
JoCG 6(1), 220–234, 2015 220

Journal of Computational Geometry jocg.org

A CONSTANT-FACTOR APPROXIMATION
FOR MULTI-COVERING WITH DISKS∗

Santanu Bhowmick,†Kasturi Varadarajan,‡ and Shi-Ke Xue§

Abstract. We consider the following multi-covering problem with disks. We are given
two point sets Y (servers) and X (clients) in the plane, a coverage function κ : X → N, and
a constant α ≥ 1. Centered at each server is a single disk whose radius we are free to set.
The requirement is that each client x ∈ X be covered by at least κ(x) of the server disks.
The objective function we wish to minimize is the sum of the α-th powers of the disk radii.
We present a polynomial-time algorithm for this problem achieving an O(1) approximation.

1 Introduction

We begin with the statement of the problem studied in this article. We are given two point
sets Y (servers) and X (clients) in the plane, a coverage function κ : X → N, and a constant
α ≥ 1. An assignment r : Y → R+ of radii to the points in Y corresponds to “building” a
disk of radius ry centered at each y ∈ Y . For an integer j ≥ 0, let us say that a point x ∈ X
is j-covered under such an assignment r if x is contained in at least j of the disks, i.e.

|{y ∈ Y | ||y − x||2 ≤ ry}| ≥ j

The goal is to find an assignment r that κ(x)-covers each point x ∈ X and minimizes∑
y∈Y r

α
y . We call this the non-uniform minimum-cost multi cover problem (non-uniform

MCMC problem).

We are interested in designing a polynomial time algorithm that outputs a solution
whose cost is at most some factor f ≥ 1 times the cost of an optimal solution. We call
such an algorithm an f -approximation, and it is implicit that the algorithm is actually
polynomial-time.

The version of this problem where κ(x) = k, ∀x ∈ X, for some given k > 0, has
received particular attention. Here, all the clients have the same coverage requirement of k.
We will refer to this as the uniform MCMC problem. In the context of the uniform MCMC,
we will refer to a j-cover as an assignment of radii to the servers under which each client is
j-covered.

∗A preliminary version of this article appeared as [6].
†Department of Computer Science; University of Iowa; Iowa City, USA; santanu-bhowmick@uiowa.edu
‡Department of Computer Science; University of Iowa; Iowa City, USA; kasturi-varadarajan@uiowa.edu
§Department of Computer Science; Massachusetts Institute of Technology; Cambridge, USA;

shikexue@mit.edu

http://jocg.org/

JoCG 6(1), 220–234, 2015 221

Journal of Computational Geometry jocg.org

1.1 Related Work

In the rest of this section, we will focus on the uniform MCMC problem, and be specific
when remarking on generalizations to the non-uniform problem. The (uniform) MCMC
problem was considered in two recent papers, motivated by fault-tolerant sensor network
design that optimizes energy consumption. Abu-Affash et al. [1] considered the case α = 2,
which corresponds to minimizing the sum of the areas of the server disks. They gave an
O(k) approximation for the problem using mainly geometric ideas; more explicitly, the
approximation factor they guarantee is 23.02 + 63.95(k − 1). Bar-Yehuda and Rawitz [4]
gave another algorithm that achieves the same approximation factor of O(k) for any α.
(The explicit approximation factor is 3αk.) The central question that we investigate in this
article is whether an approximation guarantee that is independent of k is possible. The
problem is known to be NP-hard even for k = 1 and any α > 1. This was shown by Bilò et
al. [5] for α ≥ 2, and subsequently by Alt et al. [2] for any α > 1.

There is a considerable amount of work on clustering and covering problems related
to the MCMC problem, and we refer the reader to the previous papers for a detailed survey
[1, 4]. Here, we offer a view of some of that work from the standpoint of techniques that
may be applicable to the problem at hand. For the case k = 1 of the problem, constant
factor approximations can be obtained using approaches based on linear programming, and
in particular, the primal-dual method [9, 12]. The O(k) approximation of Bar-Yehuda and
Rawitz [4] for k > 1 can be situated in this line of work.

There has been some recent work on the geometric set multi-covering problem [10, 3].
In particular, the recent work of Bansal and Pruhs [3] addresses the following problem. We
are given a set of points in the plane, a set of disks each with an arbitrary non-negative
weight, and an integer k. The goal is to pick a subset of the disks so that each of the given
points is covered at least k times. The objective function we want to minimize is the sum
of the weights of the chosen disks. Bansal and Pruhs [3] give an O(1) approximation for
the problem, building on techniques developed for the case k = 1 [15, 8].

It would seem that the problem considered in this paper can be reduced to the
problem solved by Bansal and Pruhs: for each y ∈ Y and x ∈ X, add a disk centered at y
with weight ||x− y||α2 , and let X be the set of points that need to be covered. The reason
this reduction does not work is that we have to add an additional constraint saying that
we can use only one disk centered at each y ∈ Y . Notice that this additional constraint is
not an issue for the case k = 1, since here if the returned solution uses two disks centered
at the same y ∈ Y , we can simply discard the smaller one.

