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ABSTRACT 
FPGA-based accelerators have repeatedly demonstrated superior 
speed-ups on an ever-widening spectrum of applications. 
However, their use remains beyond the reach of traditionally 
trained applications code developers because of the complexity of 
their programming tool-chain. Compilers for high-level languages 
targeting FPGAs have to bridge a huge abstraction gap between 
two divergent computational models: a temporal, sequentially 
consistent, control driven execution in the stored program model 
versus a spatial, parallel, data-flow driven execution in the spatial 
hardware model. In this paper we discuss these challenges to the 
compiler designer and report on our experience with the ROCCC 
toolset. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]]: Processors—Retargetable 
compilers; optimizations; B.5.2 [Register-Transfer-Level 
Implementation]: Design Aids 

General Terms 
Algorithms, Design, Performance. 

Keywords 
FPGAs. Compiler. Hardware Accelerators. 

1. INTRODUCTION 
In recent years we have witnessed a dramatic widening of the 
scope of use of FPGAs as computing devices. It is driven by a 
variety of factors including their larger size enabling a very large 
degree of parallelism, a richer set of embedded functionalities 
(RAM, DSP etc.), high efficiency, as compared to software, 
coupled with re-programmability, lower energy per task, high I/O 
bandwidth that eliminates the need for memory off-loading of 
data, etc. A general-purpose use of FPGAs as accelerators was 
already described a few years after the introduction of the first 
device [2]. However, the main obstacle facing a wider use of 
FPGAs as code accelerators is their poor programmability using 
high-level programming languages (HLL). The challenge lies in 
the translation of a stored-program machine, the high-level 
language, to a spatial and parallel computing structure with no 
instruction set architecture and no pre-determined control 
structures. 

In this paper we revisit the earliest documented use of FPGAs as 

code accelerators and discuss various aspects of the challenge of 
compiling HLLs to accelerators mapped onto FPGAs (Section 2). 
Section 3 describes the difficulties inherent in bridging the 
abstraction gap between high-level languages and hardware 
circuits.  In Section 4 we describe the ROCCC (Riverside 
Optimizing Compiler for Configurable Computing) [3] approach 
to compiling code accelerators for FPGAs. The programming 
model and code optimizing features of ROCCC are described in 
Section 5 with an emphasis on its use for high-level design space 
exploration.  

2. THE HISTORICAL PERSPECTIVE 
The first documented use of FPGAs as code accelerators 
appeared, to our knowledge, just four years after the introduction 
of the first SRAM-based FPGA device (Xilinx, 1985). The PAM 
(Programmable Active Memory) [2], built at the DEC Paris 
Research Lab, is described as “universal hardware co-processor 
closely coupled to a standard host computer.” Ten benchmark 
codes were implemented and evaluated on PAM [3], including: 
long multiplication, RSA cryptography, Ziv-Lempel compression, 
edit distance calculations, heat and Laplace equations, N-body 
calculations, binary 2D convolution, Boltzman machine model, 
3D graphics (including translation, rotation, clipping and 
perspective projection) and discrete cosine transform. The 
authors’ conclusions were that PAM delivered a performance 
comparable to that of ASIC chips or supercomputers, of the time, 
and was one to two orders of magnitude faster than software. 
They also state that because of the PAM’s large off-chip I/O 
bandwidth (6.4 Gb/s) it was ideally suited for “... on-the-fly data 
acquisition and filtering, ...” 

What has changed in the nearly 25 years since the first PAM? 
FPGAs are much larger and faster; the application domains have 
grown in scope following the growth in size and speed of the 
devices. However, the main challenge to FPGAs as code 
accelerators, namely the abstraction gap between application 
development and FPGA programming, not only remains un- 
changed but has probably gotten worse due to increase in 
complexity of the applications enabled by the larger device sizes. 

3. THE ABSTRACTION GAP  
In this section we discuss two issues that define the complexity of 
compiling HLLs to hardware circuits: (1) the semantic gap 
between the sequential stored-program execution model implicit 
in these languages and (2) the effects of virtualization, or lack 
thereof, on the complexity of the compiler. 

