the sense that an upper bound on $\psi(\mathcal{C})$ under the permutation model immediately implies the same bound on $\psi(\mathcal{C})$ under the density model. Indeed, consider some given density π, out of whose distribution the distances r_{i} are to be sampled (in the density model). Interpret such a random sample as a 2 stage process, where we first sample from the distribution of π a multi-set Θ of n such distances, in the standard manner of independent repeated draws, and then assign the elements of Θ to the sets C_{i} using a random permutation (it is easily checked that this reinterpretation does not change the probability space). Let \mathbf{r} be the resulting sequence of expansion radii for the members of \mathcal{C}. Using the new interpretation, the expectation of $\psi(\mathcal{C}, \mathbf{r})$ (under the density model), conditioned on the fixed Θ, is at most $\psi(\mathrm{C})$ under the permutation model. Since this bound holds for every Θ, the unconditional expected value of $\psi(\mathcal{C}, \mathbf{r})$ (under the density model) is also at most $\psi(\mathcal{C})$ under the permutation model. Since this holds for every density, the claim follows.

We do not know whether the opposite inequality also holds. A natural reduction from the permutation model to the density model would be to take the input set Θ of the n expansion distances and regard it as a discrete mass distribution (where each of its members can be picked with probability $1 / n)$. But then, since the draws made in the density model are independent, most of the draws will not be permutations of Θ, so this approach will not turn $\psi(\mathcal{C})$ under the density model into an upper bound for $\psi(\mathcal{C})$ under the permutation model.

Our results. The main results of this paper are near-linear upper bounds on $\psi(\mathbb{C})$ under the two models discussed above. Since the permutation model is more general, in the sense made above,
we state, and prove, our results in this model. We obtain (in Section 2) the following bound for the general case.

Theorem 1.1. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of n pairwise-disjoint convex sets of constant description complexity in \mathbb{R}^{2}. Then the value of $\psi(\mathcal{C})$ under the permutation model, for any multi-set Θ of expansion radii, is $O\left(n^{1+\varepsilon}\right)$, for any $\varepsilon>0$; the constant of proportionality depends on ε and the description complexity of the members of \mathcal{C}, but not on Θ.

If \mathcal{C} is a collection of convex polygons, we obtain a slightly improved bound by using a different, more geometric argument.

Theorem 1.2. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of n pairwise-disjoint convex polygons in \mathbb{R}^{2}, where each C_{i} has at most s vertices. Then the maximum value of $\psi(\mathcal{C})$ under the permutation model, for any multi-set Θ of expansion radii, is $O\left(s^{2} n \log n\right)$.

For simplicity, we first prove Theorem 1.2 in Section 3 for the special case where \mathcal{C} is a set of n segments with pairwise-disjoint relative interiors. Then we extend the proof, in a reasonably straightforward manner, to polygons in Section 4 . The version involving segments admits a somewhat cleaner proof, and is sufficient for the application to network vulnerability analysis.

Using the Clarkson-Shor argument [10], we also obtain the following corollary, which will be needed for the analysis in Section 5 .

Corollary 1.3. Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of n pairwise-disjoint convex set of constant description compelxity. Let r_{1}, \ldots, r_{n} be the random expansion distances, obtained under the permutation model, for any multi-set Θ of expansion radii, that are assigned to C_{1}, \ldots, C_{n}, respectively, and set $\mathcal{K}=\left\{C_{i} \oplus D\left(r_{i}\right) \mid 1 \leq i \leq n\right\}$. Then, for any $1 \leq k \leq n$, the expected number of vertices in the arrangement $\mathcal{A}(\mathcal{K})$ whose depth is at most k is $O\left(n^{1+\varepsilon} k^{1-\varepsilon}\right)$, for any $\varepsilon>0$; the constant of proportionality depends on ε and the description complexity of the members of \mathcal{C} but not on Θ. If each C_{i} is a convex polygon with at most s vertices, then the bound improves to $O\left(s^{2} n k \log (n / k)\right)$.

Using Theorem 1.2 and Corollary 1.3 , we present (in Section5) an efficient Monte-Carlo δ-approximation algorithm for computing an approximately most vulnerable location for a network, as defined earlier. Our algorithm is a somewhat simpler, and considerably more efficient, variant of the algorithm proposed by Agarwal et al. [2], and the general approach is similar to the approximation algorithms presented in [3, 4, 6] for computing the depth in an arrangement of a set of objects. Specifically, we establish the following result.

Theorem 1.4. Given a set \mathcal{E} of n segments in \mathbb{R}^{2} with pairwise-disjoint relative interiors, an edge-failureprobability function φ such that $1-\varphi$ is a cdf, and a constant $0<\delta<1$, one can compute, in $O\left(\delta^{-4} n \log ^{3} n\right)$ time, a location $\tilde{q} \in \mathbb{R}^{2}$, such that $\Phi(\tilde{q}, \mathcal{E}) \geq(1-\delta) \Phi(\mathcal{E})$ with probability at least $1-1 / n^{c}$, for arbitrarily large c; the constant of proportionality in the running-time bound depends on c.

2 The Case of Convex Sets

In this section we prove Theorem 1.1. We have a collection $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of n pairwise-disjoint compact convex sets in the plane, each of constant description complexity. Let Θ be a multi-set of n non-negative real numbers $0 \leq \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{n}$. We choose a random permutation σ of [1:n], where all permutations are equally likely to be chosen, put $r_{i}=\theta_{\sigma(i)}$ for $i=1, \ldots, n$, and form the

Minkowski sums $K_{i}=C_{i} \oplus D\left(r_{i}\right)$, for $i=1, \ldots, n$. We put $\mathcal{K}=\left\{K_{1}, \ldots, K_{n}\right\}$. We prove a near-linear upper bound on the expected complexity of $\mathcal{U}(\mathcal{K})$, as follows.

Fix a parameter t, whose value will be determined later, and put $\rho=\theta_{n-t}$, the $(t+1)$-st largest distance in Θ. Put $\mathcal{C}^{+}=\left\{C_{i} \in \mathcal{C} \mid \sigma(i)>n-t\right\}$ and $\mathcal{C}^{-}=\left\{C_{i} \in \mathcal{C} \mid \sigma(i) \leq n-t\right\}$. That is, \mathcal{C}^{+}is the set of the t members of \mathcal{C} that were assigned the t largest distances in Θ, and \mathcal{C}^{-}is the complementary subset.

By construction, \mathcal{C}^{+}is a random subset of \mathcal{C} of size t (where all t-element subsets of \mathcal{C} are equally likely to arise as \mathcal{C}^{+}). Moreover, conditioned on the choice of \mathcal{C}^{+}, the set \mathcal{C}^{-}is fixed, and the subset Θ^{-}of the $n-t$ distances in Θ that are assigned to them is also fixed. Furthermore, the permutation that assigns the elements of Θ^{-}to the sets in \mathcal{C}^{-}is a random permutation.

For each $C_{i} \in \mathcal{C}^{+}$, put $K_{i}^{*}=C_{i} \oplus D(\rho)$. Put $\left(\mathcal{K}^{*}\right)^{+}=\left\{K_{i}^{*} \mid C_{i} \in \mathcal{C}^{+}\right\}$, and let \mathcal{U}^{*} denote the union of $\left(\mathcal{K}^{*}\right)^{+}$. Note that $\mathcal{U}^{*} \subseteq \mathcal{U}$, because $K_{i}^{*} \subseteq K_{i}$ for each $C_{i} \in \mathcal{C}^{+}$. Since the C_{i} 's are pairwisedisjoint and we now add the same disk to each of them, $\left(\mathcal{K}^{*}\right)^{+}$is a collection of pseudo-disks [16], and therefore U^{*} has $O(t)$ complexity.

Let \mathcal{V} denote the vertical decomposition of the complement of \mathcal{U}^{*}; it consists of $O(t)$ pseudo-trapezoids, each defined by at most four elements of $\left(\mathcal{K}^{*}\right)^{+}$(that is, of \mathcal{C}^{+}). See [23] for more details concerning vertical decompositions. For short, we refer to these pseudo-trapezoids as trapezoids.

In a similar manner, for each $C_{i} \in \mathcal{C}^{-}$, define $K_{i}^{*}=C_{i} \oplus D(\rho)$; note that $K_{i} \subseteq K_{i}^{*}$ for each such i. Put $\left(\mathcal{K}^{*}\right)^{-}=\left\{K_{i}^{*} \mid C_{i} \in \mathcal{C}^{-}\right\}$. Since \mathcal{C}^{+}is a random sample of \mathcal{C} of size t, the following lemma follows from a standard random-sampling argument; see [18, Section 4.6] for a proof.

Lemma 2.1. With probability $1-O\left(\frac{1}{n^{c-4}}\right)$, every (open) trapezoid τ of \mathcal{V} intersects at most $k:=\frac{c n}{t} \ln n$ of the sets of $\left(\mathcal{K}^{*}\right)^{-}$, for sufficiently large $c>4$.

For each trapezoid τ of \mathcal{V}, let \mathcal{C}_{τ}^{-}denote the collection of the sets $C_{i} \in \mathcal{C}^{-}$for which K_{i}^{*} crosses τ. We form the union \mathcal{U}_{τ}^{-}of the "real" (and smaller) corresponding sets K_{i}, for $C_{i} \in \mathcal{C}_{\tau}^{-}$, and clip it to within τ (clearly, no other set $C_{i} \in \mathcal{C}^{-}$can have its real expansion K_{i} meet τ). Finally, we take all the "larger" sets $C_{i} \in \mathcal{C}^{+}$, and form the union of \mathcal{U}_{τ}^{-}with the corresponding "real" K_{i} 's, again clipping it to within τ. The overall union \mathcal{U} is the union of \mathcal{U}^{*} and of all the modified unions \mathcal{U}_{τ}^{-}, for $\tau \in \mathcal{V}$.

This divide-and-conquer process leads to the following recursive estimation of the expected complexity of \mathcal{U}. For $m \leq n$, let \mathcal{C}^{\prime} be any subset of m sets of \mathcal{C}, and let Θ^{\prime} be any subset of m elements of Θ, which we enumerate, with some abuse of notation, as $\theta_{1}, \ldots, \theta_{m}$. Let $T\left(\mathcal{C}^{\prime}, \Theta^{\prime}\right)$ denote the expected complexity of the union of the expanded regions $C_{i} \oplus D\left(\theta_{\sigma^{\prime}(i)}\right)$, for $C_{i} \in \mathcal{C}^{\prime}$, where the expectation is over the random shuffling permutation σ^{\prime} (on $(1, \ldots, m)$). Let $T(m)$ denote the maximum value of $T\left(\mathfrak{C}^{\prime}, \Theta^{\prime}\right)$, over all subsets \mathfrak{C}^{\prime} and Θ^{\prime} of size m each, as just defined.