In the geometric set cover problems considered by [10, 15, 8, 3], the input disks are
“immutable”, and the complexity of the problem stems from the combinatorial geometry
of the disks. For the MCMC application, it would be more fruitful to consider geometric
set multi-cover problems where the algorithm is allowed to slightly enlarge the input disks.
This version of covering with k = 1 is considered by Har-Peled and Lee [13]. For k > 1,
however, we still have the above-mentioned difficulty of reducing MCMC to set multi-cover.

The case k = 1 of our MCMC problem actually admits a polynomial-time approxi-
mation scheme (PTAS) using dynamic programming on top of randomly shifted quad-trees

http://jocg.org/

JoCG 6(1), 220–234, 2015 222

Journal of Computational Geometry jocg.org

[11, 7]. This was shown by Lev-Tov and Peleg [14] for α = 1, and subsequently by Bilò et
al. [5] for any α ≥ 1. The difficulty with extending these results for k = 1 to general k is
that the “density” of the solution grows with k, and therefore the number of sub-problems
that the dynamic program needs to solve becomes exponential in k. It is conceivable that
further discretization tricks [13] can be employed to get around this difficulty, but we have
not succeeded in this effort. On the other hand, we are also not aware of any hardness
result that rules out a PTAS.

1.2 Our Results

In this article, we obtain an O(1) approximation for the uniform MCMC problem. That
is, we demonstrate an approximation bound that is independent of k. More explicitly, our
approximation guarantee is 4 · (27

√
2)α.

Our approach revolves around the notion of an outer cover. This is an assignment
of radii to the servers under which each client x ∈ X is covered by a disk of radius at least
||yk(x)− x||2, where yk(x) is the k-th nearest neighbor of x in Y . To motivate the notion,
consider any k-cover, and in particular, the optimal one. Consider the set of disks obtained
by picking, for each client x ∈ X, the largest disk covering x in the k-cover. (Several clients
can “pick” the same disk.) This set of disks is seen to be an outer cover.

We provide a mechanism for extending any (k − 1)-cover to a k-cover so that the
increase in objective function cost is bounded by a constant times the cost of an optimal
outer cover. This naturally leads to our algorithm in Section 4 – recursively compute a
(k − 1)-cover and then extend it to a k-cover. To bound its approximation ratio, we argue
in Section 5 that the optimal solution can be partitioned into a (k − 1)-cover and another
set of disks that is almost an outer cover. Finally, we need a module for computing an
approximately optimal outer cover. We show in Section 3 that an existing primal-dual
algorithm for 1-covering can be generalized for this purpose.

The idea of an outer cover has its origins in the notion of primary disks used by
Abu-Affash et al. [1]. Our work develops the idea and its significance much further, and
this is partly what enables our O(1) approximation bound.

Our algorithm and approximation guarantee of O(1) works for the non-uniform
MCMC problem as well. We therefore present our work in this slighly more general setting.

2 Preliminaries

For convenience, we solve the variant of the non-uniform MCMC problem where we have l∞
disks rather than l2 disks. Our input is two point sets Y and X in R2, a coverage function
κ : X → N ∪ {0}, and the constant α ≥ 1. (It will be useful to allow κ(x) to be 0 for some
x ∈ X.) We also assume that κ(x) ≤ |Y | for each x ∈ X, for otherwise there is no feasible
solution.

We describe an algorithm for assigning a radius ry ≥ 0 for each y ∈ Y , with the
guarantee that for each x ∈ X, there are at least κ(x) points y ∈ Y such that the l∞ disk

http://jocg.org/

JoCG 6(1), 220–234, 2015 223

Journal of Computational Geometry jocg.org

of radius ry centered at y contains x. In other words the guarantee is that for each x ∈ X,

|{y ∈ Y | ||x− y||∞ ≤ ry}| ≥ κ(x)

Our objective is to minimize
∑

y∈Y r
α
y . For this optimization problem, we will

show that our algorithm outputs an O(1) approximation. Clearly, this also gives an O(1)
approximation for the original problem, where distances are measured in the l2 norm. We
will use || · || to denote the l∞ norm.

For each x ∈ X, fix an ordering of the points in Y that is non-decreasing in terms of
l∞ distance to x. For 1 ≤ j ≤ |Y |, let yj(x) denote the j-th point in this ordering. In other
words, yj(x) is the j-th closest point in Y to x. For brevity, we denote yκ(x)(x) by yκ(x).

Let δ(p, r) denote the l∞ disk of radius r centered at p. The cost of a set of disks is
defined to be the sum of the α-th powers of the radii of the disks. The cost of an assignment
of radii to the servers is defined to be the cost of the corresponding set of disks.