3.1 Semantics of the Execution Model 
CPUs and GPUs are inherently stored-program machines (or von 
Neumann machines) and so are the programming languages used 
on these, essentially most of the languages in use today. As such 
they are bound by the sequential consistency of that model, both 
at the language and machine levels. While CPU and GPU 
architectures exploit various forms of parallelism, instruction, data 
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and thread-level, they do so circumventing the sequential 
consistency implied in the source code internally (branch 
prediction, out-of-order execution, SIMD parallelism, etc.), while 
preserving the appearance of a sequentially consistent execution 
externally (reorder buffers, precise interrupts etc.). Von Neumann, 
or imperative, languages are even more constrained by sequential 
consistency: sequential execution, pre-determined control flow 
structures, etc. The compiling of a HLL code to a CPU or GPU is 
therefore the translation from one stored program machine model, 
the HLL, to another, the machine’s ISA. A digital circuit, on the 
other hand, is inherently parallel, spatial, with distributed storage, 
timed behavior etc. the abstraction and semantic gap between the 
hardware and software computing models is summarized in Table 
1. Translating a HLL to a circuit requires a transformation of the 
sequential to a spatial/parallel, with the creation of custom 
sequencing, timed synchronizations, distributed storage, 
pipelining, etc. 

Table 1. Features of hardware and software computing 
models 

 Stored Program Spatial Computing 

Storage & 
data access 

Central, large, 
virtualized. 
Memory resident, 
multi-level caches 

Distributed, small, 
physical. Streaming, 
limited memory and 
caching. No 
virtualization 

Parallelism Dynamic - separate 
ILP, DLP, TLP 

Static - combined ILP, 
DLP, TLP 

Sequencing Central, static, 
appearance of SC 

Data-flow, 
asynchronous 

Data-Path 

Pre-designed, one 
size fits all. 
Dynamic data 
dependencies 

Customized, very deep 
pipelines. No dynamic 
data dependencies 

 

Raising the abstraction level of FPGA programming to that of 
CPU or GPU programming is a daunting task that is yet to be 
fully completed. It is of critical importance in the programming of 
accelerators as opposed to the high-level design of arbitrary 
digital circuit, which is the focus of high- level synthesis. 

Code accelerators differ from general purpose logic design in one 
important way: the starting point of logic design is a device whose 
behavior is specified by a hardware description code implemented 
in a hardware description language (HDL) such as VHDL, 
Verilog, SystemC, SystemVerilog, or Bluespec. The starting point 

of a code accelerator is an existing software application a subset 
of which, being frequently executed, is translated into hardware. 
That subset is, quasi by definition, a loop nest. Hopefully that loop 
nest is parallelizable and can therefore exploit the FPGA 
resources. By focusing on loop nests, the task of compiling HLLs 
to FPGAs is simplified and opportunities for loop transformations 
and optimizations abound. This is the approach taken by the 
ROCCC compiler (Figure 1) and is described in the rest of this 
paper. 

3.2 Virtualization 
Virtualization is probably one of the greatest achievements of 
modern computer system design: when a CPU issues a load 
instruction to an address in memory it is not aware of its actual 
physical location: the loaded data may not be in its cache or 
physical memory, it may not even be in the same time zone as the 
CPU! Thanks to multiple layers of hardware and software support, 
the world of the CPU is a single dimensional memory as large as 
its address space1. Obviously, this storage model is a perfect fit to 
the one implicit in all commonly used HLLs: one large flat array 
of bytes. 
FPGA-based accelerators do not enjoy, yet, such sophisticated 
levels of virtualization. Rather, the compiler must be aware of all 
data placements, on and off-chip, and actively manage the 
interfaces to one or more memory modules as well as data 
streaming interfaces (e.g. PCI, USB, Ethernet etc.). Furthermore, 
most HLLs do not support streams as programming constructs or 
indications of physical data locations. The compiler must 
therefore manage the data location, both off and on-chip, with no 
support in the HLL, through pragmas or GUI-based indications 
from the user. 
Each of these interfaces, to physical memories or streams, implies 
a preset data width, addressing modality (bursts or singletons) and 
mapping to a single or multiple data channels on the circuit. None 
of these parameters is supported in the HLL let alone in the 
intermediate representation (IR) the compiler uses to generate the 
code. On a CPU, or GPU, all data values entering the data-path 
come from the L1 cache with a pre-determined timing pattern. 
Consider a loop body that accesses four arrays, or streams, from 
two separate memory modules and two streams. Its data-path on 
an FPGA requires four physical data interfaces each with its own 
timing patterns that could raise very significant timing and 
synchronization issues. 

