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Abstract

A workflow specification defines a set of steps and the order in which those steps must be

executed. Security requirements and business rules may impose constraints on which users

are permitted to perform those steps. A workflow specification is said to be satisfiable if there

exists an assignment of authorized users to workflow steps that satisfies all the constraints.

An algorithm for determining whether such an assignment exists is important, both as a

static analysis tool for workflow specifications, and for the construction of run-time reference

monitors for workflow management systems. We develop new methods for determining

workflow satisfiability based on the concept of constraint expressions, which were introduced

recently by Khan and Fong. These methods are surprising versatile, enabling us to develop

algorithms for, and determine the complexity of, a number of different problems related to

workflow satisfiability.

1 Introduction

It is increasingly common for organizations to computerize their business and management pro-
cesses. The co-ordination of the tasks or steps that comprise a computerized business process is
managed by a workflow management system (or business process management system). Typi-
cally, the execution of these steps will be triggered by a human user, or a software agent acting
under the control of a human user, and the execution of each step will be restricted to some set
of authorized users.

A workflow is defined by the steps that comprise a business process and the order in which
those steps should be performed. Moreover, it is often the case that some form of access control,
often role-based, should be applied to limit the execution of steps to authorized users. In addition,
many workflows require controls on the users that perform groups of steps. The concept of a
Chinese wall, for example, limits the set of steps that any one user can perform [9], as does
separation-of-duty, which is a central part of the role-based access control model [1]. Hence,
it is important that workflow management systems implement security controls that enforce
authorization rules and business rules, in order to comply with statutory requirements or best
practice [6]. It is these “security-aware” workflows that will be the focus of the remainder of this
paper.

A simple, illustrative example for purchase order processing [10] is shown in Figure 1. In the
first step of the workflow, the purchase order is created and approved (and then dispatched to
the supplier). The supplier will submit an invoice for the goods ordered, which is processed by
the create payment step. When the supplier delivers the goods, a goods received note (GRN)
must be signed and countersigned. Only then may the payment be approved and sent to the
supplier. Note that a workflow specification need not be linear: the processing of the GRN and
of the invoice can occur in parallel, for example.
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In addition to defining the order in which steps must be performed, the workflow specification
includes rules to prevent fraudulent use of the purchase order processing system. In our example,
these rules restrict the users that can perform pairs of steps in the workflow: the same user may
not sign and countersign the GRN, for example.

s1 s2

s3

s4

s5

s6

(a) Ordering on steps

s1

s2

s3 s4s5 s6=6= 6=

6=

6=

(b) Constraints

s1 create purchase order

s2 approve purchase order

s3 sign GRN

s4 create payment

s5 countersign GRN

s6 approve payment

6= different users must perform steps

= same user must perform steps

(c) Legend

Figure 1: A simple constrained workflow for purchase order processing

It is apparent that it may be impossible to find an assignment of authorized users to workflow
steps such that all constraints are satisfied. In this case, we say that the workflow specification
is unsatisfiable. The Workflow Satisfiability Problem (WSP) is known to be NP-hard,
even when the set of constraints only includes constraints that have a relatively simple structure
(and that would arise regularly in practice).1

The rules described above can be encoded using constraints [10], the rules being enforced
if and only if the constraints are satisfied. More complex constraints, in which restrictions are
placed on the users who execute sets of steps can also be defined [3, 12, 21], can encode more
complex business requirements. (We describe these constraints in more detail in Section 2.1.) A
considerable body of work now exists on the satisfiability of workflow specifications that include
such constraints [6, 12, 21].

In this paper, we use constraint expressions to solve WSP. Constraint expressions were
introduced by Khan and Fong in their work on workflow feasibility [16]. However, the potential
of constraint expressions was not fully realized. In this paper, we show how constraint expressions
can be used to solve WSP and a number of related problems.

We also introduce a set of operators for combining workflows. This allows us to model
workflows in which the execution of steps is determined at execution time, which we will call
conditional workflows. Our model enables us to formulate the satisfiability problem for condi-
tional workflows, which we solve using constraint expressions. To our knowledge, these are the
first results on conditional workflows.

The main contributions of this paper are:

1In particular, the Graph k-Colorability problem can be reduced to a special case of WSP in which the
workflow specification only includes separation-of-duty constraints [21].
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• to generalize the results of Wang and Li on the fixed parameter tractability of WSP
(Section 3);

• to introduce a language for workflow composition (Section 4);

• to establish new results on the satisfiability of conditional workflows (Section 4);

• to demonstrate how a problem studied by Armando et al. [3] and a problem introduced by
Crampton [10] can be solved using constraint expressions (Section 5).

In the next section we provide relevant background material. In Section 3–5, we describe our
results. The proofs of our results can be found in the appendix, with the exception of the proof
of Theorem 5. We conclude with a summary of our contributions, a discussion of related work,
and our plans for future work.

2 Background

In this section, we introduce our notation and definitions, derived from earlier work [10, 21], and
then define the workflow satisfiability problem. In order to make the paper self-contained, we
also provide a short overview of parameterized complexity and summarize a number of useful
results from the literature.

2.1 The Workflow Satisfiability Problem

A directed acyclic graph G = (V,E) is defined by a set of nodes V and a set of edges E ⊆ V ×V .
The reflexive, transitive closure of a directed acyclic graph defines a partial order, where v 6 w
if and only if there is a path from v to w in G. If (V,6) is a partially ordered set, then we write
v ‖ w if v and w are incomparable; that is, v 66 w and w 66 v. We may write v > w whenever
w 6 v. We may also write v < w whenever v 6 w and v 6= w. Finally, we will write [n] to denote
{1, . . . , n}.

Definition 1. A workflow specification is defined by a directed, acyclic graph G = (S,E), where
S is a set of steps and E ⊆ S × S. Given a workflow specification (S,E) and a set of users
U , an authorization policy for a workflow specification is a relation A ⊆ S × U . A workflow
authorization schema is a tuple (G,U,A), where G = (S,E) is a workflow specification and A is
an authorization policy.

We will use the representations of a workflow specification as a partial order and a DAG
interchangeably. The workflow specification describes a sequence of steps and the order in which
they must be performed when the workflow is executed, each such execution being called a
workflow instance. If s < s′ then s must be performed before s′ in every instance of the workflow;
if s ‖ s′ then s and s′ may be performed in either order. User u is authorized to perform step s
only if (s, u) ∈ A.2 We assume that for every step s ∈ S there exists some user u ∈ U such that
(s, u) ∈ A.

2In practice, the set of authorized step-user pairs, A, will not be defined explicitly. Instead, A will be inferred
from other access control data structures. In particular, R

2
BAC – the role-and-relation-based access control

model of Wang and Li [21] – introduces a set of roles R, a user-role relation UR ⊆ U ×R and a role-step relation
SA ⊆ R × S from which it is possible to derive the steps for which users are authorized. For all common access
control policies (including R2BAC), it is straightforward to derive A. We prefer to use A in order to simplify the
exposition.
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Definition 2. Let ((S,E), U,A) be a workflow authorization schema. A plan is a function
π : S → U . A plan π is authorized for ((S,E), U,A) if (s, π(s)) ∈ A for all s ∈ S.