3 OuterCover: Algorithm to generate a preliminary cover

Given X ′ ⊆ X, Y , κ and α ≥ 1, an outer cover is an assignment ρ : Y → R+ of radii to the
servers such that for each client x ∈ X ′, there is a server y ∈ Y such that

1. The disk δ(y, ρy) contains x

2. Disk radius ρy ≥ ||x− yκ(x)||

Our goal in this section is to compute an outer cover that minimizes the cost
∑

y ρ
α
y .

In the rest of this section, we describe and analyze a procedure OuterCover(X ′, Y, κ, α) that
returns an outer cover ρ : Y → R+ whose cost is O(1) times that of an optimal outer cover.
Since this result is used as a black box in our algorithm for the non-uniform MCMC, the
remainder of this section could be skipped on a first reading.

The procedure OuterCover(X ′, Y, κ, α) is implemented via a modification of the
primal-dual algorithm of Charikar and Panigrahy [9]. Note that their algorithm can be
viewed as solving the case where κ(x) = 1 for each x ∈ X ′. As we will see, their algorithm
and analysis readily generalize to the problem of computing an outer cover.

3.1 Linear Programming Formulation

We begin by formulating the problem of finding an optimal outer cover as an integer pro-

gram. For each server yi ∈ Y and radius r ≥ 0, let z
(r)
i be an indicator variable that denotes

whether the disk δ(yi, r) is chosen in the outer cover.1 For any server yi ∈ Y and client
xj ∈ X ′, we define the minimum eligible radius Rmin(yi, xj) to be:

Rmin(yi, xj) = max(||yi − xj ||, ||yκ(xj)− xj ||)
1For a server yi ∈ Y , only the disks whose radius is from the set {||y − x|| | y ∈ Y, x ∈ X ′} will play

a role in much of our algorithm. For describing the algorithm, however, it will be convenient to allow any
r ≥ 0.

http://jocg.org/

JoCG 6(1), 220–234, 2015 224

Journal of Computational Geometry jocg.org

A disk centered at yi serves xj in an outer cover if and only if its radius is at least
Rmin(yi, xj). Finally, let Ci(r) = {xj ∈ X ′ | r ≥ Rmin(yi, xj)}. The set Ci(r) consists of
those clients that δ(yi, r) can serve.

The problem of computing an optimal outer cover is that of minimizing∑
i,r

rα · z(r)i , (1)

subject to the constraints ∑
i,r:xj∈Ci(r)

z
(r)
i ≥ 1, ∀xj ∈ X ′ (2)

z
(r)
i ∈ {0, 1}, ∀yi, r. (3)

The first constraint, equation (2), represents the condition that for every client
xj ∈ X ′, at least one disk that is capable of serving it is chosen. The second constraint,

equation (3), models the fact that the indicator variables z
(r)
i can only take boolean values

{0, 1}. By relaxing the indicator variables to be simply non-negative, i.e.

z
(r)
i ≥ 0, ∀yi, r, (4)

we get a linear program (LP), which we call the primal LP for the problem.

The dual of the above LP has a variable βj corresponding to every client xj ∈ X ′.
The dual LP seeks to maximize

∑
xj∈X′

βj , (5)

subject to the constraints∑
xj∈Ci(r)

βj ≤ rα, ∀yi, r (6)

βj ≥ 0, ∀xj ∈ X ′ (7)

3.2 A Primal-Dual Algorithm

The primal-dual algorithm is motivated by the above linear program. The algorithm main-
tains a dual variable βj for each client xj . This variable will always be non-negative and
satisfy the dual constraints (6). If at some point in the algorithm, the dual constraint (6)
holds with equality for some yi and r, the disk δ(yi, r) is said to be tight. A client xj is said
to be tight if there is some tight disk δ(yi, r) such that xj ∈ Ci(r). (Note that βj is then
part of the dual constraint (6) that holds with equality.)

Our algorithm, OuterCover(X ′, Y, κ, α), initializes each βj to 0, which clearly sat-
isfies (6). The goal of the while loop in lines 2 and 3, which we refer to as the covering

http://jocg.org/

JoCG 6(1), 220–234, 2015 225

Journal of Computational Geometry jocg.org

phase of the algorithm, is to ensure that each client in X ′ becomes tight, that is, covered
by some tight disk. It follows from the termination condition of the while loop that the
covering phase achieves this, provided the while loop terminates. We argue below that the
while loop indeed terminates.