4. THE ROCCC APPROACH 
As mentioned above, the objective of ROCCC [1] is the 
generation of efficient customized hardware accelerators for 
frequently executing code segments, namely loop nests. Its target 
audience is application code developers with hardly any training 
as hardware designers. The objective being to make FPGA-based 
code accelerators accessible to a wider spectrum of users. As 
such, ROCCC is not a general-purpose high-level logic design 
tool, rather its focus is on generating hardware accelerators from 
existing C codes with minimal modifications to the source code. 
The same code can be compiled for software execution or 
translated to hardware. 

The ROCCC compiler supports an extensive set of loop 
optimizations and transformations. One of the driving 
                                                                    
1 This has not always been the case; there was a time when users, 

or compilers, had to actively manage the memory allocation of 
data and code. 

 
Figure 1: The programming abstraction gap between 

HLLs and FPGAs. The ROCCC approach focuses on a 
subset of C to generate code accelerators 

 



philosophies of ROCCC is that there should be one source code 
description of an accelerator that could be compiled, using 
different transformations, into multiple hardware 
implementations. All transformations are therefore done in the 
GUI by the user, and not by re-implementing the source code. 
Users are given the flexibility to choose which optimizations and 
transformations to perform, on each individual loop and exactly 
how to apply them to different parts of their application. Control 
of optimizations is given to the user as options in the GUI and 
each can have a dramatic effect on the generated hardware 
[7][5][4]. It would have been possible, in some limited instances, 
to let the compiler automatically decide which transformations 
should be applied. This would imply having, in the compiler, 
knowledge of all possible FPGA platforms, i.e. system and board 
architectures, current and future. 

The objectives of ROCCC in generating code accelerators is 
maximizing throughput through (1) parallelism, (2) minimizing 
the area occupied by the circuit, (3) the reuse of data fetched off-
chip [6] and (4) pipelining to reduce clock cycle time. ROCCC 
favors throughput over space, so, under user control, it could 
generate as much hardware as necessary to maximize parallelism. 
The data-path generated is purely data driven with no FSM 
created for resource sharing: data is pushed onto the top and flows 
through without any control. There is minimal control logic 
generated to keep track of which pipeline stages are active so the 
hardware can output values at the correct clock cycle. 

4.1 The ROCCC Programming Model 
ROCCC code is a subset of C. All ROCCC code can be com- 
piled and run with a normal software compiler such as gcc and 
will generate the same output as the ROCCC-generated hardware 
from the same source. The limitations of ROCCC, compared to C, 
are (1) no recursion, (2) no arbitrary use of pointers that the 
compiler cannot un-alias statically. The use of dynamic pointers 
inside loop bodies would result in multiple memory de-
referencing accesses being serialized, for consistency reasons, and 
would eliminate the parallelism. 

4.1.1 Bottom-up design and code reuse 
Just as in software construction, designs for hardware accelerators 
can benefit from opportunities for code reuse and raising the 
abstraction level. ROCCC is designed to support a modular 
approach to hardware accelerator design, enabling reuse of 
components and ease of design space exploration [8][9]. 

C code compiled by ROCCC falls under one of two categories: 
modules or systems. Both modules and systems are represented in 
C as a function call and can be compiled with gcc to perform the 
same operations in software as in hard- ware. 