Definition 3. A workflow constraint has the form (ρ, S1, S2), where S1, S2 ⊆ S and ρ ⊆ U ×U .
A constrained workflow authorization schema is a tuple ((S,E), U,A,C), where C is a set of
workflow constraints.

Definition 4. A plan π : S → U satisfies a workflow constraint (ρ, S1, S2) if there exist s1 ∈ S1

and s2 ∈ S2 such that (π(s1), π(s2)) ∈ ρ. Given a constrained workflow authorization schema
((S,E), U,A,C), a plan π is valid if it is authorized and it satisfies all constraints in C.

We write ∆ ⊆ U × U to denote the diagonal relation {(u, u) : u ∈ U} and ∆c to denote its
complement {(u, u) : (u, u) 6∈ ∆}. Thus, the constraint on steps s1 and s2 in Figure 1 would be
written as (∆c, {s1} , {s2}).

We may now define the workflow satisfiability problem, as defined by Wang and Li [21].

Workflow Satisfiability Problem (WSP)

Input: A constrained workflow authorization schema ((S,E), U,A,C)

Output: A valid plan π : S → U or an answer that there exists no valid plan

We now discuss constraints in more detail, including the type of business rules we can encode
using our constraints and compare them to constraints in the literature. Our definition of work-
flow constraint is more general than similar definitions used when studying WSP. Crampton
defined constraints in which S1 and S2 are singleton sets: we will refer to constraints of this form
as Type 1 constraints; for brevity we will write (ρ, s1, s2) for the Type 1 constraint (ρ, {s1} , {s2}).
Wang and Li defined constraints in which at least one of S1 and S2 is a singleton set: we will
refer to constraints of this form as Type 2 constraints and we will write (ρ, s1, S2) in preference to
(ρ, {s1} , S2). Constraints in which S1 and S2 are arbitrary sets will be called Type 3 constraints.

We say that two constraints γ and γ′ are equivalent if a plan π satisfies γ if and only if it
satisfies γ′. The Type 2 constraint (ρ, s1, S2) is equivalent to (ρ, S2, s1) if ρ is symmetric, in
which case we will write (ρ, s1, S2) in preference to (ρ, S2, s1).

It is worth pointing out that Type 1 constraints can express requirements of the form described
in Section 1, where we wish to restrict the combinations of users that perform pairs of steps. The
plan π satisfies constraint (∆, s, s′), for example, if the same user is assigned to both steps by π,
and satisfies constraint (∆c, s, s′) if different users are assigned to s and s′. In other words, these
represent, respectively, binding-of-duty and separation-of-duty constraints. Abusing notation in
the interests of readability, we will replace ∆ and ∆c by = and 6=, respectively.

Type 2 constraints provide greater flexibility, although Wang and Li, who introduced these
constraints, do not provide a use case for which such a constraint would be needed. However,
there are forms of separation-of-duty requirements that are most naturally encoded using Type
3 constraints. Consider, for example, the requirement that a set of steps S′ ⊆ S must not all
be performed by the same user [2]. We may encode this as the constraint (6=, S′, S′), which is
satisfied by a plan π only if there exists two steps in S′ that are allocated to different users by π.

Henceforth, we will write WSP(ρ1, . . . , ρt) to denote a special case of WSP in which all
constraints have the form (ρi, S

′, S′′) for some ρi ∈ {ρ1, . . . , ρt} and for some S′, S′′ ⊆ S. We
will write WSPi(ρ1, . . . , ρt) to denote a special case of WSP(ρ1, . . . , ρt), in which there are no
constraints of Type j for j > i. Thus, WSP1(=, 6=), for example, indicates an instance of WSP
in which all constraints have the form (=, s1, s2) or (6=, s1, s2) for some s1, s2 ∈ S.

We will write c, n and k to denote the number of constraints, users and steps, respectively,
in an instance of WSP. We will analyze the complexity of the workflow satisfiability problem in
terms of these parameters.
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Note that definition of WSP given above does not make any reference to the ordering on the
set of steps. The original definition, as formulated by Crampton [10], included constraints that
were sensitive to the order in which steps were executed. If s ‖ s′, we may define two different
constraints (ρ, s, s′) and (ρ′, s′, s), the first of which must be satisfied if s is performed before s′,
while the second must be satisfied if s′ is performed before s. To facilitate direct comparison with
the work of Wang and Li on WSP, we defer the analysis of Crampton’s version of the problem
until Section 5.

2.2 Applications of WSP

There are a number of different execution models for workflow systems. In some systems, a
tasklist is created when a workflow is instantiated. The tasklist is simply a valid plan for the
worfklow instance, allocating users to specific steps in the workflow instance. In other systems,
the workflow system maintains a pool of ready steps for each worfklow instance. We say a
step is ready in a workflow instance if all its immediate predecessor steps have been executed.
The workflow system may allocate ready steps to users; alternatively users may select steps to
perform from the pool. In both cases, the system must ensure both that the user is authorized
and that allowing the user to perform the step does not prevent the remaining steps in the
workflow instance from completing.

For systems that create tasklists, it is sufficient to know that the workflow specification
is satisfiable. Thus, an algorithm for deciding WSP is an important static analysis tool for
such systems. However, such an algorithm will only need to be executed when the workflow
specification is created or when it changes. The fact that the problem is NP-hard means that it
is important to find as efficient an algorithm as possible.

For other systems, however, the algorithm will need to be run repeatedly: every time a
user is allocated to a step. Note that the decision whether to allow a user to execute a step
in a partially completed workflow instance can be determined by solving an instance of WSP.
Specifically, suppose W = ((S,E), U,A,C) is a workflow specification, some subset S′ of steps
have been performed in some instance of W , and the system needs to decide whether to allow
u′ to perform s′. Thus we have a partial plan π : S′ → U . We then construct a new workflow
instance W ′ = ((S,E), U,A′, C), where (s, u) ∈ A′ if and only if one of the following conditions
holds: (i) s ∈ S′ and u = π(s) (ii) s = s′ and u = u′ (iii) s 6∈ S′∪{s′} and (u, s) ∈ A. Clearly, the
workflow instance is satisfiable (when u′ performs s′) if and only if W ′ is satisfiable. Assuming
that these checks should incur as little delay as possible, particularly in the case when users
select steps in real time [17], it becomes even more important to find an algorithm that can
decide WSP as efficiently as possible.

The definition of workflow satisfiability given above assumes that the set of users and the
authorization relation are given. This notion of satisfiability is appropriate when the workflow
schema is designed “in-house”. A number of large information technology companies develop
business process systems which are then configured by the end users of those systems. Part of
that configuration includes the assignment of users to steps in workflow schemas. The developer
of such a schema may wish to be assured that the schema is satisfiable for some set of users
and some authorization relation, since the schema is of no practical use if no such user set and
authorization relation exist. The desired assurance can be provided by solving an instance of
WSP in which there are k users, each of which is authorized for all steps. The developer may
also determine the minimum number of users required for a workflow schema to be satisfiable.
The minimum number must be between 1 and k and, using a binary search, can be determined
by examining ⌈log2 k⌉ instances of WSP.
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2.3 Parameterized Complexity

A näıve approach to solving WSP would consider every possible assignment of users to steps in
the workflow. There are nk such assignments if there are n users and k steps, so an algorithm of
this form would have complexity O(cnk), where c is the number of constraints. Moreover, Wang
and Li showed that WSP is NP-hard, by reducing Graph k-Colorability to WSP(6=) [21,
Lemma 3]. In short, WSP is hard to solve in general. The importance of finding an efficient
algorithm for solving WSP led Wang and Li to look at the problem from the perspective of
parameterized complexity [21].