Algorithm 1 OuterCover(X ′, Y, κ, α)

1: Let βj ← 0 for each xj ∈ X ′.
2: while ∃ xj ∈ X ′ that is not tight do
3: Increase the non-tight variables βj arbitrarily till some constraint in (6) that was not

tight becomes tight.
4: Let T be the set of those tight disks that contain clients.
5: F ← ∅
6: while T 6= ∅ do
7: δ(yi, r)← The disk of largest radius in T
8: N ← Set of disks that intersect δ(yi, r)
9: F ← F ∪ {δ(yi, r)}

10: T ← T \ N
11: Assign ρ : Y → R+ as follows:

∀ yi ∈ Y, ρ(yi) =

{
3r, if δ(yi, r) ∈ F
0, if F contains no disk centered at yi

Steps 4–10 constitute the coarsening phase of the algorithm. This phase starts with
the set T of tight disks computed by the covering phase. It computes a subset F ⊆ T of
pairwise disjoint disks by considering the disks in T in non-increasing order of radii, and
adding a disk to F if it does not intersect any previously added disk.

Step 11 constitutes the enlargement phase. Each disk in F is expanded by a factor
of 3, and the resulting set of disks is returned by the algorithm. Because the disks in F are
pairwise disjoint, it follows that F contains at most one disk centered at yi, for any yi ∈ Y .
Thus the assignment in Step 11 is well defined.

Having described the algorithm, we now address its correctness. We begin by es-
tablishing that the covering phase terminates.

Claim 1. The while loop in the covering phase terminates.

Proof. This follows from two observations:

1. In each iteration of the while loop, at least one disk δ(yi, r) that was not tight at the
beginning of that iteration becomes tight. Furthermore, for such a disk δ(yi, r), there
is at least one client xj in Ci(r) that was not tight at the beginning of the iteration.
Because all clients in Ci(r) are tight at the end of the iteration, xj is also tight at the
end of the iteration. Thus, client xj was not tight at the beginning of the iteration
but is tight at the end of the iteration. We conclude that in each iteration, some client

http://jocg.org/

JoCG 6(1), 220–234, 2015 226

Journal of Computational Geometry jocg.org

that was not tight at the beginning of the iteration becomes tight at the end of the
iteration.

2. Since the βj are never decreased in the covering phase, a disk that becomes tight at
some point remains tight for the rest of the phase. This implies that once a client
becomes tight, it remains tight for the rest of the phase.

These two observations imply that the number of iterations in the while loop is at most
|X ′|. The claim follows.

We now argue that there are only polynomially many disks in the set T that is
computed in line 4.

Claim 2. Let Γ = {||y − x|| | y ∈ Y, x ∈ X ′}. For any disk δ(yi, r) ∈ T , it must be that
r ∈ Γ.

Proof. Let δ(yi, r) be a disk that contains some client x ∈ X ′. We will show that if r 6∈ Γ,
then δ(yi, r) does not become tight in the covering phase.

Let us assume r 6∈ Γ. Then there is an r′ ∈ Γ such that r′ < r and the interval (r′, r)
contains no element from Γ. From the definition of Γ, we can verify that Ci(r) = Ci(r

′).
Thus,

∑
xj∈Ci(r)

βj =
∑

xj∈Ci(r′)

βj ≤ (r′)α < rα,

where the first inequality follows from dual feasibility (6) applied to yi and r′, which
the covering phase maintains. Thus the inequality∑

xj∈Ci(r)

βj < rα

holds during the covering phase, and δ(yi, r) does not become tight.

We note that this argument also shows why it is sufficient for the algorithm to
consider in its covering phase only those disks whose radius is in Γ. If (6) holds for such
disks, it holds for the other disks as well.

We now argue that our algorithm returns an outer cover.

Claim 3. The disks returned by OuterCover(X ′, Y, κ, α) form an outer cover.

Proof. Consider any client xj ∈ X ′. Since xj is tight at the end of the covering phase,
there is a tight disk δ(yi, r) ∈ T such that xj ∈ Ci(r). Thus xj is served in case δ(yi, r)
was added to F in the coarsening phase. If δ(yi, r) was not added to F , then it must have
been intersected by some disk δ(yi′ , r

′) that was added to F , such that r′ ≥ r. Clearly,
xj ∈ δ(yi′ , 3r′). Furthermore, 3r′ ≥ r ≥ ||yκ(xj)−xj ||. Thus, xj ∈ Ci′(3r′), and xj is served
by the output of OuterCover(X ′, Y, κ, α).

http://jocg.org/

JoCG 6(1), 220–234, 2015 227

Journal of Computational Geometry jocg.org

Finally, we bound the approximation ratio of our algorithm and conclude with the
main result of this section.

Lemma 1. The algorithm OuterCover(X ′, Y, κ, α) runs in polynomial time and returns an
outer cover whose cost is at most 3α times that of an optimal outer cover.

Proof. We have already established that the algorithm returns an outer cover. It is readily
seem that the running time is polynomial.

Let the set of disks in an optimal outer cover be denoted by OPT . We now show that
the cost of the outer cover returned by OuterCover(X ′, Y, κ, α) is at most 3α · cost(OPT).
We begin by lower bounding cost(OPT) in terms of the βj . We have

cost(OPT) ≥
∑

δ(yi,r)∈OPT

 ∑
xj∈Ci(r)

βj

 ≥ ∑
xj∈X′

βj . (8)

The first inequality follows because the βj satisfy (6); the second is because each
client in X ′ is served by at least one disk in OPT , and the βj are non-negative.