Let us first condition the analysis on a fixed choice of \mathcal{C}^{+}. This determines \mathcal{U}^{*} and \mathcal{V} uniquely. Hence we have a fixed set of trapezoids, and for each trapezoid τ we have a fixed set \mathcal{C}_{τ}^{-}of $k_{\tau}=\left|\mathcal{C}_{\tau}^{-}\right|$ sets, whose expansions by ρ meet τ. The set Θ_{τ}^{-}of distances assigned to these sets is not fixed, but it is a random subset of $\left\{\theta_{1}, \ldots, \theta_{n-t}\right\}$ of size $k_{\tau} \leq \frac{c n}{t} \ln n$, where k_{τ} depends only on τ. Moreover, the assignment (under the original random permutation σ) of these distances to the sets in \mathcal{C}_{τ}^{-}is a random permutation. Hence, conditioning further on the choice of Θ_{τ}^{-}, the expected complexity of \mathcal{U}_{τ}^{-}, before its modification by the expansions of the larger sets of \mathcal{C}^{+}, and ignoring its clipping to within τ, is

$$
T\left(\mathcal{C}_{\tau}^{-}, \Theta_{\tau}^{-}\right) \leq T\left(k_{\tau}\right) \leq T\left(\frac{c n}{t} \ln n\right) .
$$

Hence the last expression also bounds the unconditional expected complexity of the unmodified and unclipped \mathcal{U}_{τ}^{-}(albeit still conditioned on the choice of \mathcal{C}^{+}). Summing this over all $O(t)$ trapezoids τ
of \mathcal{V}, we get a bound of at most

$$
\operatorname{at} T\left(\frac{c n}{t} \ln n\right)
$$

for a suitable absolute constant a. Since this bound holds for any choice of \mathcal{C}^{+}, it also bounds the unconditional expected value of the sum of the complexities of the unmodified unions \mathcal{U}_{τ}^{-}. To this we need to add the complexity of \mathcal{U}^{*}, which is $O(t)$, the number of intersections between the boundaries of the unions \mathcal{U}_{τ} with the respective trapezoid boundaries, and the number of intersections between the boundaries of the t larger expansions and the boundaries of all the expansions, that appear on the boundary of \mathcal{U}. The last two quantities are clearly both at most $O(n t)$ (the constant in this latter expression depends on the description complexity of the sets in \mathcal{C}). Altogether, we obtain the following recurrence (reusing the constant a for simplicity).

$$
T(n) \leq a t T\left(\frac{c n}{t} \ln n\right)+a n t
$$

which holds when n is sufficiently large. When n is small, we use the trivial bound $T(n)=O\left(n^{2}\right)$.
With appropriate choice of parameters, the solution of this recurrence is $T(n) \leq A n^{1+\varepsilon}$, for any $\varepsilon>0$, where A depends on ε and on the other constants appearing in the recurrence. For this, one needs to choose $t \gg(\log n)^{(1+\varepsilon) / \varepsilon}$, and then choose A sufficiently large so that the additive term is significantly subsumed by the other terms, and so that the quadratic bound for small values of n is also similarly subsumed. Leaving out the remaining routine details, we have thus established the bound asserted in the theorem.

3 The Case of Segments

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be a collection of n line segments in the plane with pairwise-disjoint relative interiors, and as in Section [2, let Θ be a multi-set of n non-negative real numbers $0 \leq \theta_{1} \leq \theta_{2} \leq$ $\cdots \leq \theta_{n}$. For simplicity, we assume that the segments in \mathcal{E} are in general position, i.e., no segment is vertical, no two of them share an endpoint, and no two are parallel. Moreover, we assume that the expansion distances in Θ are positive and in "general position" with respect to \mathcal{E}, so as to ensure that, no matter which permutation we draw, the racetracks of \mathcal{K} are also in general position-no pair of them are tangent and no three have a common boundary point 1_{1}^{1} Using the standard symbolic perturbation techniques (see e.g. [23, Chapter 7]), the proof can be extended when \mathcal{E} or Θ is not in general position or when some of the expansion distances are 0 ; we omit here the routine details.

For each $1 \leq i \leq n$, let a_{i}, b_{i} be the left and right endpoints, respectively, of e_{i} (as mentioned, we assume, with no loss of generality, that no segment in \mathcal{E} is vertical). We draw a random permutation σ of $\{1, \ldots, n\}$, and, for each $1 \leq i \leq n$, we put $r_{i}=\theta_{\sigma(i)}$. We then form the Minkowski sums $K_{i}=e_{i} \oplus D\left(r_{i}\right)$, for $i=1, \ldots, n$. We refer to such a K_{i} as a racetrack. Its boundary consists of two semicircles γ_{i}^{-}and γ_{i}^{+}, centered at the respective endpoints a_{i} and b_{i} of e_{i}, and of two parallel copies, e_{i}^{-}and e_{i}^{+}, of e_{i}; we use e_{i}^{-}(resp., e_{i}^{+}) to denote the straight edge of K_{i} lying below (resp., above) e_{i}. Let a_{i}^{-}, a_{i}^{+}(resp., b_{i}^{-}, b_{i}^{+}) denote the left (resp., right) endpoints of e_{i}^{-}, e_{i}^{+}, respectively. We regard K_{i} as the union of two disks D_{i}^{-}, D_{i}^{+}of radius r_{i} centered at the respective endpoints a_{i}, b_{i} of e_{i}, and a

[^1]rectangle R_{i} of width $2 r_{i}$ having e_{i} as a midline. The left endpoint a_{i} splits the edge $a_{i}^{-} a_{i}^{+}$of R_{i} into two segments of equal length, and similarly b_{i} splits the edge $b_{i}^{-} b_{i}^{+}$of R_{i} into two segments of equal lengths. We refer to these four segments $a_{i} a_{i}^{-}, a_{i} a_{i}^{+}, b_{i} b_{i}^{-}, b_{i} b_{i}^{+}$as the portals of R_{i}; see Figure5(i). Set $\mathcal{K}=\left\{K_{i} \mid 1 \leq i \leq n\right\}, \mathcal{D}=\left\{D_{i}^{+}, D_{i}^{-} \mid 1 \leq i \leq n\right\}$, and $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$.

As above, let $\mathcal{U}=\mathcal{U}(\mathcal{K})$ denote the union of \mathcal{K}. We show that the expected number of vertices on ∂U is $O(n \log n)$, where the expectation is over the choice of the random permutation σ that produces the distances r_{1}, \ldots, r_{n}.

Figure 5. XXX (i) Segment e_{i}, racetrack K_{i}, and its constituents rectangle R_{i} and disks D_{i}^{-}, D_{i}^{+}. (ii) Union of two racetracks. α, β are RR-vertices, ζ is a CR-vertex, and ξ is a CC-vertex; α is a non-terminal vertex and β is a terminal vertex (because of the edge of R_{j} it lies on, which ends inside R_{i}).

We classify the vertices of $\partial \mathcal{U}$ into three types (see Figure 5 (ii)):
(i) CC-vertices, which lie on two semicircular arcs of the respective pair of racetrack boundaries;
(ii) $R R$-vertices, which lie on two straight-line edges; and
(iii) $C R$-vertices, which lie on a semicircular arc and on a straight-line edge.

Bounding the number of CC-vertices is trivial because they are also vertices of $\mathcal{U}(\mathcal{D})$, the union of the $2 n$ disks D_{i}^{-}, D_{i}^{+}, so their number is $O(n)$ [5, 16]. We therefore focus on bounding the expected number of RR- and CR-vertices of $\partial \mathcal{U}$.

3.1 RR-vertices

Let v be an RR-vertex of \mathcal{U}, lying on ∂R_{i} and ∂R_{j}, the rectangles of two respective segments e_{i} and e_{j}. Denote the edges of R_{i} and R_{j} containing v as $\eta_{i} \in\left\{e_{i}^{-}, e_{i}^{+}\right\}$and $\eta_{j} \in\left\{e_{j}^{-}, e_{j}^{+}\right\}$, respectively. A vertex v is terminal if either a subsegment of η_{i} connecting v to one of the endpoints of η_{i} is fully contained in K_{j}, or a subsegment of η_{j} connecting v to one of the endpoints of η_{j} is fully contained in K_{i}; otherwise v is a non-terminal vertex. For example, in Figure5(ii), β is a terminal vertex, and α is a non-terminal vertex. There are at most $4 n$ terminal vertices on ∂u, so it suffices to bound the expected number of non-terminal vertices.

Our strategy is first to describe a scheme that charges each non-terminal RR-vertex v to one of the portals of one of the rectangles of \mathcal{R} on whose boundary v lies, and then to prove that the expected number of vertices charged to each portal is $O(\log n)$. The bound $O(n \log n)$ on the expected number of (non-terminal) RR-vertices then follows.

Let v be a non-terminal RR-vertex lying on $\partial R_{i} \cap \partial R_{j}$, for two respective input segments e_{i} and e_{j}. To simplify the notation, we rename e_{i} and e_{j} as e_{1} and e_{2}. Note that v is an intersection of e_{1}^{+}or e_{1}^{-} with e_{2}^{+}or e_{2}^{-}. Since the analysis is the same for each of these four choices we will say that v is the intersection of $e_{1}^{ \pm}$with $e_{2}^{ \pm}$where $e_{1}^{ \pm}$(resp., $e_{2}^{ \pm}$) is either e_{1}^{+}(resp., e_{2}^{+}) or e_{1}^{-}(resp., e_{2}^{-}).

For $i=1,2$, let $g_{i}^{ \pm}$denote the (unique) portion of $e_{i}^{ \pm}$between v and an endpoint w_{i} so that, locally near $v, g_{i}^{ \pm}$is contained in the second racetrack K_{3-i} (that is, in R_{3-i}). Now take Q_{i} to be the rectangle with $g_{i}^{ \pm}=v w_{i}$ as one of its sides, and with the orthogonal projection of $g_{i}^{ \pm}$onto e_{i} as the opposite parallel side. We denote this edge of Q_{i}, which is part of e_{i}, by E_{i}. We let A_{i} be the side perpendicular to E_{i} and incident to w_{i}. Note that A_{i} is one of the four portals of R_{i}. We denote by A_{i}^{*} the side of Q_{i} that is parallel to A_{i} (and incident to v). See Figure6,

Each rectangle $Q_{i}, i=1,2$, has a complementary rectangle Q_{i}^{\prime} on the same side of e_{i}, which is openly disjoint from Q_{i}, so that $Q_{i} \cup Q_{i}^{\prime}$ is the half of the rectangular portion R_{i}, between e_{i} and $e_{i}^{ \pm}$, of the full racetrack K_{i}.

Figure 6. The rectangles Q_{1} and Q_{2} defined for a non-terminal RR-vertex v.

Since $E_{i} \subset e_{i}$ for $i=1,2$, it follows that E_{1} and E_{2} are disjoint. Since v is a non-terminal RR-vertex, w_{1} lies outside K_{2} and w_{2} lies outside K_{1}. So, as we walk along the edge $v w_{i}$ of Q_{i} from v to w_{i}, we enter, locally near v, into the other racetrack K_{3-i}, but then we have to exit it before we get to w_{i}. Note that either of these walks, say from v to w_{1}, may enter Q_{2} or keep away from Q_{2} (and enter instead the complementary rectangle Q_{2}^{\prime}); see Figures 6 and 8 (i) for the former situation, and Figure 8(ii) for the latter one.

Another important property of the rectangles Q_{1} and Q_{2}, which follows from their definition, is that they are "oppositely oriented", when viewed from v, in the following sense. When we view from v one of Q_{1} and Q_{2}, say Q_{1}, and turn counterclockwise, we first see E_{1} and then A_{1}, and when we view Q_{2} and turn counterclockwise, we first see A_{2} and then E_{2}.

So far our choice of which among the segments defining v is denoted by e_{1} and which is denoted by e_{2} was arbitrary. But in the rest of our analysis we will use e_{1} to denote the segment such that when we view Q_{1} from v and turn counterclockwise, we first see E_{1} and then A_{1}. The other segment is denoted by e_{2}.