Suppose we have an algorithm that solves an NP-hard problem in time O(f(k)nd), where n
denotes the size of the input to the problem, k is some (small) parameter of the problem, f is some
function in k only, and d is some constant (independent of k and n). Then we say the algorithm is
a fixed-parameter tractable (FPT) algorithm. If a problem can be solved using an FPT algorithm
then we say that it is an FPT problem and that it belongs to the class FPT [13, 18].

Wang and Li showed, using an elementary argument, that WSP2(6=) is FPT and can be
solved in time O(kk+1N), where N is the size of the entire input to the problem [21, Lemma
8]. They also showed that WSP2(6=,=) is FPT [21, Theorem 9], using a rather more complex

approach: specifically, they constructed an algorithm that runs in time O(kk+1(k − 1)k2
k−1

N);
it follows that WSP2(=, 6=) is FPT. One of the contributions of this paper is to describe a new
method for solving WSP3(=, 6=) (that can also be used to solve WSP2(=, 6=)), thus generalizing
Wang and Li’s result.

3 Solving WSP Using Constraint Expressions

In this section, we show how to extend the elementary methods used by Wang and Li to obtain
results for WSP2(=, 6=) and WSP3(=, 6=). Informally, our results make use of two observations:

• A construction used by Crampton et al. [11] can be used to transform an instance of
WSP1(=, 6=) into an equivalent instance of WSP1(6=) in time polynomial in the numbers
of constraints, steps and users.

• We can transform an instance of WSPi(=, 6=) into multiple instances of WSP1(=, 6=), the
number of instances being dependent only on the number of steps.

We use constraint expressions [16] to represent workflow constraints and to reason about multiple
constraints and the relationships between different types of constraints.

3.1 Reducing WSP1(=, 6=) to WSP1( 6=)

The basic idea is to merge all steps that are related by constraints of the form (=, s1, s2)
for s1, s2 ∈ S. More formally, consider an instance I of WSP1(=, 6=), given by a workflow
((S,E), U,A,C).

(1) Construct a graph H with vertices S, in which s′, s′′ ∈ S are adjacent if C includes a
constraint (=, s′, s′′).

(2) If there is a connected component of H that contains both s′ and s′′ and C contains a
constraint (6=, s′, s′′) then I is unsatisfiable, so we may assume there is no such connected
component.

(3) For each connected component T of H ,
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(a) replace all steps of T in S by a “superstep” t;

(b) for each superstep t, authorize user u for t if and only if u was authorized (by A) for all
steps in t

(c) for each such superstep t, merge all constraints for steps in t.

Clearly, we now have an instance of WSP1(6=), perhaps with fewer steps and a modified autho-
rization relation, that is satisfiable if and only if I is satisfiable. For ease of reference, we will
refer to the procedure described above as the WSP1 constraint reduction method. The reduction
can be performed in time O(kc+ kn), where c is the number of constraints: step (1) takes time
O(k + c); step (3) performs at most k merges; each merge takes O(k + c + n) time (since we
need to merge vertices, and update constraints and the authorization relation for the new vertex
set);3 finally, if k 6 c we have O(k(k + c + n) = O(k(c + n)), and if c 6 k then we perform no
more than c merges in time O(c(k + c+ n)) = O(ck + cn) = O(ck + kn).

3.2 Constraint Expressions

To understand the intuition behind our approach, consider a workflow
W = ((S,E), U,A, {(ρ, S′, S′′)}), which defines an instance of WSP3(ρ). By definition, a plan π
satisfies the constraint (ρ, S′, S′′) if there exist s′ ∈ S′ and s′′ ∈ S′′ such that (π(s′), π(s′′)) ∈ ρ.
In other words, we could decide the satisfiability of W by considering the satisfiability of multiple
instances of WSP1: specifically, for each pair (s′, s′′) ∈ S′ × S′′, we consider the satisfiability of
the workflow ((S,E), U,A, {(ρ, s′, s′′)}); if any one of these instances is satisfiable, then so is W .
On the other hand, a plan satisfies a workflow W = ((S,E), U,A, {γ1, γ2}), for constraints γ1
and γ2, if and only π satisfies workflows ((S,E), U,A, {γ1}) and ((S,E), U,A, {γ2}).

More formally, given a set of steps S, we define a constraint expression recursively:

• (ρ, s1, s2) is a (primitive) constraint expression;

• if γ and γ′ are constraint expressions, then γ ∧ γ′ and γ ∨ γ′ are constraint expressions.

A plan π satisfies constraint expression:

• γ ∧ γ′ if and only if π satisfies γ and γ′; and

• γ ∨ γ′ if and only if π satisfies γ or γ′.

3.3 Reducing WSP(ρ1, . . . ρt) to WSP1(ρ1, . . . , ρt)

We now express workflow specifications using constraint expressions, rather than sets of con-
straints. A constraint (ρ, S′, S′′), ρ ∈ {ρ1, . . . , ρt}, is equivalent to a constraint expression∨

s′∈S′,s′′∈S′′(ρ, s′, s′′), so every constraint can be written as the disjunction of primitive con-
straints. Moreover, the set of constraints {Γ1, . . . ,Γc}, where each Γi is a disjunction of primitive
constraint expressions, is equivalent to the constraint expression Γ1 ∧ · · · ∧ Γc.

In other words, we can reduce the problem of determining the satisfiability of ((S,E), U,A,C)
to the problem of determining the satisfiability of a workflow of the form

((S,E), U,A,Γ1 ∧ · · · ∧ Γc),

where c = |C|; each clause Γi = (ρ, S′

i, S
′′

i ) has the form γi,1∨· · ·∨γi,m(i), with m(i) = |S′

i| · |S
′′

i |;
and each literal γi,j has the form (ρ, s′, s′′) for some s′ ∈ S′

i and s′′ ∈ S′′

i . In other words,

3We can check step (2) when we merge constraints in step 3(c).
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we can represent any instance of WSP3(=, 6=) as a workflow containing a constraint expression
in “conjunctive normal form” in which each of the “literals” is a primitive constraint (which
corresponds to a single Type 1 constraint). Moreover, each literal is positive.