Let C denote the cost of the solution returned by OuterCover(X ′, Y, κ, α). We have

C = 3α · cost(F) = 3α
∑

δ(yi,r)∈F

 ∑
xj∈Ci(r)

βj

 ≤ 3α
∑
xj∈X′

βj ≤ 3α · cost(OPT).

Here, the second equality is because each disk in F is tight; since the disks in F are pairwise
disjoint, each client xj ∈ X ′ is contained in at most one disk in F , from which the next
inequality follows; the final inequality is due to Inequality (8).

This completes the proof.

4 Computing a covering for the non-uniform MCMC problem

With our algorithm for computing an outer cover in place, we now address the non-uniform
MCMC problem. Recall that the input is a client set X, a server set Y , a coverage function
κ : X → N ∪ {0}, and a constant α.

Given an assignment of radius ry to each y ∈ Y , we will say that a point x ∈ X is
j-covered if at least j disks cover it, that is,

|{y ∈ Y | ||x− y|| ≤ ry}| ≥ j.

We will sometimes say that x is κ-covered to mean that it is κ(x)-covered. Similarly, if we
have an assignment of radii to each y ∈ Y such that for a set of points P ⊆ X, every point
x ∈ P is covered by at least κ(x) disks, we say that P is κ-covered.

Our algorithm Cover(X,Y, κ, α) for non-uniform MCMC computes an assignment of
radius ry to each server y ∈ Y such that each client x ∈ X is κ(x)-covered. This algorithm

http://jocg.org/

JoCG 6(1), 220–234, 2015 228

Journal of Computational Geometry jocg.org

Algorithm 2 Cover(X,Y, κ, α)

1: if ∀x ∈ X,κ(x) = 0 then
2: Assign ry ← 0 for each y ∈ Y , and return.
3: Define κ′(x) as follows:

∀x ∈ X,κ′(x) =

{
0, if κ(x) = 0

κ(x)− 1, if κ(x) > 0

4: Recursively call Cover(X,Y, κ′, α).
5: Let X ′ ← {x ∈ X | x is not κ(x)-covered }
6: Call the procedure OuterCover(X ′, Y, κ, α) to obtain an outer cover ρ : Y → R+.
7: Let Y ′ ← Y .
8: Let Y ← ∅.
9: while X ′ 6= ∅ do

10: Choose y ∈ Y ′.
11: Y ← Y ∪ {y}.
12: Let XCy ← ∅, YCy ← ∅.
13: for all x′ ∈ X ′ do
14: if x′ ∈ δ(y, ρy) and ρy ≥ ||x′ − yκ(x′)|| then
15: XCy ← XCy ∪ {x′}.
16: YCy ← YCy ∪ {y1(x′), y2(x′), . . . , yκ(x′)}.
17: Let YC′y ⊆ YCy be a set of at most four points such that⋂

y∈YC′y

δ(y, ry) =
⋂

y∈YCy

δ(y, ry).

18: For each y ∈ YC′y, increase ry by the smallest amount that ensures XCy ⊆ δ(y, ry).
19: Remove y from Y ′ and remove from X ′ any points x that are κ(x)-covered.

is recursive, and in the base case we have κ(x) = 0 for each x ∈ X. In the base case, the
radius ry is assigned to 0 for each y ∈ Y . Otherwise, we define

κ′(x) = max{0, κ(x)− 1}, for each x ∈ X,

and recursively call Cover(X,Y, κ′, α) to compute an assignment that κ′(x)-covers each
x ∈ X. We then compute X ′ ⊆ X, the set of points that are not κ(x)-covered. We compute
an outer cover ρ : Y → R+ for X ′ using the procedure OuterCover(X ′, Y, κ, α) described in
Section 3. For any client x ∈ X ′, the outer cover has a disk δ(y, ρy) that serves it. That is,
x is contained in δ(y, ρy) and ρy ≥ ||x− yκ(x)||.

The goal of the while-loop is to increase some of the ry to ensure that each x ∈ X ′,
which is currently (κ(x) − 1)-covered, is also κ(x)-covered. To do this, we iterate via the
while loop over each disk δ(y, ρy) returned by OuterCover(X ′, Y, κ, α). We add all points
in X ′ that are served in the outer cover by δ(y, ρy) to a set XCy. That is, XCy consists of
all x′ ∈ X ′ that are contained in δ(y, ρy) and ρy ≥ ||x′− yκ(x′)||. The set YCy contains, for

http://jocg.org/

JoCG 6(1), 220–234, 2015 229

Journal of Computational Geometry jocg.org

each x ∈ XCy, the κ(x) nearest neighbors of x in Y . For purposes of analysis, we add y to
a set Y as well.