Module code describes components, which perform a computation 
on scalar inputs and generate a set of scalar outputs. They are 
translated into pipelined hardware structures that can take a set of 
inputs every clock cycle and generate a set of outputs every clock 
cycle. Each module is itself a complete hardware implementation 
and may be used by itself as a complete design, or may be 
included as a component in larger modules or systems. 

Each module may have different optimizations performed in order 
to best suit the user’s specific needs with regard to clock speed or 
area. Modules included in larger designs are treated as black 
boxes by the compiler so as not to affect any implementation 
decisions made at the lower level. Treating module instantiations 
as black boxes could obscure some optimization opportunities, so 
inlining is given as an option if the user wants to take advantage 

of coding at a higher level but has no fixed requirement for the 
low level components. All modules and systems are stored in a 
database, supported in the GUI, from where the user can drag and 
drop them in other projects. An example module that sorts two 
values is shown in Figure 2. In C, this code takes two integers and 
returns two integers in sorted order. When compiled with 
ROCCC, this generates a pipelined component that can take two 
integers every clock cycle and generated two sorted integers every 
clock cycle. The generated hardware is purely computational and 
consists of a pipeline that performs a comparison and two 
multiplexors. 

System code describes computational kernels that may apply large 
amounts of computation on input streams of data and generate 
output streams of data. Streams connections in hardware are 
inferred from array accesses in C. Figure 3 shows an example 
system that performs the Median filter operation on a 3x3 window 
of an NxN stream. The call to BitonicSort9 is a function call in C, 
but is translated into an instantiation of the BitonicSort9 module 
and placed in a pipeline when converted to hardware. The 
BitonicSort9 module is not shown, but is constructed by 

instantiating many copies of the BitonicSort2 module in a 
butterfly network. An input stream and an output stream are 
inferred from the parameters A and Out respectively, and result in 
hardware that communicates with memory in order to feed the 
pipeline elements from A and stores output to Out. 

The generated data-path with no optimizations specified requires 
nine elements from A each clock cycle in order to generate one 
output each clock cycle. The first iteration, all of these values 
must be fetched from memory, but subsequent iterations only 
need fetch three new elements from memory and can reuse six 
elements. 

The parameter N to the function in Figure 3 is translated into an 
input scalar. A connection is made in the generated hardware to a 
register that is read once at the beginning of execution and then 
kept constant. 

void BitonicSort2(int a, int b, int& o1, int& o2) 
{ if (a < b) { o1 = a; o2 = b;} 
   else {o1 = b; o2 = a;} } 

Figure 2: Bitonic sort module for two numbers 
 

#include "roccc-library.h" 
void MedianFilter(int** A, int N, int** Out) { 
  int i, j ; 
  int s1, s2, s3, s4, s5, s6, s7, s8, s9 ; 
  for (i = 0 ; i < N ; ++i) { 
    for (j = 0 ; j < N ; ++j) { 
      BitonicSort9(A[i][j], A[i][j+1], 
                   A[i][j+2], A[i+1][j], A[i+1][j+1], 
                   A[i+1][j+2], A[i+2],[j], A[i+2][j+1], 
                   A[i+2][j+2], s1, s2, s3, s4, s5, 
                   s6, s7, s8, s9) ; 
      Out[i][j] = s4; } } } 

Figure 3: Median filter on a 3X3 window using the 
bitonic sort module 



4.1.2 Data types 
In addition to the standard C data types (char, int, long, float, 
double) ROCCC supports variable bit width data types both 
integer and fixed-point. 

ROCCC does not assume a fixed target data-path width so 
operations such as addition and multiplication do not need to be 
truncated after every step. The user can elect to maximize 
precision or adopt a C-like truncation model. For example, the 
addition of two eight-bit numbers in software will result in an 
eight-bit value, but in the generated hardware the result can be 
stored and used as a nine-bit value. Floating-point operations are 
assumed to be present in software, but require hardware 
components. Different FPGA platforms may have varying levels 
of support for floating point operations and since the hardware 
generated is not specific to a certain platform, there can be no 
assumptions made about the target platform’s resources. As a 
solution, ROCCC gives the user the ability to manage a library of 
intrinsics, which include floating point operations and integer 
division. These libraries are reflections of hardware libraries such 
as cores generated by Xilinx Core Generator [12] and generate 
connections to include platform specific cores to handle the 
floating-point operations. Changing the libraries can affect the 
performance of the hardware, but is purely done through the GUI 
and has no effect on the source code. 