3.4 Solving WSP(=, 6=)

Given a constraint expression Γ1 ∧ · · · ∧ Γc, it is easy to see that if we can find a plan π for
some constraint expression of the form γ1 ∧ · · · ∧ γc, with γi ∈ Γi, then π is a plan for C. This
is because such a plan satisfies at least one literal in each clause Γi, thereby causing each Γi to
be satisfied; and C is satisfied if each clause is satisfied. Conversely, if π is a plan for C then it
is a plan for Γ1 ∧ · · · ∧ Γc and there exists a workflow expression of the form γ1 ∧ · · · ∧ γc for
which π is a plan. In other words, π is a plan for C if and only if it is a plan for γ1 ∧ · · · ∧ γc
for some γi ∈ Γi, where γi is a Type 1 constraint and γ1 ∧ · · · ∧ γc represents the constraint
set {γ1, . . . , γc}. We call γ1 ∧ · · · ∧ γc a simple constraint expression. That is, we have reduced
the satisfiability of an instance of WSP3(=, 6=) to determining the satisfiability of one or more
instances of WSP1(=, 6=). The number of instances is equal to

∏c
i=1 |Γi|, where |Γi| denotes the

number of literals (primitive constraint expressions) in Γi. Our strategy for solving an instance
of WSP3(=, 6=), therefore, is to try to determine the satisfiability of these related instances of
WSP1(=, 6=).

Theorem 5. WSP2(=, 6=) and WSP3(=, 6=) can be decided in time

O((k − 1)c(c(k − 1)k + kn)) and O
(
k2c(c(k − 1)k + kn)

)
,

respectively, where c is the number of constraints in the workflow instance.

Proof. We first consider an instance of WSP1(=, 6=), to which we apply the WSP1 constraint
reduction to obtain an instance of WSP1(6=). As any step with at least k authorized users can
be assigned a user that has not been assigned to any other step, we may focus on the allocation
of users to steps having fewer than k authorized users.

We consider each possible plan in turn and for each plan we check whether every constraint
is satisfied. There are no more than (k − 1)k plans to check—since each of the steps has at
most k − 1 authorized users and there are no more than k steps—and each constraint contains
two steps, so the time taken to solve WSP1(6=) is O(c(k − 1)k) and the time taken to solve
WSP1(6=,=) is O(c(k − 1)k + kn).

Now suppose we are given an instance ofWSP(=, 6=). Then we can determine its satisfiability
by considering the satisfiability of multiple instances of WSP1(=, 6=), each instance containing
c constraints. We now determine the number of instances of WSP1(=, 6=) that need to be
considered in the worst case.

For a Type 2 constraint (ρ, s, S′), we may assume that s 6∈ S′: for (=, s, S′), if s ∈ S′, then
the constraint is satisfied by every plan and the constraint is redundant; for (6=, s, S′), if s ∈ S′,
then the constraint is equivalent to (6=, s, S′ \ {s}). Hence, each Type 2 constraint (ρ, s, S′) gives
rise to |S′| literals in a clause with |S′| < k. So we have c clauses, each of which contains no
more than k − 1 literals.

Type 1 constraints are equivalent to clauses with a single literal. Hence, for an instance of
WSP2(=, 6=) there are no more than (k − 1)c simple constraint expressions and so there are no
more than (k−1)c instances of WSP1(=, 6=) to check, which can be done in time O((k−1)c(c(k−
1)k + kn+ kc)) = O((k − 1)c(c(k − 1)k + kn)).

Each Type 3 constraint (ρ, S′, S′′) yields a clause containing fewer than |S′| · |S′′| 6 k2

literals (which is greater than the number of clauses that can be obtained from a Type 1 or

8



Type 2 constraint). Hence, there are no more than O(k2c) simple constraint expressions and
WSP3(6=,=) can be decided in time O(k2c(c(k − 1)k + kn+ kc)) = (k2c(c(k − 1)k + kn)).

Corollary 6. WSP2(=, 6=) and WSP3(=, 6=) are FPT.

3.5 Kernelization of WSP

Formally, a parameterized problem P can be represented as a relation P ⊆ Σ∗ × N over a finite
alphabet Σ. The second component is call the parameter of the problem. In particular, WSP
is a parameterized problem with parameter k, the number of steps. We denote the size of a
problem instance (I, k) by |I|+ k.

Definition 7. Given a parameterized problem P , a kernelization of P is an algorithm that maps
an instance (I, k) to an instance (I ′, k′) in time polynomial in |I|+ k such that (i) (I, k) ∈ P if
and only if (I ′, k′) ∈ P , and (ii) k′ + |I ′| 6 g(k) for some function g; (I ′, k′) is the kernel and
g is the size of the kernel. If g(k) = kO(1), then we say (I ′, k′) is a polynomial-size kernel.

A kernelization provides a form of preprocessing aimed at compressing the given instance of
the problem. Polynomial-size kernels are particularly useful in practice as they often allow us to
reduce the size of the input of the problem under consideration to an equivalent problem with
an input of significantly smaller size.

Crampton et al. recently established that WSP1(=, 6=) has a polynomial-size kernel [11, §6].
In the case of WSP1(=, 6=), we can reduce the problem to one containing at most k users [11,
Theorem 6.5]. Crampton el al. also showed that WSP2(=, 6=) (and hence WSP3(=, 6=)) does
not have a polynomial-size kernel, so there is no efficient preprocessing step for such instances of
WSP. However, our results in this paper show we can reduce an instance of WSP(=, 6=) to at
most k2c instances of WSP1(6=) and then solve each instance by first computing a (polynomial-
size) kernel. The proof of Corollary 6 asserts that c 6 4k, although we would expect c to be
linear or quadratic in the number of steps in practice. This approach is similar to those that use
so-called Turing kernels (see [19], for example).

3.6 Negative Constraint Expressions

We could extend the syntax for constraint expressions to include negation. In other words, if γ
is a constraint expression, then ¬γ is a constraint expression. A plan π satisfies ¬γ if and only
if π violates γ. A plan π satisfies the constraint ¬(=, S1, S2), for example, if and only for all
si ∈ Si, (π(s1), π(s2)) 6∈ ∆; that is, if and only if for all si ∈ Si, π(s1) 6= π(s2).

4 Thus, we can
encode any instance of WSP(=, 6=) using only constraints of the form (=, s1, s2) if we allow the
use of negation. Note, however, this means that the method for solving WSP(=, 6=) described
in Section 3.4 no longer works, because we may have negative literals in our conjunctive normal
form expressions.

However, we can determine the satisfiability of the constraint expression using any SAT solver.
A satisfying assignment returned by the SAT solver provides a “template” for a valid plan: if
the variable (=, s1, s2) is set to true, then our plan must assign the same user to s1 and s2. This
induces a partition of the set of steps into blocks, each of which must be executed by a different
user. Hence, each satisfying assignment of the constraint expression gives rise to an instance
of WSP1(6=) in which each “step” is a block of steps in the original problem instance. We can

4This constraint is similar to the separation of duty constraints described by Basin et al. [7] and the universal
constraints described by Wang and Li [21]. Of course, we can represent this constraint as the set of Type 1
constraints {(6=, s1, s2) : s1 ∈ S1, s2 ∈ S2}.
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solve this instance in time O(
(
k
2

)
(b − 1)b), where b 6 k is the number of blocks, since there are

at most
(
k
2

)
constraints of the form (=, s1, s2). If b is small relative to k, then this may prove to

be a very efficient way of solving the original instance of WSP(=, 6=). However, we may need to

consider 2(
k

2) satisfying assignments. In future work we hope to explore whether the additional
expressive power of negative constraint expressions allows us to encode business rules of practical
relevance. Further experimental work, investigating which strategies for solving WSP work best
in practice, is required.