The following lemma provides the key ingredient for our charging scheme.
Lemma 3.1. Let v be a non-terminal RR-vertex. Then, in the terminology defined above, one of the edges, say E_{1}, has to intersect either the portal A_{2} of the other rectangle Q_{2}, or the portal A_{2}^{\prime} of the complementary rectangle Q_{2}^{\prime}.
Proof. For $i=1,2$, we associate with Q_{i} a viewing $\operatorname{arc} \Gamma_{i}$, consisting of all orientations of the rays that emanate from v and intersect Q_{i}. Each Γ_{i} is a quarter-circular arc (of angular span 90°), which is partitioned into two subarcs $\Gamma_{i}^{A}, \Gamma_{i}^{E}$, at the orientation at which v sees the opposite vertex of the corresponding rectangle $Q_{i} ; \Gamma_{i}^{A}$ (resp., Γ_{i}^{E}) is the subarc in which we view A_{i} (resp., E_{i}). See Figure 7 .

Figure 7. The two viewing arcs Γ_{1}, Γ_{2}, their partitions into $\Gamma_{1}^{E}, \Gamma_{1}^{A}$ and $\Gamma_{2}^{A}, \Gamma_{2}^{E}$, and their overlap.

Moreover, the opposite orientations of Q_{1} and Q_{2} mean that, as we trace these arcs in counterclockwise direction, Γ_{1}^{E} precedes Γ_{1}^{A}, whereas Γ_{2}^{E} succeeds Γ_{2}^{A}. That is, the clockwise endpoint of Γ_{1} is adjacent to Γ_{1}^{E} and we call it the E-endpoint of Γ_{1}, and the counterclockwise endpoint of Γ_{1}, called the A-endpoint, is adjacent to Γ_{1}^{A}. Symmetrically, the clockwise endpoint of Γ_{2} is its A-endpoint and is adjacent to Γ_{2}^{A}, and its counterclockwise endpoint is the E-endpoint, adjacent to Γ_{2}^{E}. See Figures 7 and 8 .

Figure 8. (i) One possible interaction between Q_{1} and Q_{2}. The overlap is of type $A A$, the intersection Γ_{0} of the viewing arcs is delimited by the orientations of $\overrightarrow{v w_{1}}$ and $\overrightarrow{v w_{2}}$. (i) Another possible interaction between Q_{1} and Q_{2}. The overlap is of type $E E$, the intersection Γ_{0} of the viewing arcs does not contain the orientations of $\overrightarrow{v w_{1}}$ and $v \overrightarrow{w_{2}}$.

Finally, the overlapping of Q_{1} and Q_{2} near v mean that the arcs Γ_{1} and Γ_{2} overlap too. Let $\Gamma_{0}:=$ $\Gamma_{1} \cap \Gamma_{2}$.

The viewing $\operatorname{arcs} \Gamma_{1}$ and Γ_{2} can overlap in one of the following two ways.
AA-overlap: The clockwise and the counterclockwise endpoints of Γ_{0} are the A-endpoints of Γ_{2} and Γ_{1}, respectively. See Figure 8 (i).

EE-overlap: The clockwise and the counterclockwise endpoints of Γ_{0} are the E-endpoints of Γ_{1} and Γ_{2}, respectively. See Figure 8 (ii).

We now assume that none of the four intersections (between one of the segments and a suitable portal of the other rectangle), mentioned in the statement of the lemma, occur. We reach a contradiction by showing that under this assumption neither type of overlap can happen.

AA-overlap. For $i=1,2$, let $\rho_{i}(\theta)$, for $\theta \in \Gamma_{i}$, denote the length of the intersection of Q_{i} with the ray emanating from v in direction θ. Note that ρ_{i} is bimodal: it increases to its maximum, which occurs at the direction to the vertex of Q_{i} opposite to v, and then decreases back (each of the two pieces is a simple trigonometric function of θ).

Write $\Gamma_{0}=[\alpha, \beta]$. Since the overlap of Γ_{1} and Γ_{2} is an AA-overlap α is the orientation of $v \overrightarrow{w_{2}}$, and we have $\rho_{2}(\alpha)>\rho_{1}(\alpha)$ (we have to exit Q_{1} before we reach w_{2}). Symmetrically, we have $\rho_{2}(\beta)<$ $\rho_{1}(\beta)$. See Figure $8(i)$. Hence, by continuity, there must exist $\theta \in \Gamma_{0}$ where $\rho_{1}(\theta)=\rho_{2}(\theta)$.

Figure 9. Illustrating the argument that ρ_{1} and ρ_{2} cannot intersect in an AA-overlap.

We claim however that this is impossible. Indeed, by taking into account the partitions $\Gamma_{1}=$ $\Gamma_{1}^{E} \cup \Gamma_{1}^{A}, \Gamma_{2}=\Gamma_{2}^{A} \cup \Gamma_{2}^{E}$, and by overlaying them within Γ_{0}, we see that Γ_{0} is partitioned into at most three subarcs, each being the intersection (within Γ_{0}) of one of $\Gamma_{1}^{E}, \Gamma_{1}^{A}$ with one of $\Gamma_{2}^{A}, \Gamma_{2}^{E}$. See Figure 9 (and also Figure Z, where the overlap has only two subarcs, of $\Gamma_{1}^{E} \cap \Gamma_{2}^{E}$ and $\Gamma_{1}^{A} \cap \Gamma_{2}^{E}$). Since E_{1} and E_{2} are disjoint, and since, by assumption, no E-edge of any rectangle intersects the A-edge of the other rectangle, the intersection $\rho_{1}(\theta)=\rho_{2}(\theta)$ can only occur within $\Gamma_{1}^{A} \cap \Gamma_{2}^{A}$. As we trace Γ_{0} from α to β, we start with $\rho_{2}>\rho_{1}$, so this still holds as we reach $\Gamma_{1}^{A} \cap \Gamma_{2}^{A}$. However, the bimodality of ρ_{1}, ρ_{2} and the different orientations of Q_{1}, Q_{2} mean that ρ_{1} is decreasing on Γ_{1}^{A}, whereas ρ_{2} is increasing on Γ_{2}^{A}, so no intersection of these functions can occur within $\Gamma_{1}^{A} \cap \Gamma_{2}^{A}$, a contradiction that shows that an AA-overlap is impossible.

EE-overlap. We follow the same notations as in the analysis of AA-overlaps, but use different arguments, which bring to bear the complementary rectangles $Q_{1}^{\prime}, Q_{2}^{\prime}$.

Consider the clockwise endpoint α of Γ_{0}, which, by construction, is the E-endpoint of Γ_{1}, incident to Γ_{1}^{E}. Consider first the subcase where $\rho_{1}(\alpha)>\rho_{2}(\alpha)$. That is, the edge A_{1}^{*} of Q_{1} connecting v to E_{1} crosses and exits Q_{2} before reaching E_{1}; it may exit Q_{2} either at E_{2} (as depicted in Figure 8 (ii)) or at A_{2} (as depicted in Figure 10).

If A_{1}^{*} exits Q_{2} at E_{2} then we follow E_{2} into the complementary rectangle Q_{1}^{\prime}. By our assumption (that no intersection as stated in the lemma occurs) E_{2} cannot exit Q_{1}^{\prime} through its anchor side A_{1}^{\prime} (as depicted in Figure 11(i)). So E_{2} must end inside Q_{1}^{\prime}, at an endpoint q_{2} (see Figure 11(ii)). But then the right angle $q_{2} w_{2} v$ must either cross the anchor A_{1}^{\prime} twice, or be fully contained in Q_{1}^{\prime}. In the latter case w_{2} lies in $Q_{1}^{\prime} \subset R_{1}$, contrary to the assumption that v is non-terminal, and in the former case w_{2} lies in the disk with A_{1}^{\prime} as a diameter, which is also contained in K_{1}, and again we have a contradiction.

If A_{1}^{*} exits Q_{2} at A_{2}, the argument is simpler, because then w_{2} is contained in the disk with A_{1}^{*} as a diameter, which is contained in K_{1}, again contrary to the assumption that v is non-terminal (see Figure 10).

Figure 10. (i) Another instance of an EE-overlap. (ii) The intersection of the viewing arcs; it consists of three subarcs (in counterclockwise order): $\Gamma_{1}^{E} \cap \Gamma_{2}^{A}, \Gamma_{1}^{A} \cap \Gamma_{2}^{A}$, and $\Gamma_{1}^{A} \cap \Gamma_{2}^{E}$. Here w_{2} lies in the diametral disk (not drawn) spanned by the edge A_{1}^{*} of Q_{1}.

(i)

(ii)

Figure 11. Another instance of an EE-overlap. The intersection of the viewing arcs consists of just $\Gamma_{1}^{E} \cap \Gamma_{2}^{E}$. (i) E_{2} crosses the anchor A_{1}^{\prime} of the complementary rectangle Q_{1}^{\prime}. (ii) E_{2} ends inside Q_{1}^{\prime}.

A fully symmetric argument leads to a contradiction in the case where $\rho_{1}(\beta)<\rho_{2}(\beta)$. It therefore remains to consider the case where $\rho_{1}(\alpha)<\rho_{2}(\alpha)$ and $\rho_{1}(\beta)>\rho_{2}(\beta)$. Here we argue exactly as in the case of AA-overlaps, using the bimodality of ρ_{1} and ρ_{2}, that this case cannot happen. (Figure 9 depicts the situation in this case too.) Specifically, there has to exist an intersection point of ρ_{1} and ρ_{2} within Γ_{0}, and it can only occur at $\Gamma_{1}^{A} \cap \Gamma_{2}^{A}$. But over this subarc ρ_{1} is decreasing and ρ_{2} is increasing, and we enter this subarc with $\rho_{1}<\rho_{2}$, so these functions cannot intersect within this arc. This completes the argument showing that our assumption implies that an EE-overlap is not possible.

We conclude that one of the intersections stated in the lemma must exist.

The charging scheme. We charge v to a portal $\left(A_{2}\right.$ or $\left.A_{2}^{\prime}\right)$ of R_{2} that intersects E_{1} or to a portal $\left(A_{1}\right.$ or A_{1}^{\prime}) of R_{1} that intersects E_{2}. At least one such intersection must exist by Lemma 3.1. A useful property of this charging, which will be needed in the next part of the analysis, is given by the following lemma.

Lemma 3.2. Let v be a non-terminal $R R$-vertex, lying on $\partial R_{i} \cap \partial R_{j}$, which is charged to a portal h_{j} of R_{j}. Then e_{i}, traced from its intersection with h_{j} into R_{j}, gets further away from e_{j}.

Figure 12. Illustrating the proof of Lemma3.2 Only the lower portions of R_{i} and R_{j} are shown.

Proof. Suppose to the contrary that e_{i} approaches e_{j} and assume, without loss of generality, that e_{j} is horizontal, that v lies on e_{j}^{-}, and that h_{j} is the left-lower portal of R_{j}. In this case e_{i} has positive slope. See Figure 12 .

Let q denote the endpoint of h_{j} incident to e_{j} and let q^{\prime} denote the lower endpoint of h_{j}. (Note that q^{\prime} is w_{j} if v is charged to the portal A_{j} of R_{j} which is also a portal of Q_{j} and q^{\prime} is the endpoint of A_{j}^{\prime}, the portal of the complementary rectangle Q_{j}^{\prime}, otherwise.) Since v is a non-terminal RR-vertex, the segment $v \vec{q}^{\prime}$, as we trace it from v, enters R_{i} (this follows as e_{i} has positive slope) and then exits it before reaching q^{\prime}. The exit point lies on a suitable portal h_{i} of R_{i}. Since e_{i} intersects h_{j}, it follows that h_{i} must also cross h_{j}. But then q^{\prime} must lie inside the diametral disk spanned by h_{i}, and thus it lies inside K_{i}, a contradiction that completes the proof.