ROCCC supports user-defined tables to be accessed by the data-
path in some instances. These can be read-only or random access. 
Some operations are more efficient when implemented as a look-
up table rather than an actual circuit; division is used as an 
example later in this paper. These tables are implemented using 
BRAMs when available. Random access tables may be written 
once per loop iteration but may be read as many times as 
necessary in each loop iteration. 

4.1.3 Importing external modules 
In many cases the development of hardware accelerators re- 
quires IP that was created outside the scope of the project and 
must be integrated into a larger design. Just as ROCCC is 
designed to integrate modules into larger designs, external IP can 
be imported and instantiated. Importing external IP requires the 
user provide a description of the inputs, outputs, and latency of 
the core through the GUI. A wrapper with default parameters such 
as stall and done signals connects the external IP to the generated 
data-paths. Calling external IP is identical to a module 
instantiation and appears as a function call in C. External IP calls, 
as well as module instantiations, can be inserted into application 
code directly through the GUI. 

4.2 Transformations and Optimizations 
A major goal of ROCCC is to enable the exploration of large 
design spaces through the tuning of optimizations on unchanging 
source code. Two types of transformations are exposed to the user 
in the GUI that facilitates design space exploration: High-level 
transformations control the overall structure of the generated 
hardware and can be used to create different memory 
configurations. These include inlining of modules, redundancy, 
loop optimizations, temporal common subexpression elimination, 
and systolic array generation. Low-level transformations control 
the utilization of the underlying hardware. These include 
pipelining control and fan-out tree generation. 

Loop unrolling typically increases parallelism but also increases 
the necessary bandwidth to sustain a high throughput as well as 
the area used. For example, if the loop in Figure 3 is unrolled once 
so that two loop bodies are performed each iteration, the 

throughput is doubled as two values are generated every clock 
cycle. However, the resulting hardware requires two new data 
elements from the A input stream every clock cycle in order to 
maintain this. ROCCC provides fine-grained control over loop 
unrolling and stream connections to a degree not normally seen. 
Individual loops can be unrolled different amounts independently 
of one another, creating memory access requirements specific to 
individual streams. 

By default, each input and output stream has one channel to 
memory through which all values must go. If there are multiple 
values generated in one clock cycle but only one output stream 
channel, the data must be serialized. The number of channels to 
memory may be configured on a stream by stream basis for each 
input and output stream. Each stream may be configured have the 
number of memory channels specified to support the highest 
possible throughput. Conversely, the streams can be tuned to read 
fewer elements per clock cycle on hardware platforms that cannot 
support the ideal bandwidth. For multidimensional streams 
support, the memory channels are further split up into address 
channels and data channels. Loop unrolling in multiple 
dimensions has different consequences on the resulting hardware 
depending on which loop is unrolled. Unrolling the outer loop 
results in more rows being fetched every clock cycle, which can 
be processed by increasing the number of data channels. Unrolling 
the inner loop, results in an increase to the size of each burst that 
is fetched but not the number of channels available. Unrolling 
either loop has the potential to increase parallelism. 

Temporal common subexpression elimination [9] identifies 
computations that are identical across consecutive iterations of a 
loop and replaces those computations with a register. This can 
drastically reduce the area requirements by eliminating large 
blocks of hardware. A consequence of this optimization is that 
some memory fetches might be determined to be unnecessary, 
changing the stream interface. 