4 Conditional Workflows

In some situations, we may wish to have conditional branching in a workflow specification, some-
times known as OR-forks [20] or exclusive gateways [22]. In our workflow system for purchase
order processing, for example, we may require that only orders with a value exceeding some
threshold amount need to be signed for twice. Informally, we can represent this extended specifi-
cation by the diagram shown in Figure 2, where s′3 represents a step for signing a goods received
note on low-valued items. The nodes containing ‖ and ⊕ are “orchestration” steps (or “gate-
ways”) at which no processing is performed: ⊕ indicates that exactly one of the two branches is
executed, while ‖ denotes that both branches must be executed.

s1 s2 ‖

⊕

s3

s′3

s4

s5

s6

Figure 2: A workflow specification with conditional step execution

4.1 Workflow Composition

We now introduce a simple language for defining workflows. This language enables us to extend
the definition of WSP to workflows containing OR-forks, but not to arbitrary workflow patterns.

We assume every workflow specification includes a start step and a finish step, which we will
denote by α and ω, respectively, with subscripts where appropriate. These steps are orchestration
steps: no processing is performed by these steps and no constraints are applied to their execution;
they are used by the workflowmanagement system solely to manage the initiation and completion
of workflow instances. Given two workflow specifications W1 = (S1, E1) and W2 = (S2, E2), we
may construct new workflow specifications using serial, parallel and xor composition, denoted
by W1 ;W2, W1 ‖W2 and W1 ⊕W2, respectively. We assume throughout that S1 ∩ S2 = ∅. (If
this were not the case with s ∈ S1 ∩ S2, we could simply introduce subscripts or new labels to
distinguish the two copies of s.)

For serial composition, all the steps in W1 must be completed before the steps in W2. Hence,
the graph of W1 ;W2 is formed by taking the union of S1 and S2, the union of E1 and E2, and
the addition of a single edge between ω1 and α2.
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For parallel composition, the execution of the steps in W1 and W2 may be interleaved. Hence,
the graph of W1 ‖ W2 is formed by taking the union of S1 and S2, the union of E1 and E2, the
addition of new start and finish steps αpar and ωpar, and the addition of edges from αpar to
α1 and α2 and from ω1 and ω2 to ωpar. This form of composition is sometimes known as an
AND-fork [20] or a parallel gateway [22].5

In both serial and parallel composition, all steps in W1 and W2 are executed. In xor com-
position, either the steps in W1 are executed or the steps in W2, but not both. In other words,
xor composition represents non-deterministic choice in a workflow specification. The graph of
W1 ⊕W2 is formed by taking the union of S1 and S2, the union of E1 and E2, the addition of
new start and finish steps αxor and ωxor, and the addition of edges from αxor to α1 and α2 and
from ω1 and ω2 to ωxor.

Henceforth, we will assume that ω1 followed by α2 will be merged to form a single (orchestra-
tion) node ǫ. Similarly, we will assume that (i) αpar followed by α1 and α2 in serial composition
will be merged to form a single node αpar; (ii) ωpar followed by ω1 and ω2 will be merged to form
a single node ωpar; (iii) αxor followed by α1 and α2 will be merged to form a single node αxor;
(iv) ωxor followed by ω1 and ω2 will be merged to form a single node ωxor.

Serial and parallel composition are illustrated in Figure 3. The structure of xor composition
is identical to that for parallel composition so it is not shown.

α1 W1 ǫ W2 ω2

(a) Serial

αpar

W1

W2

ωpar

(b) Parallel

Figure 3: Workflow composition

4.2 Execution Sets

When we have conditional branching in a workflow, there exists more than one set of steps that
could comprise a complete workflow instance. Formally, an execution set is defined recursively:

• for a workflow specification comprising a single step s, there is a single execution set {s};

• if W1 and W2 are workflow specifications and S1 and S2 are execution sets for W1 and W2,
respectively, then

– S1 ∪ S2 is an execution set for W1 ;W2,

– S1 ∪ S2 is an execution set for W1 ‖W2,

– S1 and S2 are execution sets for W1 ⊕W2.

5The workflows that arise from serial and parallel composition have a lot in common with series-parallel graphs;
see [5], for example, for further details.
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In our running example, both {s1, s2, s3, s4, s5, s6} and {s1, s2, s′3, s4, s6} represent possible ex-
ecution sets, with the second set representing a workflow instance in which the value of goods
ordered is lower than the threshold requiring the GRN to be countersigned.6

4.3 Workflow Formulas and Trees

Clearly, each workflow step represents a workflow specification, in fact the simplest possible
specification. Hence, we may represent the example workflow specification in Figure 2 as the
workflow formula

(s1 ; s2) ; (((s3 ; s5)⊕ s′3) ‖ s4) ; s6.

Thus, we may also represent the workflow specification as a workflow tree, as illustrated in
Figure 4.

;

;

;

s1 s2

‖

⊕

;

s3 s5

s′3

s4

s6

Figure 4: A workflow tree

The number of different possible execution sets is determined by the structure of the workflow
formula. Specifically, let ♯(W ) denote the number of possible execution sets for workflow W . For
a workflow W comprising a single step, we have ♯(W ) = 1. In general, we have

♯(W1 ;W2) = ♯(W1 ‖W2) = ♯(W1) · ♯(W2)

♯(W1 ⊕W2) = ♯(W1) + ♯(W2),

where · denotes multiplication.
Using a post-order traversal of the workflow tree, we can compute the number of possible

execution sets: we assign the value 1 to each leaf node; we compute the number of possible
execution sets for each non-leaf node using the values assigned to its children and the appropriate
formula for the operation associated with the node. The root node in the tree depicted in Figure 4
is assigned the value 2, for example.

We write ♭(W ) to denote the maximum number of steps in any possible execution set for a
workflow specification W . Then

♭(W1 ;W2) = ♭(W1 ‖W2) = ♭(W1) + ♭(W2)

♭(W1 ⊕W2) = max {♭(W1), ♭(W2)} .

6The concept of an execution set is related to, but simpler than, the concept of an execution history [7]: for
any execution set {s1, . . . , sm}, an execution history is a set {(s1, u1), . . . , (sm, um)} for some users u1, . . . , um.
An execution history also has some similarity to our concept of a plan.
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Clearly, we can compute ♭(W ) from the workflow tree associated withW using a similar algorithm
to the one described above for calculating ♯(W ).

4.4 Constraints in Conditional Workflows

Let W1 and W2 be two workflow specifications with constraints C1 and C2, respectively. When
we form W1 ;W2 or W1 ‖W2, we include all constraints in C1 and C2. In addition, we may create
new constraints, governing the execution of some steps in S1 and some steps in S2. However,
we prohibit the addition of constraints in which all the steps are contained in either S1 or S2

(the assumption being that they would have been created earlier, if required). In other words,
any constraint that is added when we form W1 ;W2 (or W1 ‖W2) has the form (ρ, S′, S′′), where
S′ ∪ S′′ 6⊆ S1 and S′ ∪ S′′ 6⊆ S2.

In contrast, since xor composition requires that we either perform the steps in S1 or those in
S2, any constraint that includes steps from both S1 and S2 serves no purpose. Hence, we assume
that we add no constraints when we form W1 ⊕W2.