The expected number of vertices charged to a portal. Fix a segment of \mathcal{E}, denote it as e_{0}, and rename the other segments as e_{1}, \ldots, e_{n-1}. Assume, for simplicity, that e_{0} is horizontal. We bound the expected number of vertices charged to the lower-left portal, denoted by g, of the rectangle R_{0} (which is incident to the left endpoint, a_{0}, of e_{0}); symmetric arguments will apply to the other three portals of R_{0}. Given a specific permutation $\left(r_{0}, \ldots, r_{n-1}\right)$ of the input set of distances Θ, let $\chi_{R R}\left(g ; r_{0}, \ldots, r_{n-1}\right)$ denote the number of vertices charged to g if e_{i} is expanded by r_{i}, for $i=0, \ldots, n-1$. We wish to bound $\bar{\chi}_{\mathrm{RR}}(g)$, the expected value of $\chi_{\mathrm{RR}}\left(g ; r_{0}, \ldots, r_{n-1}\right)$ with respect to the random choice of the r_{i} 's, as effected by randomly shuffling them (by a random permutation acting on Θ).

We first fix a value r (one of the values $\theta_{i} \in \Theta$) of r_{0} and bound $\bar{\chi}_{\mathrm{RR}}(g \mid r)$, the expected number of vertices charged to g conditioned on the choice $r_{0}=r$; the expectation is taken over those permutations that fix $r_{0}=r$; they can be regarded as random permutations of the remaining elements of Θ. Then we bound $\bar{\chi}_{\mathrm{RR}}(g)$ by averaging the resulting bound over the choice of r_{0}.

So fix $r_{0}=r$. Set $K_{0}=e_{0} \oplus D(r)$, and let ℓ_{0}^{-}denote the line supporting e_{0}^{-}. We have $g=a_{0} a_{0}^{-}$, and observe that all these quantities depend only on r_{0}, so they are now fixed. By our charging scheme, if a vertex $v \in \partial R_{0} \cap \partial R_{j}$ is charged to the portal g, then $v \in e_{0}^{-}$, and e_{j} intersects g. Furthermore, by Lemma 3.2, the slope of e_{j} is negative. Let $\mathcal{E}_{g} \subseteq \mathcal{E} \backslash\left\{e_{0}\right\}$ be the set of segments that intersect g and have negative slopes; the set \mathcal{E}_{g} depends on the choice of $r_{0}=r$ but not on (the shuffle of) r_{1}, \ldots, r_{n-1}.

For a fixed permutation $\left(r_{1}, \ldots, r_{n-1}\right)$, set $\mathcal{K}_{g}=\left\{K_{l}:=e_{l} \oplus D\left(r_{l}\right) \mid e_{l} \in \mathcal{E}_{g}\right\}$ and $\mathcal{U}_{g}=\mathcal{U}\left(\mathcal{K}_{g}\right) \cap e_{0}^{-}$. We call a vertex of \mathcal{U}_{g} an R-vertex if it lies on ∂R_{i} for some $e_{i} \in \mathcal{E}_{g}$ (as opposed to lying on some semicircular arc). If a non-terminal RR-vertex v is charged to the portal g, then v is an R-vertex of \mathcal{U}_{g} (for the specific choice $r_{0}=r$). It thus suffices to bound the expected number of R-vertices on \mathcal{U}_{g}, where the expectation is taken over the random shuffles of r_{1}, \ldots, r_{n-1}.

Consider a segment $e_{i} \in \mathcal{E}_{g}$. If $\ell_{0}^{-} \cap e_{i} \neq \varnothing$ then we put $q_{i}=\ell_{0}^{-} \cap e_{i}$. If $\ell_{0}^{-} \cap e_{i}=\varnothing$, then let λ_{i} denote the line perpendicular to e_{i} through b_{i} (the right endpoint of e_{i}), and define q_{i} to be the intersection of λ_{i} with ℓ_{0}^{-}. (We may assume that q_{i} lies to the right of a_{0}^{-}, for otherwise no expansion
of e_{i} will be such that R_{i} intersects the edge e_{0}^{-}.) Define $r_{i}^{*}=0$ if $\ell_{0}^{-} \cap e_{i} \neq \varnothing$ and $r_{i}^{*}=\left|b_{i} q_{i}\right|$ otherwise. For simplicity, write ε_{g} as $\left\langle e_{1}, \ldots, e_{m}\right\rangle$, for some $m<n$, ordered so that q_{1}, \ldots, q_{m} appear on ℓ_{0}^{-}from right to left in this order; see Figure 13. We remark that q_{1}, \ldots, q_{m} are independent of the values of r_{1}, \ldots, r_{m}, and that the order e_{1}, \ldots, e_{m} may be different from the order of the intercepts of these segments along g (e.g., see the segments e_{1} and e_{2} in Figure 13).

Figure 13. Segments in ε_{g} and the points that they induce on ℓ_{0}^{-}.
For $i=1, \ldots, m$, let r_{i} be, as above, the (random) expansion distance chosen for e_{i}, and set $J_{i}=$ $R_{i} \cap \ell_{0}^{-}$. If $r_{i} \leq r_{i}^{*}$ then $J_{i}=\varnothing$, and if $r_{i}>r_{i}^{*}$ then J_{i} is an interval containing q_{i}. Let \mathcal{U}_{0} be the union of the intervals J_{i}, and let $\mu\left(r ; r_{1}, \ldots r_{m}\right)$ be the number of connected components of \mathcal{U}_{0}. Clearly, each R-vertex of \mathcal{U}_{g} is an endpoint of a component of \mathcal{U}_{0}, which implies that $\chi_{\mathrm{RR}}\left(g ; r, r_{1}, \ldots, r_{n-1}\right) \leq$ $2 \mu\left(r ; r_{1}, \ldots, r_{m}\right)$. It therefore suffices to bound $\bar{\mu}(r)$, the expected value of $\mu\left(r ; r_{1}, \ldots, r_{m}\right)$ over the random shuffles of r_{1}, \ldots, r_{m}.

For each $e_{i} \in \mathcal{E}_{g}$, let β_{i} be the length of the segment connecting a_{0}^{-}to its orthogonal projection on e_{i}. As is easily checked, we have $\beta_{i}<r$. It is also clear that if $r_{i} \geq \beta_{i}$ then the entire segment $q_{i} a_{0}^{-}$is contained in K_{i}.

Lemma 3.3. In the preceding notations, the expected value of $\bar{\mu}(r)$ is $O(\log n)$.
Proof. Assume that $r=\theta_{n-k+1}$, for some $k \in\{1, \ldots, n\}$. We claim that is this case $\bar{\mu}(r) \leq n /(k+1)$.
For $i=1, \ldots, m$, if $r_{i}>r$ then $r_{i}>\beta_{i}$ and therefore $a_{0}^{-} \in J_{i}$. Hence, if i is the smallest index for which $r_{i}>r$ (assuming that such an index exists), then \mathcal{U}_{0} has at most i connected components: the one containing J_{i} and at most $i-1$ intervals to its right.

Recall that we condition the analysis on the choice of $r_{0}=r$, and that we are currently assuming that r_{0} is the k-th largest value of Θ. For this fixed value of r_{0}, the set ε_{g} is fixed.

Order the segments in $\varepsilon_{0}:=\mathcal{E} \backslash e_{0}$ by placing first the m segments of ε_{g} in their order as defined above, and then place the remaining $n-m-1$ segments in an arbitrary order. Clearly this reshuffling of the segments does not affect the property that the expansion distances in $\Theta_{0}:=\Theta \backslash\{r\}$ that are assigned to them form a random permutation of Θ_{0}.

In this context, $\bar{\mu}(r)$ is upper bounded by the expected value of the index j of the first segment e_{j} in \mathcal{E}_{0} that gets one of the $k-1$ distances larger than r. (In general, the two quantities are not equal, because we set $\mu\left(r ; r_{1}, \ldots, r_{m}\right)=m$ when j is greater than m, that is, in case no segment of \mathcal{E}_{g} gets a larger distance.)

As is well known, the expected value of j is n / k (this follows, e.g., as in [12, p. 175, Problem 2]), from which our claim follows. (Note that the case $k=1$ is special, because no index can get a larger value, but the resulting expectation, namely n, serves as an upper bound for $\bar{\mu}(r)$.)

Figure 14. Illustration of the proof of Lemma 3.5

Since $r=\theta_{n-k+1}$ with probability $1 / n$, for every k, we have

$$
\mathrm{E}[\bar{\mu}(r)]=\sum_{k=1}^{n} \frac{1}{n} \cdot \bar{\mu}\left(\theta_{n-k+1}\right) \leq \frac{1}{n} \sum_{k=1}^{n} \frac{n}{k}=\sum_{k=1}^{n} \frac{1}{k}=O(\log n) .
$$

Putting it all together. Lemma 3.3 proves that the expected number of non-terminal vertices of \mathcal{U} charged to a fixed portal of some rectangle in \mathcal{R} is $O(\log n)$. By Lemma 3.1, each non-terminal RRvertex of \mathcal{U} is charged to one of the $4 n$ portals of the rectangles in \mathcal{R}. Repeating this analysis for all these $4 n$ portals, the expected number of non-terminal RR-vertices in \mathcal{U} is $O(n \log n)$. Adding the linear bound on the number of terminal RR-vertices, we obtain the following result.

Lemma 3.4. The expected number of $R R$-vertices of $U(\mathcal{K})$ is $O(n \log n)$.

3.2 CR-vertices

Next, we bound the expected number of CR-vertices of \mathcal{U}. Using a standard notation, we call a vertex $v \in \mathcal{U}$ lying on $\partial K_{i} \cap \partial K_{j}$ regular if ∂K_{i} and ∂K_{j} intersect at two points (one of which is v); otherwise v is called irregular. By a result of Pach and Sharir [22], the number of regular vertices on ∂U is proportional to n plus the number of irregular vertices on $\partial \mathcal{U}$. Since the expected number of RR- and CC-vertices on ∂U is $O(n \log n)$, the number of regular CR-vertices on ∂U is $O(n \log n+\kappa)$, where κ is the number of irregular CR-vertices on $\partial \mathcal{U}$. It thus suffices to prove that $\kappa=O(n \log n)$.

Geometric properties of CR-vertices. We begin by establishing a few simple geometric lemmas.
Lemma 3.5. Let D and D^{\prime} be two disks of respective radii r, r^{\prime} and centers o, o^{\prime}. Assume that $r^{\prime} \geq r$ and that $o^{\prime} \in D$. Then $D^{\prime} \cap \partial D$ is an arc of angular extent at least $2 \pi / 3$, centered at the radius vector of D from o through o^{\prime}.
Proof. We may assume that D is not fully contained in D^{\prime}, for otherwise the claim is trivial. Consider then the triangle $o o^{\prime} p$, where p is one of the intersection points of ∂D and ∂D^{\prime}. Put $\left|o o^{\prime}\right|=d \leq r$, and let $\angle o^{\prime} o p=\theta$; see Figure 14. Then

$$
\cos \theta=\frac{r^{2}+d^{2}-r^{\prime 2}}{2 d r} \leq \frac{d^{2}}{2 d r}=\frac{d}{2 r} \leq \frac{1}{2}
$$

Hence $\theta \geq \pi / 3$. Since the angular extent of $D^{\prime} \cap \partial D$ is 2θ, the claim follows. The property concerning the center of the arc $D^{\prime} \cap \partial D$ is also obvious.

