
FPGA Code Accelerators - The Compiler Perspective
Walid Najjar

University of California Riverside
Computer Science & Engineering

najjar@cs.ucr.edu

Jason Villarreal
Jacquard Computing Inc.

Riverside, CA
jason@jacquardcomputing.com

ABSTRACT
FPGA-based accelerators have repeatedly demonstrated superior
speed-ups on an ever-widening spectrum of applications.
However, their use remains beyond the reach of traditionally
trained applications code developers because of the complexity of
their programming tool-chain. Compilers for high-level languages
targeting FPGAs have to bridge a huge abstraction gap between
two divergent computational models: a temporal, sequentially
consistent, control driven execution in the stored program model
versus a spatial, parallel, data-flow driven execution in the spatial
hardware model. In this paper we discuss these challenges to the
compiler designer and report on our experience with the ROCCC
toolset.

Categories and Subject Descriptors
D.3.4 [Programming Languages]]: Processors—Retargetable
compilers; optimizations; B.5.2 [Register-Transfer-Level
Implementation]: Design Aids

General Terms
Algorithms, Design, Performance.

Keywords
FPGAs. Compiler. Hardware Accelerators.

1. INTRODUCTION
In recent years we have witnessed a dramatic widening of the
scope of use of FPGAs as computing devices. It is driven by a
variety of factors including their larger size enabling a very large
degree of parallelism, a richer set of embedded functionalities
(RAM, DSP etc.), high efficiency, as compared to software,
coupled with re-programmability, lower energy per task, high I/O
bandwidth that eliminates the need for memory off-loading of
data, etc. A general-purpose use of FPGAs as accelerators was
already described a few years after the introduction of the first
device [2]. However, the main obstacle facing a wider use of
FPGAs as code accelerators is their poor programmability using
high-level programming languages (HLL). The challenge lies in
the translation of a stored-program machine, the high-level
language, to a spatial and parallel computing structure with no
instruction set architecture and no pre-determined control
structures.

In this paper we revisit the earliest documented use of FPGAs as

code accelerators and discuss various aspects of the challenge of
compiling HLLs to accelerators mapped onto FPGAs (Section 2).
Section 3 describes the difficulties inherent in bridging the
abstraction gap between high-level languages and hardware
circuits. In Section 4 we describe the ROCCC (Riverside
Optimizing Compiler for Configurable Computing) [3] approach
to compiling code accelerators for FPGAs. The programming
model and code optimizing features of ROCCC are described in
Section 5 with an emphasis on its use for high-level design space
exploration.

2. THE HISTORICAL PERSPECTIVE
The first documented use of FPGAs as code accelerators
appeared, to our knowledge, just four years after the introduction
of the first SRAM-based FPGA device (Xilinx, 1985). The PAM
(Programmable Active Memory) [2], built at the DEC Paris
Research Lab, is described as “universal hardware co-processor
closely coupled to a standard host computer.” Ten benchmark
codes were implemented and evaluated on PAM [3], including:
long multiplication, RSA cryptography, Ziv-Lempel compression,
edit distance calculations, heat and Laplace equations, N-body
calculations, binary 2D convolution, Boltzman machine model,
3D graphics (including translation, rotation, clipping and
perspective projection) and discrete cosine transform. The
authors’ conclusions were that PAM delivered a performance
comparable to that of ASIC chips or supercomputers, of the time,
and was one to two orders of magnitude faster than software.
They also state that because of the PAM’s large off-chip I/O
bandwidth (6.4 Gb/s) it was ideally suited for “... on-the-fly data
acquisition and filtering, ...”

What has changed in the nearly 25 years since the first PAM?
FPGAs are much larger and faster; the application domains have
grown in scope following the growth in size and speed of the
devices. However, the main challenge to FPGAs as code
accelerators, namely the abstraction gap between application
development and FPGA programming, not only remains un-
changed but has probably gotten worse due to increase in
complexity of the applications enabled by the larger device sizes.

3. THE ABSTRACTION GAP
In this section we discuss two issues that define the complexity of
compiling HLLs to hardware circuits: (1) the semantic gap
between the sequential stored-program execution model implicit
in these languages and (2) the effects of virtualization, or lack
thereof, on the complexity of the compiler.