Next, we identify a set YC′y ⊆ YCy of at most 4 points such that⋂
y∈YC′y

δ(y, ry) =
⋂

y∈YCy

δ(y, ry).

Below, we argue why such a YC′y exists. We enlarge the radius ry of each y ∈ YC′y
by the minimum amount needed to ensure that XCy ⊆ δ(y, ry). We argue below that after
this each point in XCy is κ-covered.

After increasing ry for y ∈ YC′y, we discard from X ′ all points that are now κ-
covered. The discarded set contains XCy and possibly some other points in X ′. We remove
y from Y ′. We go back and iterate the while loop with the new X ′ and Y ′.

This completes our description of the algorithm. To show that it computes a κ-
cover, we first need to establish two claims that we already made. For these two claims, let
us fix one iteration of the while loop in lines 9–19, and let us fix y as chosen in line 10.

Claim 4. In line 17, there exists a set YC ′y ⊆ YC y of at most 4 points such that⋂
y∈YC ′y

δ(y, ry) =
⋂

y∈YC y

δ(y, ry).

Proof. If, on the one hand, the intersection of disks
⋂
y∈YCy

δ(y, ry) is empty, then Helly’s
Theorem tells us that there is a set of at most three disks whose intersection is empty. On
the other hand, if the intersection

⋂
y∈YCy

δ(y, ry) is non-empty, then it is a rectangle (as

these are l∞ disks) and therefore equal to the intersection of four of the disks.

Claim 5. After executing line 18, each point in XC y is κ-covered.

Proof. Consider any x′ ∈ XCy. This means that x′ ∈ X ′, and therefore x′ is not κ-covered
before the execution of line 18.

Notice that |YCy| ≥ κ(x′), since the κ(x′) nearest neighbors of x′ are included
in YCy. Thus, before the execution of line 18, x′ does not belong to

⋂
y∈YCy

δ(y, ry).

(Otherwise, it would be κ-covered at that time.)

Therefore, x′ does not belong to
⋂
y∈YC′y

δ(y, ry). It follows that there is at least one

y ∈ YC′y such that δ(y, ry) did not contain x′ before the execution of line 18. After line 18
is executed, δ(y, ry) does contain x′. Since x′ was (κ(x′)− 1)-covered before the execution
of line 18, it is now κ(x′)-covered.

Finally, we argue that the algorithm computes a κ-cover.

Claim 6. The algorithm Cover(X,Y, κ, α) computes a κ-cover.

http://jocg.org/

JoCG 6(1), 220–234, 2015 230

Journal of Computational Geometry jocg.org

Proof. For this, it suffices to argue that the while loop (lines 9–19) terminates, because the
termination condition is that X ′, the set of clients not κ-covered, is empty.

Fix a point x ∈ X ′ after line 5 of the algorithm. The client x is not κ-covered at
this stage. It suffices to show that in some iteration of the while loop, x gets κ-covered.

The point x is served by some disk δ(y, ρy) in the outer cover ρ computed in line 6.
That is, x ∈ δ(y, ρy) and ρy ≥ ||x − yκ(x)||. Suppose that in some iteration of the while
loop, y = y; fix that iteration. If x has not already been κ-covered in earlier iterations,
it gets added to XCy in that iteration. At the end of that iteration, it gets κ-covered, by
Claim 5.

If there is no iteration of the while loop in which y = y, then the while loop evidently
terminates because X ′ = ∅. In this case too, x gets κ-covered in some iteration of the while
loop – the iteration in which it gets removed from X ′.

5 Approximation Ratio

In this section, we bound the ratio of the cost of the solution returned by Cover(X,Y, κ, α)
and the cost of the optimal solution. For this purpose, the following lemma is central.
It bounds the increase in cost incurred by Cover(X,Y, κ, α) in going from a κ′-cover to a
κ-cover by a constant times the cost of the outer cover ρ for X ′.

Lemma 2. The increase in the objective function
∑

y∈Y r
α
y from the time Cover(X,Y, κ′, α)

completes to the time Cover(X,Y, κ, α) completes is 4 · 3α ·
∑

y∈Y ρ
α
y .

Proof. Let us fix an y ∈ Y , and focus on the iteration when y was added to Y . Notice that
there is exactly one such iteration, since y is removed from Y ′ in the iteration it gets added
to Y .

We will bound the increase in cost during this iteration. For this, we need two
claims.

Claim 7. For any x′ ∈ XCy, we have

||y − x′|| ≤ ρy

Proof. Recall that x′ is in XCy because x′ ∈ δ(y, ρy).