Corollary 3.6. Let D and D^{\prime} be two disks of radii r and r^{\prime} and centers o and o^{\prime}, respectively, let D_{1} be a sector of D of angle $\pi / 3$, and let γ_{1} denote the circular portion of ∂D_{1}. (a) If $o^{\prime} \in D_{1}$ and $r<r^{\prime}$ then γ_{1} is fully contained in D^{\prime}. (b) If $o^{\prime} \notin D_{1}$ then either D^{\prime} is disjoint from γ_{1} or $D^{\prime} \cap \gamma_{1}$ consists of one or two arcs, each containing an endpoint of γ_{1}.
Proof. The first claim (a) follows from the preceding lemma, since $D^{\prime} \cap \partial D$ is an arc of angular extent at least $2 \pi / 3$ centered at a point on γ_{1}. For (b), $D^{\prime} \cap \partial D$ is a connected arc δ, whose center lies in direction $\overrightarrow{O O^{\prime}}$ and thus outside γ_{1}, and $D^{\prime} \cap \gamma_{1}=\delta \cap \gamma_{1}$. The intersection of two arcs of the same circle consists of zero, one, or two connected subarcs. In the first case the claim is obvious. In the third case, each of the arcs δ, γ_{1} must contain both endpoints of the other arc, so (b) follows. In the second case, the only situation that we need to rule out is when $\delta \cap \gamma_{1}$ is contained in the relative interior of γ_{1}, so δ, and its center, are contained in γ_{1}, contrary to assumption. Hence (b) holds in this case too.

Fix a segment of \mathcal{E}, call it e_{0}, and rename the other segments to be e_{1}, \ldots, e_{n-1}. ∂K_{0} has two semicircular arcs, each corresponding to a different endpoint of e_{0}. We fix one of the semicircular arcs of K_{0} and denote it by γ_{0}. Let r_{0} be the random distance assigned to e_{0}, let D_{0} be the disk of radius r_{0} containing γ_{0} on its boundary, and let $H_{0} \subset D_{0}$ be the half-disk spanned by γ_{0}.

Partition H_{0} into three sectors of angular extent $\pi / 3$ each, denoted as H_{01}, H_{02}, H_{03}. Let $\gamma_{0 i} \subset \gamma_{0}$ denote the arc bounding $H_{0 i}$, for $i=1,2,3$. Here we call a vertex $v \in \partial u$ formed by $\gamma_{0 i} \cap \partial K_{j}$, for some j, a terminal vertex if K_{j} contains one of the endpoints of $\gamma_{0 i}$, and a non-terminal vertex otherwise. There are at most six terminal vertices on γ_{0}, for an overall bound of $12 n$ on the number of such vertices, so it suffices to bound the (expected) number of non-terminal irregular CR-vertices on each subarc $\gamma_{0 i}$, for $i=1,2,3$.

Let $\mathcal{E}\left(r_{0}\right)$ denote the set of all segments $e_{j} \neq e_{0}$ that intersect the disk D_{0}, and, for $i=1,2,3$, let $\varepsilon_{i}\left(r_{0}\right) \subseteq \mathcal{E}\left(r_{0}\right)$ denote the set of all segments $e_{j} \neq e_{0}$ that intersect the sector $H_{0 i}$. Set $m_{i}:=m_{i}\left(r_{0}\right)=$ $\left|\mathcal{E}_{i}\left(r_{0}\right)\right|$. Segments in $\mathcal{E}\left(r_{0}\right) \backslash \mathcal{E}_{i}\left(r_{0}\right)$ intersect D_{0} but are disjoint from $H_{0 i}$. (The parameter r_{0} is to remind us that all these sets depend (only) on the choice of r_{0}.)
Lemma 3.7. Let $e_{j} \in \mathcal{E} \backslash \mathcal{E}\left(r_{0}\right)$. If \mathcal{U} has a $C R$-vertex $v \in \gamma_{0 i} \cap \partial K_{j}$, for some $i=1,2,3$, then v is either a regular vertex or a terminal vertex.
Proof. Let c denote the center of D_{0}, and consider the interaction between K_{j} and D_{0}. We split into the following two cases.
Case 1, $r_{j} \leq r_{0}$: Regard D_{0} as $D_{0}^{*} \oplus D\left(r_{j}\right)$, where D_{0}^{*} is the disk of radius $r_{0}-r_{j}$ centered at c. By assumption, D_{0}^{*} and e_{j} are disjoint, implying that D_{0} and K_{j} are pseudo-disks (cf. [16]), that is, their boundaries intersect in two points, one of which is v; denote the other point as v^{\prime}.

If only v lies on γ_{0}, then v must be a terminal vertex, so assume that both v and v^{\prime} lie on γ_{0}. We claim that ∂K_{j} and ∂K_{0} can intersect only at v and v^{\prime}, implying that v is regular. Indeed, v and v^{\prime} partition ∂K_{j} into two connected pieces. One piece is inside D_{0}, locally near v and v^{\prime}, and cannot intersect ∂K_{i} in a point other than v and v^{\prime} without intersecting D_{0} in a third point (other than v and v^{\prime}), contradicting that D_{0} and K_{j} are pseudo-disks. The other connected piece of ∂K_{j} between v and v^{\prime} is separated from $\partial K_{i} \backslash \gamma_{0}$ by the line through v and v^{\prime} and therefore cannot contain intersections other than v and v^{\prime} between ∂K_{j} and ∂K_{i}. See Figure 15(a).
Case 2, $r_{j}>r_{0}$: Let $K_{j}^{*}=e_{j} \oplus D\left(r_{j}-r_{0}\right)$. K_{j} can now be regarded as $K_{j}^{*} \oplus D\left(r_{0}\right)$. If $c \notin K_{j}^{*}$, then by the result of [16], $D_{0}=c \oplus D\left(r_{0}\right)$ and K_{j} are pseudo-disks; see Figure 15(b). Therefore, the argument given above for the case where $r_{0} \geq r_{j}$ implies the lemma in this case as well. Finally, $c \in K_{j}^{*}$ implies that K_{j} contains D_{0}, so this case cannot occur (it contradicts the existence of v). See Figure 15(c).

Using Lemmas 3.5 and 3.7, we obtain the following property.

Figure 15. (a): The case when $r_{0} \geq r_{j}$ and $\partial K_{j} \cap \gamma_{0}$ contains the two intersection points of ∂D_{0} and ∂K_{j}. (b) The case when $r_{j}>r_{0}$ and $c \notin K_{j}^{*}$. (c) The case when $r_{j}>r_{0}$ and $c \in K_{j}^{*}$.

Lemma 3.8. Let $v \in \gamma_{0 i} \cap \partial K_{j}$ be a non-terminal, irregular $C R$-vertex of \mathcal{U}. Then (i) $e_{j} \in \mathcal{E}_{i}\left(r_{0}\right)$, and (ii) for all $e_{l} \in \mathcal{E}_{i}\left(r_{0}\right), r_{l}<r_{0}$.

Proof. Lemma 3.7 implies that $e_{j} \in \mathcal{E}\left(r_{0}\right)$. Suppose first that $e_{j} \in \mathcal{E}\left(r_{0}\right) \backslash \mathcal{E}_{i}\left(r_{0}\right)$. Pick a point $o^{\prime} \in$ $e_{j} \cap D_{0}$, which exists by assumption, and note that K_{j} contains the disk D^{\prime} of radius r_{j} centered at o^{\prime}. Part (b) of Corollary 3.6 implies that D^{\prime} intersects $\gamma_{0 i}$ at an arc or a pair of arcs, each containing an endpoint of $\gamma_{0 i}$, i.e., v is a terminal vertex, contrary to assumption. We can therefore conclude that $e_{j} \in \mathcal{E}_{i}\left(r_{0}\right)$. Part (a) of Corollary 3.6 implies that $r_{l}<r_{0}$ for all $e_{l} \in \mathcal{E}_{i}\left(r_{0}\right)$, because otherwise we would have $\gamma_{0 i} \subset K_{l}$ and $\gamma_{0 i}$ would not contain any vertex of $\partial \mathcal{U}$.

The expected number of non-terminal vertices on γ_{0}. We are now ready to bound the expected number of non-terminal irregular CR-vertices of \mathcal{U} that lie on the semi-circular arc γ_{0} of K_{0}. Note that γ_{0} is not fixed, as it depends on the value of r_{0}. Let $\chi_{C R}\left(\gamma_{0} ; r_{0}, r_{1}, \ldots, r_{n-1}\right)$ denote the number of nonterminal irregular vertices on γ_{0}, assuming that r_{i} is the expansion distance of K_{i}, for $i=0, \ldots, n-1$. Our goal is to bound

$$
\bar{\chi}_{\mathrm{CR}}\left(\gamma_{0}\right)=\mathrm{E}\left[\chi_{\mathrm{CR}}\left(\gamma_{0} ; r_{0}, \ldots, r_{n-1}\right)\right]
$$

where the expectation is over all the random permutations assigning these distances to the segments of \mathcal{E}. As for RR-vertices, we first fix the value of r_{0} to, say, r, and bound $\chi_{\mathrm{CR}}\left(\gamma_{0} \mid r\right)$, the expected value of $\chi_{C R}\left(\gamma_{0}, r, r_{1}, \ldots, r_{n-1}\right)$, where the expectation is taken over the random shuffles of r_{1}, \ldots, r_{n-1}, and then bound $\bar{\chi}_{\mathrm{CR}}\left(\gamma_{0}\right)$ by averaging over the choice of r_{0}.

Lemma 3.9. Using the notation above, $\bar{\chi}_{\mathrm{CR}}\left(\gamma_{0}\right)=O(\log n)$.
Proof. Following the above scheme, suppose that the value r_{0} is indeed fixed to r, so γ_{0} and $\gamma_{0 i}$, $1 \leq i \leq 3$, are fixed. As above, set $m_{i}=\left|\varepsilon_{i}(r)\right|$, for $i=1,2,3$; the sets $\mathcal{E}_{i}(r)$ and their sizes m_{i} are also fixed. We bound the expected number of non-terminal irregular vertices on $\gamma_{0 i}$, for a fixed
$i \in\{1,2,3\}$. By Lemma 3.8, any such vertex lies on the boundary of \mathcal{J}_{0}, the intersection of $\gamma_{0 i}$ with the union of $\left\{K_{l} \mid e_{l} \in \mathcal{E}_{i}(r)\right\}$. Equivalently, it suffices to bound the expected number of connected components of \mathscr{J}_{0} that lie in the interior of $\gamma_{0 i}$. By Lemma3.8, if $r_{l} \geq r$ for any $e_{l} \in \mathcal{E}_{i}(r)$, then there are no such components.

Assume that $r=\theta_{n-k+1}$ for some $k \in\{1, \ldots, n\}$. To bound $\chi_{\mathrm{CR}}\left(\gamma_{0} \mid r\right)$, we first bound the probability p that all the m_{i} radii that are assigned to the segments of $\mathcal{E}_{i}(r)$ are smaller than r. We have

$$
\begin{aligned}
p & =\frac{\binom{n-k}{m_{i}}}{\binom{n-1}{m_{i}}}=\frac{(n-k)(n-k-1) \cdots\left(n-k-m_{i}+1\right)}{(n-1)(n-2) \cdots\left(n-m_{i}\right)} \\
& =\left(1-\frac{k-1}{n-1}\right)\left(1-\frac{k-1}{n-2}\right) \cdots\left(1-\frac{k-1}{n-m_{i}}\right) \\
& <\left(1-\frac{k-1}{n-1}\right)^{m_{i}}<e^{-(k-1) m_{i} /(n-1)} .
\end{aligned}
$$

That is, with probability $1-p$ there are no connected components. Note that $1-p=0$ when $k=$ 1. In the complementary case, when all the m_{i} radii under consideration are smaller than r, we pessimistically bound the number of connected components by $2 m_{i}$ - each segment of $\mathcal{E}_{i}(r)$ can generate at most two connected components. In other words, when $k \geq 2$, the expected number of connected components of \mathcal{J}_{0} is at most

$$
2 m_{i} p<2 m_{i} e^{-(k-1) m_{i} /(n-1)}=\frac{2(n-1)}{k-1} \cdot\left(\left((k-1) m_{i} /(n-1)\right) e^{-(k-1) m_{i} /(n-1)}\right)<\frac{2(n-1)}{e(k-1)}
$$

because the maximum value of the expression $x e^{-x}$ is e^{-1}. The bound is $2 m_{i} \leq 2(n-1)$ when $k=1$.
Since $r=\theta_{n-k+1}$ with probability $1 / n$ for every k, we have

$$
\begin{aligned}
\mathrm{E}\left[\bar{\chi}_{\mathrm{CR}}\left(\gamma_{0}\right)\right] & =\mathrm{E}\left[\chi_{\mathrm{CR}}\left(\gamma_{0} \mid r\right)\right]=\sum_{k=1}^{n} \frac{1}{n} \cdot \mathrm{E}\left[\chi_{\mathrm{CR}}\left(\gamma_{0} \mid \theta_{n-k+1}\right)\right] \\
& \leq \frac{1}{n}\left[2(n-1)+\sum_{k=2}^{n} \frac{2(n-1)}{e(k-1)}\right] \\
& =O\left(\sum_{k=1}^{n} \frac{1}{k}\right)=O(\log n)
\end{aligned}
$$

Summing this bound over all three subarcs of γ_{0} and adding the constant bound on the number of terminal (irregular) vertices, we obtain that the expected number of irregular CR-vertices of \mathcal{U} on γ_{0} is $O(\log n)$. Summing these expectations over the $2 n$ semicircular arcs of the racetracks in \mathcal{K}, and adding the bounds on the number of regular CR-vertices we obtain the following lemma.