3.1 Semantics of the Execution Model
CPUs and GPUs are inherently stored-program machines (or von
Neumann machines) and so are the programming languages used
on these, essentially most of the languages in use today. As such
they are bound by the sequential consistency of that model, both
at the language and machine levels. While CPU and GPU
architectures exploit various forms of parallelism, instruction, data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00

najjar
ACM/IEEE Design Automation Conference (DAC) 2013

and thread-level, they do so circumventing the sequential
consistency implied in the source code internally (branch
prediction, out-of-order execution, SIMD parallelism, etc.), while
preserving the appearance of a sequentially consistent execution
externally (reorder buffers, precise interrupts etc.). Von Neumann,
or imperative, languages are even more constrained by sequential
consistency: sequential execution, pre-determined control flow
structures, etc. The compiling of a HLL code to a CPU or GPU is
therefore the translation from one stored program machine model,
the HLL, to another, the machine’s ISA. A digital circuit, on the
other hand, is inherently parallel, spatial, with distributed storage,
timed behavior etc. the abstraction and semantic gap between the
hardware and software computing models is summarized in Table
1. Translating a HLL to a circuit requires a transformation of the
sequential to a spatial/parallel, with the creation of custom
sequencing, timed synchronizations, distributed storage,
pipelining, etc.

Table 1. Features of hardware and software computing
models

 Stored Program Spatial Computing

Storage &
data access

Central, large,
virtualized.
Memory resident,
multi-level caches

Distributed, small,
physical. Streaming,
limited memory and
caching. No
virtualization

Parallelism Dynamic - separate
ILP, DLP, TLP

Static - combined ILP,
DLP, TLP

Sequencing Central, static,
appearance of SC

Data-flow,
asynchronous

Data-Path

Pre-designed, one
size fits all.
Dynamic data
dependencies

Customized, very deep
pipelines. No dynamic
data dependencies

Raising the abstraction level of FPGA programming to that of
CPU or GPU programming is a daunting task that is yet to be
fully completed. It is of critical importance in the programming of
accelerators as opposed to the high-level design of arbitrary
digital circuit, which is the focus of high- level synthesis.

Code accelerators differ from general purpose logic design in one
important way: the starting point of logic design is a device whose
behavior is specified by a hardware description code implemented
in a hardware description language (HDL) such as VHDL,
Verilog, SystemC, SystemVerilog, or Bluespec. The starting point

of a code accelerator is an existing software application a subset
of which, being frequently executed, is translated into hardware.
That subset is, quasi by definition, a loop nest. Hopefully that loop
nest is parallelizable and can therefore exploit the FPGA
resources. By focusing on loop nests, the task of compiling HLLs
to FPGAs is simplified and opportunities for loop transformations
and optimizations abound. This is the approach taken by the
ROCCC compiler (Figure 1) and is described in the rest of this
paper.

3.2 Virtualization
Virtualization is probably one of the greatest achievements of
modern computer system design: when a CPU issues a load
instruction to an address in memory it is not aware of its actual
physical location: the loaded data may not be in its cache or
physical memory, it may not even be in the same time zone as the
CPU! Thanks to multiple layers of hardware and software support,
the world of the CPU is a single dimensional memory as large as
its address space1. Obviously, this storage model is a perfect fit to
the one implicit in all commonly used HLLs: one large flat array
of bytes.
FPGA-based accelerators do not enjoy, yet, such sophisticated
levels of virtualization. Rather, the compiler must be aware of all
data placements, on and off-chip, and actively manage the
interfaces to one or more memory modules as well as data
streaming interfaces (e.g. PCI, USB, Ethernet etc.). Furthermore,
most HLLs do not support streams as programming constructs or
indications of physical data locations. The compiler must
therefore manage the data location, both off and on-chip, with no
support in the HLL, through pragmas or GUI-based indications
from the user.
Each of these interfaces, to physical memories or streams, implies
a preset data width, addressing modality (bursts or singletons) and
mapping to a single or multiple data channels on the circuit. None
of these parameters is supported in the HLL let alone in the
intermediate representation (IR) the compiler uses to generate the
code. On a CPU, or GPU, all data values entering the data-path
come from the L1 cache with a pre-determined timing pattern.
Consider a loop body that accesses four arrays, or streams, from
two separate memory modules and two streams. Its data-path on
an FPGA requires four physical data interfaces each with its own
timing patterns that could raise very significant timing and
synchronization issues.

4. THE ROCCC APPROACH
As mentioned above, the objective of ROCCC [1] is the
generation of efficient customized hardware accelerators for
frequently executing code segments, namely loop nests. Its target
audience is application code developers with hardly any training
as hardware designers. The objective being to make FPGA-based
code accelerators accessible to a wider spectrum of users. As
such, ROCCC is not a general-purpose high-level logic design
tool, rather its focus is on generating hardware accelerators from
existing C codes with minimal modifications to the source code.
The same code can be compiled for software execution or
translated to hardware.

The ROCCC compiler supports an extensive set of loop
optimizations and transformations. One of the driving

1 This has not always been the case; there was a time when users,

or compilers, had to actively manage the memory allocation of
data and code.