Claim 8. For any y′ ∈ YCy, we have

||y′ − y|| ≤ 2 ∗ ρy

Proof. Let y′ be added to YCy when x′ ∈ X ′ was added to XCy. Hence

||y′ − x′|| ≤ ||x′ − yκ(x′)||
≤ ρy,

http://jocg.org/

JoCG 6(1), 220–234, 2015 231

Journal of Computational Geometry jocg.org

since δ(y, ρy) serves x′ in the outer cover (line 14 of Algorithm 2). Also, since x′ ∈ δ(y, ρy),
||x′ − y|| ≤ ρy. Therefore,

||y′ − y|| ≤ ||y′ − x′||+ ||x′ − y||
≤ ρy + ρy

= 2ρy

Fix a y ∈ YC′y. If ry was increased in this iteration, it now equals ||y−x′|| for some
x′ ∈ XCy. By the above two claims,

||y − x′|| ≤ ||y − y||+ ||y − x′||
≤ 3 ∗ ρy

Thus the increase in rαy is at most 3α(ρy)
α. Since ry is increased in this iteration

only for y ∈ YC′y, and |YC′y| ≤ 4, the increase in the objective function
∑

y∈Y r
α
y (in the

iteration of the while loop under consideration) is at most 4 · 3α · (ρy)α.

We conclude that the increase in
∑

y∈Y r
α
y over all the iterations of the while loop

is at most
4 · 3α ·

∑
y∈Y

(ρy)
α = 4 · 3α ·

∑
y∈Y

ραy .

We can now bound the approximation ratio of the algorithm.

Lemma 3. Let r′ : Y → R+ be any assignment of radii to the points in Y under which
each point x ∈ X is κ(x)-covered. Then the cost of the output of Cover(X,Y, κ, α) is at
most c ∗

∑
y∈Y r

′
y
α, where c = 4 · 27α.

Proof. Our proof is by induction on maxx∈X κ(x). For the base case, where κ(x) = 0 for
each x ∈ X, the claim in the theorem clearly holds.

Let D = {δ(y, r′y) | y ∈ Y } be the set of disks corresponding to the assignment r′.
Our proof strategy is to show that there is a subset Dκ ⊆ D such that

1. The cost increase incurred by Cover(X,Y, κ, α) in going from the κ′-cover to the κ-
cover is at most c times the cost of the disks in Dκ. (Recall that the cost of a set of
disks is the sum of the α-th powers of the radii of the disks.)

2. The set of disks, D \Dκ, κ′(x)-covers any point x ∈ X.

By the induction hypothesis, the cost of the κ′-cover computed by Cover(X,Y, κ, α′)
is at most c times the cost of the disks in D \ Dκ. As the increase in cost incurred by
Cover(X,Y, κ, α) in turning the κ′-cover to a κ-cover is at most c times the cost of the disks
in Dκ, the theorem follows.

http://jocg.org/

JoCG 6(1), 220–234, 2015 232

Journal of Computational Geometry jocg.org

We now describe how Dk is computed, and then establish that it has the above two
properties. For each x′ ∈ X ′, let largest(x′) be the largest disk from D that contains x′.
Since x′ is κ(x′)-covered by D, we note that the radius of largest(x′) is at least ||x′−yκ(x′)||.
Let

D′κ = {largest(x′) | x′ ∈ X ′}.

Sort the disks in D′κ by decreasing (non-increasing) radii. Let B ← ∅ initially. For
each disk d ∈ D′κ in the sorted order, perform the following operation: add d to B if d does
not intersect any disk already in B.

Let Dκ be the set B at the end of this computation. (See Figure 1.) Since no two
disks in Dκ intersect, and D κ-covers any point in X, it follows that D \Dκ κ

′-covers any
point in X. This establishes Property 2 of Dκ.

Figure 1: The set D of disks, and the clients in X ′, shown as blue squares. Here, κ(x) = 2
for each client x. The set D′κ consist of the two shaded disks, and the set Dκ contains only
the larger of these two disks. For this illustration we use `2 disks.

We now turn to Property 1. For this, consider Lκ, the set of disks obtained by
increasing the radius of each disk in Dκ by a factor of 3. We argue that Lκ is an outer cover
for X ′. Fix any x′ ∈ X ′.

1. If largest(x′) ∈ Dκ, then the corresponding disk in Lκ contains x′ and has radius at
least ||x′ − yκ(x′)||.

2. If largest(x′) 6∈ Dκ, then there is an even larger disk in Dκ that intersects largest(x′).
The corresponding disk in Lκ contains x′ and has radius at least ||x′ − yκ(x′)||.

Since Lκ is an outer cover for X ′, and the procedure OuterCover(X ′, Y, κ, α) returns
a 3α approximation to the optimal outer cover, we infer that∑

y∈Y
ραy ≤ 3α · cost(Lκ) ≤ 9α · cost(Dκ).