Lemma 3.10. The expected number of $C R$-vertices on $\mathcal{U}(\mathcal{K})$ is $O(n \log n)$.
Combining Lemma 3.4, Lemma 3.10, and the linear bound on the number of CC-vertices, completes the proof of Theorem 1.2 for the case of segments.

4 The Case of Polygons

In this section we consider the case where the objects of \mathcal{C} are n convex polygons, each with at most s vertices. For simplicity, we prove Theorem 1.2 when each C_{i} is a convex s-gon-if C_{i} has fewer than s vertices, we can split some of its edges into multiple edges so that it has exactly s vertices. We reduce this case to the case of segments treated above. A straightforward reduction that just takes the edges of the s-gons as our set of segments does not work since edges of the same polygon are all expanded by the same distance. Nevertheless, we can overcome this difficulty as follows.

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ be the n given polygons, and consider a fixed assignment of expansion distances r_{i} to the polygons C_{i}. For each i, enumerate the edges of C_{i} as $e_{i 1}, e_{i 2}, \ldots, e_{i s}$; the order of enumeration is not important. Let v be a vertex of \mathcal{U}, lying on the boundaries of K_{i} and K_{j}, for some $1 \leq i<j \leq n$. Then there exist an edge $e_{i p}$ of C_{i} and an edge $e_{j q}$ of C_{j} such that v lies on $\partial\left(e_{i p} \oplus D\left(r_{i}\right)\right)$ and on $\partial\left(e_{j q} \oplus D\left(r_{j}\right)\right)$; the choice of $e_{i p}$ is unique if the portion of ∂K_{i} containing v is a straight edge, and, when that portion is a circular arc, any of the two edges incident to the center of the corresponding disk can be taken to be $e_{i p}$. A similar property holds for $e_{j q}$.

The following stronger property holds too. For each $1 \leq p \leq s$, let \mathcal{C}_{p} be the set of edges $\left\{e_{1 p}, e_{2 p}, \ldots, e_{n p}\right\}$, and let $\mathcal{K}_{p}=\left\{e_{1 p} \oplus D\left(r_{1}\right), \ldots, e_{n p} \oplus D\left(r_{n}\right)\right\}$. Then, as is easily verified, our vertex v is a vertex of the union $\mathcal{U}\left(\mathcal{K}_{p} \cup \mathcal{K}_{q}\right)$. Moreover, for each p, the expansion distances r_{i} of the edges $e_{i p}$ of \mathcal{C}_{p} are all the elements of Θ, each appearing once, and their assignment to the segments of \mathcal{C}_{p} is a random permutation. Fix a pair of indices $1 \leq p<q \leq s$, and note that each expansion distance r_{i} is assigned to exactly two segments of $\mathcal{C}_{p} \cup \mathcal{C}_{q}$, namely, to $e_{i p}$ and $e_{i q}$.

We now repeat the analysis given in the preceding section for the collection $\mathcal{C}_{p} \cup \mathcal{C}_{q}$, and make the following observations. First, the analysis of CC-vertices remains the same, since the complexity of the union of any family of disks is linear.

Second, in the analysis of RR- and CR-vertices, the exploitation of the random nature of the distances r_{i} comes into play only after we have fixed one segment (that we call e_{0}) and its expansion distance r_{0}, and consider the expected number of RR-vertices and CR-vertices on the boundary of $K_{0}=e_{0} \oplus D\left(r_{0}\right)$, conditioned on the fixed choice of r_{0}. Suppose, without loss of generality, that e_{0} belongs to \mathcal{C}_{p}. We first ignore its sibling e_{0}^{\prime} in \mathcal{C}_{q} (from the same polygon), which receives the same expansion distance $r_{0} ; e_{0}^{\prime}$ can form only $O(1)$ vertices of \mathcal{U} with $e_{0} .2$ The interaction of e_{0} with the other segments of \mathcal{C}_{p} behaves exactly as in Section 3, and yields an expected number of $O(\log n)$ RR-vertices of $\mathcal{U}\left(\mathcal{K}_{p}\right)$ charged to the portals of R_{0} and an expected number of $O(\log n)$ CR-vertices charged to circular arcs of K_{0}. Similarly, The interaction of e_{0} with the other segments of \mathcal{C}_{q} (excluding $\left.e_{0}^{\prime}\right)$ is also identical to that in Section 3 , and yields an additional expected number of $O(\log n)$ vertices of $\mathcal{U}\left(\left\{e_{0}\right\} \cup \mathcal{K}_{q}\right)$ charged to an portals and circular arcs of K_{0}. Since any vertex of $\mathcal{U}\left(\mathcal{K}_{p} \cup \mathcal{K}_{q}\right)$ involving e_{0} must be one of these two kinds of vertices, we obtain a bound of $O(\log n)$ on the expected number of such vertices, and summing this bound over all segments e_{0} of $\mathcal{C}_{p} \cup \mathcal{C}_{q}$, we conclude that the expected complexity of $\mathcal{U}\left(\mathcal{K}_{p} \cup \mathcal{K}_{q}\right)$ is $O(n \log n)$. (Note also that the analysis just given manages to finesse the issue of segments sharing endpoints.)

Summing this bound over all $O\left(s^{2}\right)$ choices of p and q, we obtain the bound asserted in Theorem 1.2. The constant of proportionality in the bound that this analysis yields is $O\left(s^{2}\right)$.

[^2]

Figure 16. Discretizing the function f_{e} for an edge e.

5 Network Vulnerability Analysis

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be a set of n segments in the plane with pairwise-disjoint relative interiors, and let $\varphi: \mathbb{R}_{\geq 0} \rightarrow[0,1]$ be an edge failure probability function such that $1-\varphi$ is a cdf. For each segment e_{i}, define the function $f_{i}: \mathbb{R}^{2} \rightarrow[0,1]$ by $f_{i}(q)=\varphi\left(d\left(q, e_{i}\right)\right)$, for $q \in \mathbb{R}^{2}$, where $d\left(q, e_{i}\right)$ is the distance from q to e_{i}, and set

$$
\Phi(q, \mathcal{E})=\sum_{i=1}^{n} f_{i}(q)
$$

In this section we present a Monte-Carlo algorithm, which is an adaptation and a simplification of the algorithm described in [2], for computing a location \tilde{q} such that $\Phi(\tilde{q}, \mathcal{\varepsilon}) \geq(1-\delta) \Phi(\varepsilon)$, where $0<\delta<1$ is some prespecified error parameter, and where

$$
\Phi(\varepsilon)=\max _{q \in \mathbb{R}^{2}} \Phi(q, \varepsilon)
$$

The expected running time of the algorithm is a considerable improvement over the algorithm in [2]; this improvement is a consequence of the bounds obtained in the preceding sections.

To obtain the algorithm we first discretize each f_{i} by choosing a finite family \mathcal{K}_{i} of super-level sets of f_{i} (each of the form $\left\{q \in \mathbb{R}^{2} \mid f_{i}(q) \geq t\right\}$), and reduce the problem of computing $\Phi(\mathcal{E})$ to that of computing the maximum depth in the arrangement $\mathcal{A}(\mathcal{K})$ of $\mathcal{K}=\bigcup_{i} \mathcal{K}_{i}$. Our algorithm then uses a sampling-based method for estimating the maximum depth in $\mathcal{A}(\mathcal{K})$, and thereby avoids the need to construct $\mathcal{A}(\mathcal{K})$ explicitly.

In more detail, set $m=\lceil 2 n / \delta\rceil$. For each $1 \leq j<m$, let $r_{j}=\varphi^{-1}(1-j / m)$, and let, for $i=1, \ldots, n$, $K_{i j}=e_{i} \oplus D\left(r_{j}\right)$ be the racetrack formed by the Minkowski sum of e_{i} with the disk of radius r_{j} centered at the origin. Note that r_{j} increases with j. Set $\tilde{\varphi}=\left\{r_{j} \mid 1 \leq j<m\right\}, \mathcal{K}_{i}=\left\{K_{i j} \mid 1 \leq j<m\right\}$, and $\mathcal{K}=\bigcup_{1 \leq i \leq n} \mathcal{K}_{i}$. See Figure 16. Note that we cannot afford to, and indeed do not, compute \mathcal{K} explicitly, as its cardinality (which is quadratic in n) is too large.

For a point $q \in \mathbb{R}^{2}$ and for a subset $X \subseteq \mathcal{K}$, let $\Delta(q, X)$, the depth of q with respect to X, be the number of racetracks of X that contain q in their interior, and let

$$
\Delta(X)=\max _{q \in \mathbb{R}^{2}} \Delta(q, X)
$$

The following lemma (whose proof, which is straightforward, can be found in [2]) shows that the maximum depth of \mathcal{K} approximates $\Phi(\mathcal{E})$

Lemma 5.1 (Agarwal et al. [[]]). (i) $\Phi(q, \varepsilon) \geq \frac{\Delta(q, \mathcal{K})}{m} \geq \Phi(q, \varepsilon)-\frac{1}{2} \delta$ for each point $q \in \mathbb{R}^{2}$.
(ii) $\Phi(\varepsilon) \geq \frac{\Delta(\mathcal{K})}{m} \geq\left(1-\frac{1}{2} \delta\right) \Phi(\varepsilon)$.

By Lemma 5.11 it suffices to compute a point \tilde{q} of depth at least $\left(1-\frac{1}{2} \delta\right) \Delta(\mathcal{K})$ in $\mathcal{A}(\mathcal{K})$; by (i) and (ii) we will then have

$$
\Phi(\tilde{q}, \varepsilon) \geq \frac{\Delta(\tilde{q}, \mathcal{K})}{m} \geq\left(1-\frac{1}{2} \delta\right) \frac{\Delta(\mathcal{K})}{m} \geq\left(1-\frac{1}{2} \delta\right)^{2} \Phi(\varepsilon)>(1-\delta) \Phi(\mathcal{E}) .
$$

We describe a Monte-Carlo algorithm for computing such a point \tilde{q}, which is a simpler variant of the algorithm described in [6] (see also [4]), but we first need the following definitions.