Systolic array generation [5] completely transforms two- 
dimensional computation into a one-dimensional computation 
with much less area and high throughput. The memory 
connections of the generated hardware are changed by this 
optimization. 
Different hardware platforms have different characteristics, such 
as number of inputs per LUT, which can have an effect on the 
relative cost of individual operations. When generating a 
hardware pipeline, the decision of how many basic operations to 
put into each level of the pipe is dependent on this information. 
As the compiler has no knowledge of the underlying restrictions, 
this control is again passed to the user. 

The GUI provides both a basic slider to control the pipeline 
construction and the advanced capability to specify the relative 
cost of each basic operation on the underlying platform. Without 
changing the source code, many different pipelines can be created 
exploring the tradeoff of clock speed versus latency and area. 

Another characteristic that differs from device to device is the 
amount of routing resources. While high fan-out is to be avoided 
in general, the specific limit on the amount of fan-out per element 
is platform specific. Again, this control is given to the user in 
order to control potential routing issues at the high level without 
rewriting the application. 

5. DESIGN SPACE EXPLORATION 
In this section we examine the effect of the high and low level 
transformations on clock speed and area on a concrete hardware 



platform.  The implementations were synthesized and placed and 
routed for a Xilinx Virtex 6 LX760 FPGA. 
Median Filter – Loop Unrolling and Throughput.  

Shown in Figure 3, the median filter works on a 3x3-sliding 
window of 8-bit data over a large 2D array.  The 8-bit data is 
meant to be representative and not restrictive, similar results can 
be achieved for other bit widths.  It uses the bitonic sort module 
(Figure 2) and has 50 cycles latency.  The application is 
synthesized, placed and routed on the Xilinx Virtex 6 LX760, 
with a generic wrapper consisting of two sets of dual clock 
BRAMs connected to the I/O pins and acts as input and output to 
the ROCCC generated code. 
Results for Median Filter are shown in Table 2.  Each row shows 
the effect on area, clock speed, throughput, and throughput per 
unit area resulting from unrolling the outer loop and adjusting the 
input and output memory channels appropriately.  Throughput per 
unit area is reported in MB/s/slice and represents the gain in 
throughput with respect to the amount of area added with each 
transformation. 

Table 2: Impact of loop unrolling on Median Filter 

In/Out 
Channels 

Clock 
(MHz) 

Area 
(slices) 

Throughput 
(MB/s) 

Through
put / area 

1/1 225 735 75 0.102 

3/1 225 766 225 0.294 

4/2 225 1215 450 0.370 

8/6 200 3160 1200 0.380 

The first row of Table 2 represents the base configuration, where 
no transformations have taken place and the code was compiled 
with the default options.  In this case ROCCC generates hardware 
that has only one input channel and one output channel.  Before 
any input can be processed, the hardware has to read three 
elements from the one input channel, which takes three clock 
cycles, effectively cutting the throughput into one third of its 
potential. 

The second row shows the effect of specifying three input 
memory channels with no other transformations.  This allows all 
the necessary data to be read in one clock cycle, allowing the 
output to be generated every clock cycle resulting in a tripling of 
throughput.  The area is slightly larger as the hardware has to deal 
with multiple connections, but some internal hardware 
components that serialized the incoming data are actually 
simplified in this implementation leading to a small increase in 
area. 

The third and fourth row show the effect of unrolling the outer 
loop once and six times, corresponding to connecting to an 
interface of 32-bits and 64-bits respectively.  Each unrolling 
allows the number of input and output channels to increase and 
still produce all output every clock cycle, resulting in a large 
increase in throughput and maximizing the throughput per unity 
area for this experiment. 
Average Filter – Lookup Tables and Arithmetic Cores. 

Average Filter computes the average of each 3x3-sliding window 
in the input array.  We compare two versions where the division is 
either implemented as a look-up table or as an instantiation of an 
IP core generated by Xilinx Core Generator.  Results are shown in 
Table 3. 
For all transformations the achievable clock speed was 225 MHz. 
Again, the first row shows the default configuration with one 

input and one output, the second row shows three input channels 
but no transformations, and the third and fourth row show the 
configuration of unrolling the outer loop once and six times to 
interface with a 32-bit and 64-bit interface.  In addition to loop 
transformations, the Average Filter example was synthesized 
using both a ROCCC compiled look up table (as reported in the 
column labeled Area Table) and an integer division core 
generated (as reported in the column labeled Area Divider). 