Thus the cost increase incurred by Cover(X,Y, κ, α) in going from the κ′-cover to
the κ-cover is, by Lemma 2, at most

4 · 3α ·
∑
y∈Y

ραy ≤ 4 · 27α · cost(Dκ) = c · cost(Dκ).

http://jocg.org/

JoCG 6(1), 220–234, 2015 233

Journal of Computational Geometry jocg.org

This establishes Property 1, and completes the proof of the lemma.

We conclude with a statement of the main result of this article. In this statement,
cost refers to l2 rather than l∞ disks. Since (a) an l2 disk of radius r is contained in the
corresponding l∞ disk of radius r, and (b) an l∞ disk of radius r is contained in an l2
disk of radius

√
2r, the approximation guarantee is increased by (

√
2)α when compared to

Lemma 3.

Theorem 1. Given point sets X and Y in the plane, a coverage function κ : X →
{0, 1, 2, . . . , |Y |}, and α ≥ 1, the algorithm Cover(X,Y, κ, α) runs in polynomial time and
computes a κ-cover of X with cost at most 4 · (27

√
2)α times that of the optimal κ-cover.

6 Concluding Remarks

Our result generalizes to the setting where X and Y are points in Rd, where d is any
constant. The approximation guarantee is now (2d) · (27

√
d)α. To explain, the intersection

of a finite family of l∞ balls equals the intersection of a sub-family of at most 2d balls. That
is why the 4 in the approximation guarantee of Theorem 1 becomes 2d. In the transition
from l2 to l∞ balls in Rd, we lose a factor of (

√
d)α.

This generalization naturally leads to the next question – what can we say when
X and Y are points in an arbitrary metric space? Our approach confronts a significant
conceptual obstacle here, since one can easily construct examples in which the cost of
going from a (k − 1)-cover to a k-cover (for the uniform MCMC) cannot be bounded by
a constant times the cost of an optimal outer cover. Thus, new ideas seem to be needed
for obtaining an O(1) approximation for this problem. The work of [4] gives the best
known guarantee of O(k). For the non-uniform version, their approximation guarantee is
O(max{κ(x) | x ∈ X}).

Acknowledgements: This material is based on work supported by the National Science
Foundation under grants CCF-0915543 and CCF-1318996.

References

[1] K. A. Affash, P. Carmi, M. J. Katz, and G. Morgenstern. Multi cover of a polygon
minimizing the sum of areas. International Journal of Computational Geometry and
Applications, 21(6):685–698, 2011.

[2] H. Alt, E. M. Arkin, H. Brönnimann, J. Erickson, S. P. Fekete, C. Knauer, J. Lenchner,
J. S. B. Mitchell and K. Whittlesey. Minimum-cost coverage of point sets by disks. In
Proceedings of the Symposium on Computational Geometry (SoCG), 2006, 449–458.

[3] N. Bansal and K. Pruhs. Weighted geometric set multi-cover via quasi-uniform sampling.
In Proceedings of the European Symposium on Algorithms (ESA), 2012, 145–156.

http://jocg.org/

JoCG 6(1), 220–234, 2015 234

Journal of Computational Geometry jocg.org

[4] R. Bar-Yehuda and D. Rawitz. A note on multicovering with disks. Computational
Geometry, 46(3):394–399, 2013.

[5] V. Bilò, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Geometric clustering
to minimize the sum of cluster sizes. In Proceedings of the European Symposium on
Algorithms (ESA), 2005, 460–471.

[6] S. Bhowmick, K. Varadarajan, and S. Xue. A constant-factor approximation for multi-
covering with disks. In Proceedings of the Symposium on Computational Geometry
(SoCG), 2013, 243–248.

[7] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat ob-
jects. Journal of Algorithms, 46(2):178–189, 2003.

[8] T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority,
and geometric set cover via improved quasi-uniform sampling. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2012, 1576–1585.

[9] M. Charikar and R. Panigrahy. Clustering to minimize the sum of cluster diameters.
Journal of Computer and System Sciences, 68(2): 417–441, 2004.

[10] C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the set multi-cover problem in geo-
metric settings. In Proceedings of the Symposium on Computational Geometry (SoCG),
2009, 341–350.

[11] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

[12] A. Freund and D. Rawitz. Combinatorial interpretations of dual fitting and primal
fitting. Proceedings of the International Workshop on Approximation and Online Algo-
rithms (WAOA), 2003, 137–150.

[13] S. Har-Peled and M. Lee. Weighted geometric set cover problems revisited. Journal of
Computational Geometry, 3(1):65–85, 2012.

[14] N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks, 47(4):489–501, 2005.

[15] K. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceed-
ings of the ACM Symposium on Theory of Computing (STOC), 2010, 641–648.

http://jocg.org/

	Introduction
	Related Work
	Our Results

	Preliminaries
	OuterCover: Algorithm to generate a preliminary cover
	Linear Programming Formulation
	A Primal-Dual Algorithm

	Computing a covering for the non-uniform MCMC problem
	Approximation Ratio
	Concluding Remarks