For a point $q \in \mathbb{R}^{2}$ and for a subset $X \subseteq \mathcal{K}$, let $\omega(q, X)=\frac{\Delta(q, X)}{|X|}$ be the fractional depth of q with respect to X, and let

$$
\omega(\mathrm{X})=\max _{q \in \mathbb{R}^{2}} \omega(q, \mathrm{X})=\frac{\Delta(\mathrm{X})}{|\mathrm{X}|}
$$

We observe that $\Delta(\mathcal{K}) \geq m-1$ because the depth near each e_{i} is at least $m-1$. Hence,

$$
\begin{equation*}
\omega(\mathcal{K}) \geq \frac{m-1}{|\mathcal{K}|}=\frac{m-1}{(m-1) n}=\frac{1}{n} . \tag{1}
\end{equation*}
$$

Our algorithm estimates fractional depths of samples of \mathcal{K} and computes a point \tilde{q} such that $\omega(\tilde{q}, \mathcal{K}) \geq\left(1-\frac{1}{2} \delta\right) \omega(\mathcal{K})$. By definition, this is equivalent to $\Delta(\tilde{q}, \mathcal{K}) \geq\left(1-\frac{1}{2} \delta\right) \Delta(\mathcal{K})$, which is what we need.

We also need the following concept from the theory of random sampling.
For two parameters $0<\rho, \varepsilon<1$, we call a subset $\mathrm{A} \subseteq \mathcal{K}$ a (ρ, ε)-approximation if the following holds for all $q \in \mathbb{R}^{2}$:

$$
|\omega(q, \mathcal{K})-\omega(q, \mathrm{~A})| \leq \begin{cases}\varepsilon \omega(q, \mathcal{X}) & \text { if } \omega(q, \mathcal{K}) \geq \rho \tag{2}\\ \varepsilon \rho & \text { if } \omega(q, \mathcal{K})<\rho .\end{cases}
$$

This notion of (ρ, ε)-approximation is a special case of the notion of relative (ρ, ε)-approximation defined in [14] for general range spaces with finite VC-dimension. The special case at hand applies to the so-called dual range space $\left(\mathcal{K}, \mathbb{R}^{2}\right)$, where the ground set \mathcal{K} is our collection of racetracks, and where each point $q \in \mathbb{R}^{2}$ defines a range equal to the set of racetracks containing q; here $\Delta(q, \mathcal{K})$ is the size of the range defined by q, and $\omega(q, \mathcal{K})$ is its relative size. Since $\left(\mathcal{K}, \mathbb{R}^{2}\right)$ has finite VC-dimension (see, e.g., [23]), it follows from a result in [14] that, for any integer b, a random subset of size

$$
\begin{equation*}
v(\rho, \varepsilon):=\frac{c b}{\varepsilon^{2} \rho} \ln n \tag{3}
\end{equation*}
$$

is a (ρ, ε)-approximation of \mathcal{K} with probability at least $1-1 / n^{b}$, where c is a sufficiently large constant (proportional to the VC-dimension of our range space). In what follows we fix b to be a sufficiently large integer, so as to guarantee (via the probability union bound) that, with high probability, all the samplings that we construct in the algorithm will have the desired approximation property.

The algorithm works in two phases. The first phase finds a value $\rho \geq 1 / n$ such that $\omega(\mathcal{K}) \in[\rho, 2 \rho]$. The second phase exploits this "localization" of $\omega(\mathcal{K})$ to compute the desired point \tilde{q}.

The first phase performs a decreasing exponential search: For $i \geq 1$, the i-th step of the search tests whether $\omega(\mathcal{K}) \leq 1 / 2^{i}$. If the answer is YES, the algorithm moves to the $(i+1)$-st step; otherwise it switches to the second phase. Since we always have $\omega(\mathcal{K}) \geq 1 / n$ (see (11)), the first phase consists of at most $\left\lceil\log _{2} n\right\rceil$ steps.

At the i-th step of the first phase, we fix the parameters $\rho_{i}=1 / 2^{i}$ and $\varepsilon=1 / 8$, and construct a $\left(2 \rho_{i}, \varepsilon\right)$-approximation of \mathcal{K} by choosing a random subset $\mathcal{R}_{i} \subset \mathcal{K}$ of size $v_{i}=v\left(2 \rho_{i}, \varepsilon\right)=O\left(2^{i} \log n\right)$. We construct $\mathcal{A}\left(\mathcal{R}_{i}\right)$, e.g., using the randomized incremental algorithm described in [23, Chapter 4] and compute $\omega\left(\mathcal{R}_{i}\right)$ by traversing the arrangement $\mathcal{A}\left(\mathcal{R}_{i}\right)$. Then, if

$$
\omega\left(\mathcal{R}_{i}\right) \leq(1-2 \varepsilon) \rho_{i}=\frac{3}{4} \rho_{i}
$$

we continue to step $i+1$ of the first phase. Otherwise, we switch to the second phase of the algorithm (which is described below). The following lemma establishes the important properties of the first phase.

Lemma 5.2. When the algorithm reaches step i of the first phase, we have $\omega(\mathcal{K}) \leq \rho_{i-1}$ and $\omega(\mathcal{K})$ is within the interval $\left[\omega\left(\mathcal{R}_{i}\right)-\frac{1}{4} \rho_{i}, \omega\left(\mathcal{R}_{i}\right)+\frac{1}{4} \rho_{i}\right]$.
Proof. The proof is by induction on the steps of the algorithm. Assume that the algorithm is in step i. Then by induction $\omega(\mathcal{K}) \leq \rho_{i-1}=2 \rho_{i}$ (for $i=1$ this is trivial since $\rho_{i-1}=1$). This, together with \mathcal{R}_{i} being a $\left(2 \rho_{i}, \varepsilon\right)$-approximation of \mathcal{K}, implies by (2) that

$$
\begin{equation*}
\omega(\mathcal{K})=\omega\left(q^{*}, \mathcal{K}\right) \leq \omega\left(q^{*}, \mathcal{R}_{i}\right)+2 \varepsilon \rho_{i} \leq \omega\left(\mathcal{R}_{i}\right)+2 \varepsilon \rho_{i}=\omega\left(\mathcal{R}_{i}\right)+\frac{1}{4} \rho_{i}, \tag{4}
\end{equation*}
$$

where q^{*} is a point satisfying $\omega\left(q^{*}, \mathcal{K}\right)=\omega(\mathcal{K})$. Furthermore, using (2) again (in the opposite direction), we conclude that

$$
\omega(\mathcal{K}) \geq \omega\left(q_{i}, \mathcal{K}\right) \geq \omega\left(q_{i}, \mathcal{R}_{i}\right)-2 \varepsilon \rho_{i}=\omega\left(\mathcal{R}_{i}\right)-\frac{1}{4} \rho_{i}
$$

where q_{i} is a point satisfying $\omega\left(q_{i}, \mathcal{R}_{i}\right)=\omega\left(\mathcal{R}_{i}\right)$. So we conclude that $\omega(\mathcal{K})$ is in the interval specified by the lemma.

The algorithm continues to step $i+1$ if $\omega\left(\mathcal{R}_{i}\right) \leq \frac{3}{4} \rho_{i}$. But then by (4) we get that $\omega(\mathcal{K}) \leq \frac{3}{4} \rho_{i}+$ $\frac{1}{4} \rho_{i}=\rho_{i}$ as required.

Suppose that the algorithm decides to terminate the first phase and continue to the second phase, at step i. Then, by Lemma 4.2, we have that $\omega(\mathcal{K}) \in\left[\omega\left(\mathcal{R}_{i}\right)-\frac{1}{4} \rho_{i}, \omega\left(\mathcal{R}_{i}\right)+\frac{1}{4} \rho_{i}\right]$. Since, by construction, $\omega\left(\mathcal{R}_{i}\right)>\frac{3}{4} \rho_{i}$, the ratio between the endpoints of this interval is at most 2 , as is easily checked, so if we set $\rho=\omega\left(\mathcal{R}_{i}\right)-\frac{1}{4} \rho_{i}$ then $\omega(\mathcal{K}) \in[\rho, 2 \rho]$ as required upon entering the second phase.

In the second phase, we set $\rho=\omega\left(\mathcal{R}_{i}\right)-\frac{1}{4} \rho_{i}$ and $\varepsilon=\delta / 4$, and construct a (ρ, ε)-approximation of \mathcal{K} by choosing, as above, a random subset \mathcal{R} of size $v=v(\rho, \varepsilon)=O\left(2^{i} \log n\right)$. We compute $\mathcal{A}(\mathcal{R})$, using the randomized incremental algorithm in [23], and return a point $\tilde{q} \in \mathbb{R}^{2}$ of maximum depth in $\mathcal{A}(\mathcal{R})$.

This completes the description of the algorithm.

Correctness. We claim that $\omega(\tilde{q}, \mathcal{K}) \geq\left(1-\frac{1}{2} \delta\right) \omega(\mathcal{K})$. Indeed, let $q^{*} \in \mathbb{R}^{2}$ be, as above, a point of maximum depth in $\mathcal{A}(\mathcal{K})$. We apply (2), use the fact that $\omega\left(q^{*}, \mathcal{K}\right) \geq \rho$, and consider two cases. If
$\omega(\tilde{q}, \mathcal{K}) \geq \rho$ then

$$
\begin{aligned}
\omega(\tilde{q}, \mathcal{K}) & \geq \frac{\omega(\tilde{q}, \mathcal{R})}{1+\frac{1}{4} \delta} \geq \frac{\omega\left(q^{*}, \mathcal{R}\right)}{1+\frac{1}{4} \delta} \geq \frac{1-\frac{1}{4} \delta}{1+\frac{1}{4} \delta} \omega\left(q^{*}, \mathcal{K}\right) \\
& \geq\left(1-\frac{1}{2} \delta\right) \omega\left(q^{*}, \mathcal{K}\right)=\left(1-\frac{1}{2} \delta\right) \omega(\mathcal{K}) .
\end{aligned}
$$

On the other hand, if $\omega(\tilde{q}, \mathcal{K})<\rho$ then

$$
\begin{aligned}
\omega(\tilde{q}, \mathcal{K}) & \geq \omega(\tilde{q}, \mathcal{R})-\frac{\delta}{4} \rho \geq \omega\left(q^{*}, \mathcal{R}\right)-\frac{\delta}{4} \rho \\
& \geq\left(1-\frac{\delta}{4}\right) \omega\left(q^{*}, \mathcal{K}\right)-\frac{\delta}{4} \rho \\
& \geq\left(1-\frac{\delta}{4}\right) \omega\left(q^{*}, \mathcal{K}\right)-\frac{\delta}{4} \omega\left(q^{*}, \mathcal{K}\right) \\
& =\left(1-\frac{1}{2} \delta\right) \omega(\mathcal{K}) .
\end{aligned}
$$

Hence in both cases the claim holds. As argued earlier, this implies the desired property

$$
\Phi(\tilde{q}, \varepsilon) \geq(1-\delta) \Phi(\varepsilon)
$$

Running time. We now analyze the expected running time of the algorithm. We first note that we do not have to compute the set \mathcal{K} explicitly to obtain a random sample of \mathcal{K}. Indeed, a random racetrack can be chosen by first randomly choosing a segment $e_{i} \in \mathcal{E}$, and then by choosing (independently) a random racetrack of \mathcal{K}_{i}. Hence, each sample \mathcal{R}_{i} can be constructed in $O\left(v_{i}\right)$ time, and the final sample \mathcal{R} in $O(v)$ time.