4.5 Derived Deterministic Workflows

We say a workflow specification is deterministic if it has a single execution set (and non-
deterministic otherwise). Each possible execution set in a non-deterministic workflow speci-
fication gives rise to a different, deterministic workflow specification. In particular, given a
workflow specification W = (S,E) with execution sets {S1, . . . , Sm}, we define Wi = (Si, Ei),
where

Ei
def
= (Si × Si) ∩ E.

Then Wi is a (derived) deterministic workflow specification.
For a constrained workflow specification W = ((S,E), A, C) with possible execution sets

{S1, . . . , Sm}, we define Wi = (Si, Ei, Ai, Ci), where

Ai
def
= (Si × U) ∩ A,

and, for each γ = (ρ, S1, S2) ∈ C such that S1 ∩ Si 6= ∅ and S2 ∩ Si 6= ∅,

γi
def
= (ρ, S1 ∩ Si, S2 ∩ Si) ∈ Ci.

EachWi is a deterministic, constrained workflow specification. Notice that when we form γi, S1∩
Si 6= ∅ and S2∩Si 6= ∅: this follows by a simple induction on the structure of the workflow formula
and the assumptions we make about the addition of constraints when we compose workflows (as
described in Section 4.4).

Hence, we may model any non-deterministic workflow specification as a collection of deter-
ministic workflow specifications. We may define the notion of weakly satisfiable and strongly
satisfiable for a non-deterministic specification: the former holds if there exists a derived, de-
terministic workflow specification that is satisfiable; the latter holds if all derived, deterministic
workflow specifications are satisfiable. In practice, it is likely that a workflow specification should
be strongly satisfiable (otherwise there exist execution paths that can never complete).

Proposition 8. Let W be an instance of WSP1(=, 6=). Then we can determine whether W is
weakly or strongly satisfiable in time O(♯(W )(♭(W ) − 1)♭(W )).

Note that we can extend this result to WSP3(=, 6=) as described in the proof of Theorem 5
(that is, using the reduction to multiple instances of WSP1(=, 6=), where the number of instances
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is O(♭(W )2)). The above result asserts that the complexity of checking whether a workflow is
strongly satisfiable is determined by ♭(W ) and ♯(W ). Crude upper bounds for these parameters
are k and 2k, both functions of k only. Thus, determining whether a conditional workflow is
strongly satisfiable is FPT.

Of course, these bounds can be improved: the upper bound for ♭(W ) is only attained if no
xor composition is used, in which case ♯(W ) = 1; conversely, introducing xor composition may
reduce the maximum length, and using only xor composition reduces the number of derived
specifications to k. The question is: What deployment of k−1 composition operators for k steps
yields the worst-case complexity? We have the following result.

Theorem 9. Given k workflow steps, a workflow has no more than:

• 3k
′

execution sets if k = 3k′;

• 4 · 3k
′
−1 execution sets if k = 3k′ + 1; and

• 2 · 3k
′

execution sets if k = 3k′ + 2.

Remark 10. The proof of the above result (see appendix) is constructive, in the sense that it
tells us how to maximize the number of execution sets for a fixed set of k steps. Given k steps,
we obtain a workflow with the greatest possible number of execution sets by taking the serial (or
parallel) composition of sub-workflows ⊕2 and ⊕3, where ⊕i denotes the xor composition of i
steps. More specifically, if k = 3a, we take the serial composition of a copies of ⊕3; if k = 3a+1,
we take the serial composition of a− 1 copies of ⊕3 and two copies of ⊕2; and if k = 3a+2, we
take the serial composition of a copies of ⊕3 and one copy of ⊕2. We may conclude that ♭(W )
for such a workflow is no greater than ⌈k/3⌉.

Remark 11. Note that using xor composition reduces ♭(W ). And note that the exponential term
in the complexity of solving WSP1(=, 6=) is determined by the number of steps in the workflow,
for which an upper bound is ♭(W ) in the case of non-deterministic workflow specifications. For
a fixed k, it follows from Theorem 9 that the worst-case complexity for WSP1(=, 6=) occurs for a
workflow specification with a single execution set (of k steps).

5 Further Applications

In this section, we study two problems from the literature and establish that they are fixed-
parameter tractable. In both cases, we represent the problem as a workflow satisfiability problem
using constraint expressions.

5.1 Ordered WSP

We note that the version of WSP considered so far in this paper makes no use of the order
relation on the set of steps. This is a simplification introduced by Wang and Li [21]. In fact, the
definition of workflow constraints by Crampton [10] prohibited constraints of the form (ρ, s, s′)
for s > s′. Moreover, a plan was required to specify an execution order for the steps in the
workflow (in addition to the assignment of steps to users). This, in turn, means that Crampton’s
definition of constraint satisfaction (and hence of the workflow satisfiability problem) is more
complex. More formally, we have the following definitions.

Definition 12. Let W = ((S,E), U,A,C) be a workflow comprising k steps. A tuple (s1, . . . , sk)
is an execution schedule for W if {s1, . . . , sk} = S and, for all 1 6 i < j 6 k, si 6> sj.

7 We say
si precedes sj in an execution schedule if i < j.

7In other words, an execution schedule is a linear extension or topological sort of (S,6).
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For the workflow depicted in Figure 1, (s2, s1, . . . ) is not an execution schedule, for example,
but (s1, s2, s3, s5, s4, s6) and (s1, s2, s3, s4, s5, s6) are.

Definition 13. The (Type 1) constraint (ρ, s, s′) is satisfied by execution schedule σ and plan π
if one of the following holds: (i) s precedes s′ in σ and (π(s), π(s′)) ∈ ρ; (ii) s′ precedes s in σ.

The intuition here is that a constraint (ρ, s, s′) is well-formed only if s could precede s′ in
the execution of some instance of the workflow (that is, either s < s′ or s ‖ s′). Moreover, if
s does occur before s′, then the execution of s′ is constrained by ρ and the identity of the user
that performed s. A modified version of WSP, based on the above definitions, is defined in the
following way.

Ordered WSP (OWSP)

Input: A constrained workflow authorization schema ((S,E), U,A,C).

Output: True if there exists an execution schedule σ and a plan π that satisfy all
constraints in C, and False otherwise.

Note that it may not be possible to find a valid plan π for a particular execution schedule
σ. Conversely, there may be a plan π for which there exist schedules σ and σ′ such that (σ, π)
satisfies all constraints but (σ′, π) does not. Consider, for example, a plan π that is valid for our
purchase order workflow such that π(s3) = π(s4). If we add the constraint (6=, s3, s4), then π is
valid for any execution schedule in which s4 precedes s3 and invalid otherwise.

The above example also shows there exist workflows for which a plan π is not a solution
to WSP, but for which (σ, π) is a solution to OWSP for certain choices of σ. Crampton
introduced the notion of a well-formed workflow, which has the following property: for all si ‖ sj,
(ρ, si, sj) ∈ C if and only if (ρ̃, sj , si) ∈ C, where ρ̃ is defined to be {(u, u′) ∈ U × U : (u′, u) ∈ ρ}.
To ensure that the workflow in the above example is well-formed, we would add the constraint
(6=, s4, s3) to C. It is easy to see that OWSP for well-formed workflows and WSP are essentially
equivalent, since a valid plan for one execution schedule will be a valid plan for any execution
schedule [10, Lemma 9].