Table 3: Average Filter implementations using table lookup or 
integer division core (clock in both cases is 225 MHz) 

In/Out 
Channels 

Area 
Table 
(slices) 

Area 
Divider 
(slices) 

Throughput 
(MB/s) 

Through
put / area 

1/1 218 283 75 0.344 

3/1 225 275 225 1.00 

4/2 253 351 450 1.78 

8/6 498 826 1350 2.71 

The results of these transformations provide similar throughput 
while the Table implementation takes less area, even when 
unrolling causes duplication of the table to support multiple reads 
per clock cycle.  The throughput per unit area reported in Table 3 
is reported for the Table implementation, which is the more space 
efficient design.  Using lookup tables and unrolling the loop 
provides nearly 8X improvement in terms of throughput per unit 
area over the default case. 
Max Filter – Temporal Common Sub-expression Elimination. 

Max Filter computes the maximum value in a sliding 3x3 window 
on a 2D array (image) of height x width as shown in Figure 4.  We 
use it to show the impact of temporal common sub-expression 
elimination (TCSE), when combined with loop unrolling, in area 
and throughput. 

The results are shown in Table 4.  The original implementation, 
with no optimizations, is in the first row and has three input 
channels and generates one output element every clock cycle.  It 
consists of four Max modules taking up 311 slices.  When TCSE 
is applied, two of these components are removed and only one 
new data element is needed each cycle resulting in a lower area 
for the same throughput. 
 The third row of Table 4 shows the results when the outer loop is 
unrolled five times, taking in seven elements each clock cycle and 
generating five outputs. Applying TCSE (fourth row) results in 
smaller area, increased in clock speed and two variables being 

reused across iterations requiring only five input elements every 

void MaxFilterSystem(int** A, int N, int** Out) { 
  int i, j ; 
  int maxCol1, maxCol2, maxCol3, winMax ; 
for (i = 0 ; i < N ; ++i) { 
    for (j = 0 ; j < N ; ++j) { 
       MaxFilter(A[i][j], A[i][j+1], A[i][j+2], maxCol1); 
       MaxFilter(A[i+1][j],A[i+1][j+1],A[i+1][j+2], maxCol2); 
       MaxFilter(A[i+2][j],A[i+2][j+1],A[i+2][j+2], maxCol3); 
       MaxFilter(maxCol1, maxCol2, maxCol3, winMax); 
      Out[i][j] = winMax ; } } } 

Figure 4: Max filter on a 3X3 window 



clock cycle. Assuming the necessary memory bandwidth is 
available, this exploration shows that a 48% increase in area 
results in 5X higher throughput and a 3.38X higher throughput per 
unit area. 

 Table 4: Impact of TCSE on Max Filter with loop unrolling 

 
6. CONCLUSION 
The automatic translation of programs written in HLLs to FPGA-
based hardware accelerators is a daunting task. These tools have 
to (1) overcome a large semantic gap between temporal, 
sequential and control driven programs and spatial, parallel and 
data/event driven circuits; and (2) without any of the 
virtualizations commonly available with CPUs and GPUs. In this 
paper we describe the ROCCC C to VHDL compilation tool, one 
of over 40 similar tools developed in academia and industry. The 
focus of ROCCC is on compiling a subset of C into hardware 
accelerators while providing an extensive set of compiles time 
transformations and optimizations under user control via a GUI-
based console. We report the experimental evaluation of the 
impacts of some of these transformations on the circuit costs 
(area) and performance (throughput). 
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In/Out 
Channels 

Clock 
(MHz) 

Area 
(slices) 

Through
put 

(MB/s) 

Through
put / area 

3/1 225 311 225 0.723 

1/1 with 
TCSE 

225 266 225 0.846 

7/5 220 526 1100 2.092 

5/5 with 
TCSE 

225 460 1125 2.446 