To analyze the expected time taken by the i-th step of the first phase, we bound the expected number of vertices in $\mathcal{A}\left(\mathcal{R}_{i}\right)$.
Lemma 5.3. The expected number of vertices in the arrangement $\mathcal{A}\left(\mathcal{R}_{i}\right)$ is $O\left(2^{i} \log ^{3} n\right)$.
Proof. By Lemma 5.2 if we perform the i-th step of the first phase then $\omega(\mathcal{K}) \leq \rho_{i-1}=2 \rho_{i}$. Therefore, using (2) we have

$$
\omega\left(\mathcal{R}_{i}\right) \leq \omega(\mathcal{K})+2 \varepsilon \rho_{i} \leq 2 \rho_{i}+2 \varepsilon \rho_{i}<3 \rho_{i} .
$$

Therefore, $\Delta\left(\mathcal{R}_{i}\right)=\omega\left(\mathcal{R}_{i}\right)\left|\mathcal{R}_{i}\right| \leq 3 \rho_{i} v_{i}=O(\log n)$. The elements in \mathcal{R}_{i} are chosen from \mathcal{K} using the 2 -stage random sampling mechanism described above, which we can rearrange so that we first choose a random sample \mathcal{E}_{i} of segments, and then, with this choice fixed, we choose the random expansion distances. This allows us to view \mathcal{R}_{i} as a set of racetracks over a fixed set ε_{i} of segments, each of which is the Minkowski sum of a segment of ε_{i} with a disk of a random radius, where the radii are drawn uniformly at random and independently from the set $\tilde{\varphi}$. There is a minor technical issue: we might choose in \mathcal{E}_{i} the same segment $e \in \mathcal{E}$ several times, and these copies of e are not pairwise-disjoint. To address this issue, we slightly shift these multiple copies of e so as to make them pairwise-disjoint. Assuming that \mathcal{E} is in general position and that the cdf defining φ is in "general position" with respect to the locations of the segments of \mathcal{E}, as defined in Section 3, this will not affect the asymptotic maximum depth in the arrangement of the sample.

By Corollary 1.3, applied under the density model and conditioned on a fixed choice of ε_{i}, the expected value of $\left|\mathcal{A}\left(\mathcal{R}_{i}\right)\right|$ is

$$
\mathrm{E}\left[\left|\mathcal{A}\left(\mathcal{R}_{i}\right)\right|\right]=O\left(\Delta\left(\mathcal{R}_{i}\right) v_{i} \log n\right)=O\left(2^{i} \log ^{3} n\right),
$$

implying the same bound for the unconditional expectation too.

The expected time spent in constructing $\mathcal{A}\left(\mathcal{R}_{i}\right)$ by the randomized incremental algorithm in [23] is $O\left(v_{i} \log v_{i}+\left|\mathcal{A}\left(\mathcal{R}_{i}\right)\right|\right)=O\left(2^{i} \log ^{3} n\right)$. Hence, the i-th step of the first phase takes $O\left(2^{i} \log ^{3} n\right)$ expected time. Summing this bound over the steps of the first phase, we conclude that the expected time spent in the first phase is $O\left(n \log ^{3} n\right)$.

In the second phase, $|\mathcal{R}|=O\left(\frac{1}{\delta^{2} \rho} \log n\right)=O\left(\frac{n}{\delta^{2}} \log n\right)$, and the same argument as above, using (2), implies that

$$
\omega(\mathcal{R}) \leq \max \left\{\left(1+\frac{\delta}{4}\right) \omega(\mathcal{K}), \omega(\mathcal{K})+\frac{\delta}{4} \rho\right\}=O(\rho) ;
$$

where the latter bound follows as $\omega(\mathcal{K}) \in[\rho, 2 \rho]$. Hence, $\Delta(\mathcal{R})=\omega(\mathcal{R}) \cdot|\mathcal{R}|=O\left(\frac{1}{\delta^{2}} \log n\right)$, and the expected size of $\mathcal{A}(\mathcal{R})$ is thus $O(\Delta(\mathcal{R}) \cdot|\mathcal{R}| \log n)=O\left(\frac{n}{\delta^{4}} \log ^{3} n\right)$. Since this dominates the cost of the other steps in this phase, the second phase takes $O\left(\frac{n}{\delta^{4}} \log ^{3} n\right)$ expected time.

Putting everything together, we obtain that the expected running time of the procedure is $O\left(\frac{n}{8^{4}} \log ^{3} n\right)$, and it computes, with high probability, a point \tilde{q} such that $\Phi(\tilde{q}, \mathcal{E}) \geq(1-\delta) \Phi(\mathcal{E})$. This completes the proof of Theorem 1.4 .

6 Discussion

We have shown that if we take the Minkowski sums of the members of a family of pairwise-disjoint convex sets, each of constant description complexity, with disks whose radii are chosen using a suitable probabilistic model, then the expected complexity of the union of the Minkowski sums is near linear. This generalizes the result of Kedem et al. [16] and shows that the complexity of the union of Minkowski sums is quadratic only if the expansion distances are chosen in an adversial manner. Our model is related to the so-called realistic input models, proposed to obtain more refined bounds on the performance of a variety of geometric algorithms [8]. There are also some similarities between our model and the framework of smoothed analysis [24].

A natural collection of open problems is to tighten the bounds in our theorems or prove corresponding lower bounds. In particular, the following questions arise. (i) The $O\left(n^{1+\varepsilon}\right)$ bound of Theorem 1.1 is unlikely to be tight. Is it possible to prove an $O(n \log n)$ upper bound as we did for polygons in Theorem 1.2? (ii) Can the bound in Theorem 1.2 be improved from $O\left(s^{2} n \log n\right)$ to $O(s n \log n)$? (iii) Is the bound of Theorem 1.2 asymptotically tight, even for segments, or could one prove a tighter $o(n \log n)$ bound? maybe even linear?

Another interesting direction for future research is to explore other problems that can benefit from our model. For example, we believe that the expected complexity of the multiplicatively-weighted Voronoi diagram of a set of points in \mathbb{R}^{2} is near-linear if the weights are chosen using one of our models, and we plan to investigate this problem. Recall that if the weights are chosen by an adversary, then the complexity is quadratic [7].

Finally, it would be useful to prove, or disprove, that the density and permutation models are equivalent, in the sense that the value of $\psi(\mathcal{C})$ is asymptotically the same under both models for any family \mathcal{C} of pairwise-disjoint convex sets. Nevertheless, it is conceivable that there is a large class of density functions for which the density model yields a better upper bound.

Acknowledgments. The authors thank Emo Welzl for useful discussions concerning the two probabilistic models used in the paper.

References

[1] P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman, and G. Zussman, Network vulnerability to single, multiple, and probabilistic physical attacks, in Proc. 2010 Military Communication Conference, 2010, 1824-1829.
[2] P. K. Agarwal, A. Efrat, S. K. Ganjugunte, D. Hay, S. Sankararaman, and G. Zussman, The resilience of WDM networks to probabilistic geographical failures, Proc. 30th IEEE International Conference on Computer Communications, 2011, 1521-1529.
[3] P. K. Agarwal, E. Ezra, and M. Sharir, Near-linear approximation algorithms for geometric hitting sets, Algorithmica 63 (2012), 1-25.
[4] P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, and E. Welzl, Translating a planar object to maximize point containment, Proc. 10th Annu. European Sympos. Algorithms, 2002, 42-53.
[5] P. K. Agarwal, J. Pach and M. Sharir, State of the union (of geometric objects), Surveys on Discrete and Computational Geometry, (J. Goodman, J. Pach and R. Pollack, eds.), Amer. Math. Soc., Providence, RI, 2008, 9-48.
[6] B. Aronov and S. Har-Peled, On approximating the depth and related problems, SIAM J. Comput. 38 (2008), 899-921.
[7] F. Aurenhammer and R. Klein, Voronoi diagrams, in Handbook of Computational Geometry (eds. J.-R. Sack and J. Urrutia), Elsevier, 1999, 201-290.
[8] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels, Realistic input models for geometric algorithms, Algorithmica 34 (2002), 81-97.
[9] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer, 1999.
[10] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry II, Discrete Comput. Geom. 4 (1989), 387-421.
[11] H. Edelsbrunner, B. T. Fasy, and G. Rote, Add isotropic Gaussian kernels at own risk: More and more resilient modes in higher dimensions, Proc. 28th Annu. Sympos. Comput. Geom., 2012, 91-100.
[12] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics:A Foundation for Computer Science (2nd ed.), Addison Welsley, 1994.
[13] J. S. Foster, E. Gjelde, W. R. Graham, R. J. Hermann, H. M. Kluepfel, R. L. Lawson, G. K. Soper, L. L. Wood, and J. B. Woodard, Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack, critical national infrastructures, Apr. 2008.
[14] S. Har-Peled and M. Sharir, Relative (p, ε)-approximations in geometry, Discrete Comput. Geom. 45 (2011), 462-496.
[15] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions (3rd ed.), Wiley \& Sons, 2005.
[16] K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.
[17] L. M. Lifshitz and S. M. Pizer, A multiresolution hierarchical approach to image segmentation based on intensity extrema, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 529-540.
[18] J. Matoušek, Lectures on Discrete Geometry, Springer-Verlag, 2002.
[19] S. Neumayer and E. Modiano, Network reliability with geographically correlated failures, in Proc. 29th IEEE International Conference on Computer Communications, 2010, 1658-1666.
[20] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, Assessing the vulnerability of the fiber infrastructure to disasters, IEEE/ACM Transactions on Networking 19 (2011), 1610-1623.
[21] C. Ou and B. Mukherjee, Survivable Optical WDM Networks, Springer-Verlag, 2005.
[22] J. Pach and M. Sharir, On the boundary of the union of planar convex sets, Discrete Comput. Geom. 21 (1999), 321-328.
[23] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, Cambridge-New York-Melbourne, 1995.
[24] D. A. Spielman and S. H. Teng, Smoothed analysis: An attempt to explain the behavior of algorithms in practise, Comm. ACM, 52 (2009), 76-84.
[25] W. Wu, B. Moran, J. Manton, and M. Zukerman, Topology design of undersea cables considering survivability under major disasters, in Proc. International Conference on Advanced Information Networking and Applications Workshops, 2009, 1154-1159.

[^0]: *A preliminary version of this paper appeared in Proc. 29th Annual Symposium of Computational Geometry, 2013, pp. 177-186. Work by Pankaj Agarwal and Micha Sharir has been supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation. Work by Pankaj Agarwal has also been supported by NSF under grants CCF-09-40671, CCF-10-12254, and CCF-11-61359, by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, and by an ERDC contract W9132V-11-C-0003. Work by Sariel Har-Peled has been supported by NSF under grants CCF-0915984 and CCF-1217462. Work by Haim Kaplan has been supported by grant 822/10 from the Israel Science Foundation, grant 1161/2011 from the German-Israeli Science Foundation, and by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11). Work by Micha Sharir has also been supported by NSF Grant CCF-08-30272, by Grants 338/09 and 892/13 from the Israel Science Foundation, by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.
 ${ }^{\dagger}$ Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA; pankaj@cs.duke.edu
 \ddagger Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA; sariel@illinois.edu
 §School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; haimk@post. tau. ac.il
 ${ }^{\text {I }}$ School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel; michas@post.tau. ac.il

[^1]: ${ }^{1}$ When we carry over the analysis to the density model, the latter assumption will hold with probability 1 when π is Lebesgue-continuous, but may fail for a discrete probability mass distribution. In the latter situation, we can use symbolic perturbations to turn π into a density in general position, without affecting the asymptotic bound that we are after.

[^2]: ${ }^{2}$ As a matter of fact, e_{0} and e_{0}^{\prime} do not generate any vertex of the full union $\mathcal{U}(\mathcal{C})$, but they might generate vertices of $\mathcal{U}\left(\mathcal{C}_{p} \cup \mathcal{C}_{q}\right)$.