Nevertheless, there will be business processes that cannot be represented using a well-formed
workflow schema. In the purchase order example illustrated in Figure 1, for example, it would
be quite reasonable to impose constraints on s3 and s4 that would mean the resulting workflow
schema was not well-formed. Suppose, for example, that ∼ is an equivalence relation on U , where
u ∼ u′ if and only if u and u′ belong to the same department. Then the constraints (≁, s3, s4)
and (6=, s4, s3) require that if s3 (the sign GRN step) is performed before s4 (the create payment
step), then the user that performs s4 must be in a different department from the user that
performs s3; whereas if the steps are performed in the reverse order, we only require the users to
be different (since the more commercially sensitive step has been performed first in this case).

Note that OWSP is only defined for Type 1 constraints (see Definition 13). Wang and
Li showed that WSP is W[1]-hard [13] for arbitrary constraint relations (even if only Type 1
constraints) are used [21]. Moreover, any instance of WSP defines an instance of OWSP. Thus,
OWSP is W[1]-hard. However, there is a strong connection between WSP and OWSP.

Proposition 14. OWSP1(ρ1, . . . , ρt) is FPT if WSP1(ρ1, . . . , ρt) is.

A stronger notion of satisfiability for OWSP would require that there exists a plan for every
execution schedule (as for conditional workflows). In this case, we simply require that every one
of the O(k!) derived instances of WSP is satisfiable. The worst-case complexity of determining
“weak” and “strong” satisfiability for OWSP is, therefore, the same. Note that an instance of
WSP is satisfiable if the corresponding instance of OWSP is strongly satisfiable.
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5.2 Identifying Constraint Violation

Consider the following problem: Given a constrained workflow specification ((S,E), U,A,C),
does there exist a plan α such that (s, α(s)) ∈ A for all s ∈ S and at least one constraint C that
is not satisfied? This question is of interest because if we know that no such plan exists, then we
do not need a reference monitor: any allocation of (authorized) users to steps will satisfy all the
constraints. This question has been studied by Armando and colleagues [2, 4] and solutions have
been computed using model checkers. We answer this question by examining the satisfiability of
the “negation” of the problem, rewritten using the language of constraint expressions.

Theorem 15. Determining whether there exists a plan that violates a workflow specification
((S,E), U,A,C), where all constraints have the form (=, S1, S2) or (6=, S1, S2), is FPT.

The approach described above can also be used to “prune” a workflow specification. Given
a workflow specification ((S,E), U,A,C), we can identify, with the same (worst-case) time com-
plexity, all constraints in C that can be violated. This enables us to remove any constraints that
cannot be violated, leaving a workflow specification ((S,E, U,A,C′), with C′ ⊆ C. In Section 2.2,
we identified situations in which we may be required to solve WSP for a workflow specification
multiple times. Thus, reducing the set of constraints will reduce the complexity of subsequent
attempts to determine the satisfiability of the workflow specification.

6 Concluding Remarks

In this paper, we have explored the use of constraint expressions as a means of translating
different versions of the workflow satisfiability problem into one or more instances of WSP1(6=).
Constraint expressions provide a uniform way of representing the workflow satisfiability problem
and related problems, such as WSP for conditional workflows (Section 4), ordered WSP and
the identification of constraints that can be violated (Section 5). This, in turn, enables us
to establish the complexity of solving these problems. We also believe our characterization of
workflow composition, the representation of workflows as trees, and execution sets may be useful
modeling tools for future research on authorization in workflow systems.

6.1 Related Work

Work on computing plans for workflows that must simultaneously satisfy authorization policies
and constraints goes back to the seminal paper of Bertino et al. [8]. This work considered
linear workflows and noted the existence of an exponential algorithm for computing valid plans.
Crampton extended the model for workflows to partially ordered sets (equivalently, directed
acyclic graphs) and to directed acyclic graphs with loops [10]. Wang and Li further extended
this model to include Type 2 constraints [21].

Wang and Li first investigated the computational complexity and, significantly, the existence
of fixed-parameter tractable algorithms for the workflow satisfiability problem [21]. One or their
main results [21, Theorem 9] is very similar to the result we prove for WSP2(=, 6=) (Theorem 5),
although our approach is more direct and generalizes to WSP3(=, 6=). Crampton et al. introduced
a new method for solving the problem [12], which yields significantly better complexity bounds
for WSP3(=, 6=). However, their methods only apply for certain kinds of constraints; indeed, it
is not clear whether their approach extends to relations other than ∆, ∆c and constraints using
equivalence relations defined on the user set.

The use of constraint expressions to represent and reason about the complexity of the work-
flow satisfiability problem appears, therefore, to have some significant advantages, one specific

16



advantage being its versatility, over existing approaches. Khan and Fong introduced the notion
of a constraint expression to reason about the problem of workflow feasibility [16], which asks:
Given a set of constraints and restrictions on admissible authorization policies, does there exist
an authorization policy from which we can construct a valid plan? Their work was undertaken
in the context of the relationship-based access control model [14], in which the “shape” of au-
thorization policies is restricted, and does not explore fully the possibility of using constraints
expressions to solve the “classical” workflow satisfiability problem.

It is widely accepted that it is useful to have conditional branching in workflow specifica-
tions [20, 22]. However, there is very little prior work on the workflow satisfiability problem,
or its complexity, for conditional workflows. Khan’s master’s thesis includes work on existential
satisfiability (what we have called weak satisfiability) and universal (strong) satisfiability [15,
Chapter 8] but does not consider fixed parameter tractability.

6.2 Future Work

There are a number of opportunities for future work. Crampton et al. studied the workflow
satisfiability problem in the presence of constraints specified using an equivalence relation ∼
defined on U [12]. The relation ∆ may be viewed as an equivalence relation, in which each
equivalence class is a single user. We would like to investigate whether our methods can be
extended to solve WSP(=, 6=,∼,≁), where ∼ is not equal to ∆. This is a non-trivial problem
as we cannot use our trick of considering only those steps for which there are fewer than k
authorized users. A second problem we would like to consider is the optimal workflow-aware
authorization administration problem, which determines whether it is possible to modify the
authorization relation, subject to some bound on the “cost” of the changes, when the workflow
is unsatisfiable [7]. Finally, we would like (a) to remove the restriction that (S,E) is an ayclic
graph, so that we can model sub-workflows that can be repeated, and (b) to include inclusive
gateways [22], allowing for one or more sub-workflows to be executed. Both of these extensions
can be readily modeled using execution sets (or multisets). If, for example, S1 and S2 are
execution sets for W1 and W2, respectively, then S1, S2 and S1 ∪ S2 are execution sets for
W1 +W2, where + indicates inclusive-or composition.
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A Proofs

Proof of Corollary 6. For WSP2(=, 6=), in the worst case, each constraint has the form (ρ, s, S′),
with s 6∈ S′. Hence, the number of Type 2 constraints can be no greater than k2k−1. It now
follows from Theorem 5 that WSP2(=, 6=) is FPT. For WSP3(=, 6=), in the worst case, each
constraint has the form (ρ, S′, S′′). Thus, noting that (ρ, S′, S′′) is equivalent for WSP3(=, 6=),
the number of Type 3 constraints can be no greater than 2k ·2k = 22k, from which it follows that
WSP3(=, 6=) is FPT.

Proof of Proposition 8. The result follows by noting that determining strong satisfiability re-
quires us to check whether all ♯(W ) derived instances of W are satisfiable, while determining
weak satisfiability requires us to check whether at least one derived instance is satisfiable. The
complexity, in the worst case, is the same. The complexity of checking a single instance is
(k′ − 1)k

′

, where k′ is the number of steps in the derived instance. The result now follows.

Proof of Theorem 9. First observe that may disregard the ‖ operator in computing an upper
bound on ♯(W ). To see this, note that the parallel operator requires, like the serial operator,
that all steps in the sub-workflows are performed. In particular, an execution set for workflow
W1 ‖W2 has the form S1 ∪ S2, where Si is an execution set for workflow Wi.

Recall ⊕i represents the xor composition of i steps and ♯(⊕i ;⊕j) = ♯(⊕j ;⊕i) = ij.
We proceed by induction on k. For k = 2, we may construct

⊕1 ;⊕1 and ⊕2,

thus the result holds for k = 2. For k = 3, we may construct three different workflows:

⊕1 ;⊕1 ;⊕1, ⊕1 ;⊕2, and ⊕3,

thus the result holds for k = 3. Finally, for k = 4, we may construct

⊕1 ;⊕1 ;⊕1 ;⊕1, ⊕1 ;⊕1 ;⊕2, ⊕1 ;⊕3, ⊕2 ;⊕2 and ⊕4,

thus the result holds for k = 4.
Now consider k > 4 steps and suppose the result holds for all workflows constructed from

k − 1 or fewer steps. Then for any split of k into workflows W1 and W2 comprising k1 and k2
steps, respectively, such that k1 + k2 = k, we may form W1 ;W2 or W1 ⊕W2. Clearly, for k > 4,
♯(W1 ;W2) > ♯(W1 ⊕W2). Moreover, ♯(W1 ;W2) = ♯(W1) · ♯(W2).

First consider the case k = 3a and let ki = 3ai + bi, i = 1, 2, with bi ∈ {0, 1, 2}. We assume
(without loss of generality) that b1 6 b2. If b1 = b2, then k1 and k2 are divisible by 3 and
♯(Wi) 6 3ai by the inductive hypothesis, whence

♯(W ) = ♯(W1) · ♯(W2) 6 3a1 · 3a2 = 3a.

If b1 = 1 and b2 = 2, then we have a1 + a2 = a− 1 and

♯(W ) = ♯(W1) · ♯(W2) 6 4 · 3a1−1 · 2 · 3a2 = 8 · 3a−2 < 3a

and the result holds.
Now consider the case k = 3a + 1. If b1 = 0, then b2 = 1 and a1 + a2 = a. Hence, by the

inductive hypothesis, we have

♯(W ) 6 3a1 · 4 · 3a2−1 = 4 · 3a−1,
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as required. If b1 = b2, then we have bi = 2 and a1 + a2 = a − 1. Hence, by the inductive
hypothesis, we have

♯(W ) 6 2 · 3a1 · 2 · 3a2 = 4 · 3a−1,

as required.
Finally, consider the case k = 3a+ 2. If b1 = 0, then b2 = 2 and a1 + a2 = a. Hence, by the

inductive hypothesis, we have

♯(W ) 6 3a1 · 2 · 3a2 = 2 · 3a,

as required. If b1 = b2, then bi = 1 and a1 + a2 = a. Hence, we have

♯(W ) 6 16 · 3a1+a2−2 =
16

9
· 3a < 2 · 3a.

as required.

Proof of Proposition 14. An instance of OWSP1 contains a set of constraints C and we may as-
sume that C contains at least two constraints of the form (ρi, s, s

′) and (ρj , s
′, s) with ρi 6= ρ̃j . (If

no such constraints exist then OWSP1(ρ1, . . . , ρt) is identical to an instance of WSP1(ρ1, . . . , ρt).)
Observe that the number of linear extensions of (S,6) (and hence possible execution schedules)
is determined only by k. Specifically, the number of linear extensions is no greater than k!. Note
also that in any execution of the workflow, either s precedes s′ or vice versa. Hence each linear
extension allows us to discard either (ρi, s, s

′) or (ρj , s
′, s) (since exactly one of them will be

irrelevant to the schedule defined by the linear extension), thus defining an instance of WSP
that contains fewer constraints than the original problem. In other words, we may consider our
instance of OWSP1 to be the disjunction of k! instances of WSP1. If each instance of WSP1 is
FPT, we can solve each of these instances, thus solving the original instance of OWSP1.

Proof of Theorem 15. A Type 1 constraint (ρ, s, s′) is satisfied by a plan α if (α(s), α(s′)) ∈ ρ and
is not satisfied (“violated”) otherwise. In other words, (ρ, s, s′) is violated by α if (α(s), α(s′)) 6∈ ρ.
Equivalently, a constraint (ρ, s, s′) is violated iff (ρ, s, s′) is satisfied, where

ρ
def
= {(u, u′) ∈ U × U : (u, u′) 6∈ ρ} .

A Type 2 constraint (ρ, s, S′), S′ ⊆ S is violated if (ρ, s, s′) is violated for all s′ ∈ S′. In other
words, (ρ, s, S′) is violated iff the constraint expression

∧

s′∈S′

(ρ, s, s′)

is satisfied. Similarly, a Type 3 constraint (ρ, S′, S′′) is violated iff the constraint expression

∧

s′∈S′,s′′∈S′′

(ρ, s′, s′′)

is satisfied. Finally a set of constraints {c1, . . . , ct} is violated if at least one ci is violated. In
other words, we can determine whether there exists a plan that violates a set of constraints by de-
termining if there exists a plan α that satisfies a constraint expression in disjunctive normal form,
where each clause is a conjunction of Type 1 constraints. We make the following observations.

• There are no more than c disjuncts, where c is the number of constraints in the original
workflow specification.
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• A Type 2 constraint, when rewritten in the above way, gives rise to a conjunction of no
more than k − 1 Type 1 constraints, while a Type 3 constraint gives rise to no more than
k2 Type 1 constraints.

• There can be no more than k2k Type 2 constraints in a workflow specification and no more
than 4k Type 3 constraints.

• ∆ is ∆c and ∆c is ∆.

• By Theorem 5, the time taken to solve WSP1(∆,∆c) (that is, WSP1(=, 6=)) is O(c(k −
1)k + kn), where c is the number of constraints.

Therefore, there exists an FPT algorithm to determine whether there exists a plan π in which
each user is authorized and a constraint that π does not satisfy, since we need only find a single
disjunct that is true, and each disjunct represents a workflow specification containing only Type
1 constraints. The time taken to solve this new problem is O(k2k−1((k − 1)k+1 + kn)) for Type
2 constraints and O(4k(k(k − 1)k+1 + kn)) for Type 3 constraints.
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