Figure 1: The programming abstraction gap between

HLLs and FPGAs. The ROCCC approach focuses on a
subset of C to generate code accelerators

philosophies of ROCCC is that there should be one source code
description of an accelerator that could be compiled, using
different transformations, into multiple hardware
implementations. All transformations are therefore done in the
GUI by the user, and not by re-implementing the source code.
Users are given the flexibility to choose which optimizations and
transformations to perform, on each individual loop and exactly
how to apply them to different parts of their application. Control
of optimizations is given to the user as options in the GUI and
each can have a dramatic effect on the generated hardware
[7][5][4]. It would have been possible, in some limited instances,
to let the compiler automatically decide which transformations
should be applied. This would imply having, in the compiler,
knowledge of all possible FPGA platforms, i.e. system and board
architectures, current and future.

The objectives of ROCCC in generating code accelerators is
maximizing throughput through (1) parallelism, (2) minimizing
the area occupied by the circuit, (3) the reuse of data fetched off-
chip [6] and (4) pipelining to reduce clock cycle time. ROCCC
favors throughput over space, so, under user control, it could
generate as much hardware as necessary to maximize parallelism.
The data-path generated is purely data driven with no FSM
created for resource sharing: data is pushed onto the top and flows
through without any control. There is minimal control logic
generated to keep track of which pipeline stages are active so the
hardware can output values at the correct clock cycle.

4.1 The ROCCC Programming Model
ROCCC code is a subset of C. All ROCCC code can be com-
piled and run with a normal software compiler such as gcc and
will generate the same output as the ROCCC-generated hardware
from the same source. The limitations of ROCCC, compared to C,
are (1) no recursion, (2) no arbitrary use of pointers that the
compiler cannot un-alias statically. The use of dynamic pointers
inside loop bodies would result in multiple memory de-
referencing accesses being serialized, for consistency reasons, and
would eliminate the parallelism.

4.1.1 Bottom-up design and code reuse
Just as in software construction, designs for hardware accelerators
can benefit from opportunities for code reuse and raising the
abstraction level. ROCCC is designed to support a modular
approach to hardware accelerator design, enabling reuse of
components and ease of design space exploration [8][9].

C code compiled by ROCCC falls under one of two categories:
modules or systems. Both modules and systems are represented in
C as a function call and can be compiled with gcc to perform the
same operations in software as in hard- ware.

Module code describes components, which perform a computation
on scalar inputs and generate a set of scalar outputs. They are
translated into pipelined hardware structures that can take a set of
inputs every clock cycle and generate a set of outputs every clock
cycle. Each module is itself a complete hardware implementation
and may be used by itself as a complete design, or may be
included as a component in larger modules or systems.

Each module may have different optimizations performed in order
to best suit the user’s specific needs with regard to clock speed or
area. Modules included in larger designs are treated as black
boxes by the compiler so as not to affect any implementation
decisions made at the lower level. Treating module instantiations
as black boxes could obscure some optimization opportunities, so
inlining is given as an option if the user wants to take advantage

of coding at a higher level but has no fixed requirement for the
low level components. All modules and systems are stored in a
database, supported in the GUI, from where the user can drag and
drop them in other projects. An example module that sorts two
values is shown in Figure 2. In C, this code takes two integers and
returns two integers in sorted order. When compiled with
ROCCC, this generates a pipelined component that can take two
integers every clock cycle and generated two sorted integers every
clock cycle. The generated hardware is purely computational and
consists of a pipeline that performs a comparison and two
multiplexors.

System code describes computational kernels that may apply large
amounts of computation on input streams of data and generate
output streams of data. Streams connections in hardware are
inferred from array accesses in C. Figure 3 shows an example
system that performs the Median filter operation on a 3x3 window
of an NxN stream. The call to BitonicSort9 is a function call in C,
but is translated into an instantiation of the BitonicSort9 module
and placed in a pipeline when converted to hardware. The
BitonicSort9 module is not shown, but is constructed by

instantiating many copies of the BitonicSort2 module in a
butterfly network. An input stream and an output stream are
inferred from the parameters A and Out respectively, and result in
hardware that communicates with memory in order to feed the
pipeline elements from A and stores output to Out.

The generated data-path with no optimizations specified requires
nine elements from A each clock cycle in order to generate one
output each clock cycle. The first iteration, all of these values
must be fetched from memory, but subsequent iterations only
need fetch three new elements from memory and can reuse six
elements.

The parameter N to the function in Figure 3 is translated into an
input scalar. A connection is made in the generated hardware to a
register that is read once at the beginning of execution and then
kept constant.

void BitonicSort2(int a, int b, int& o1, int& o2)
{ if (a < b) { o1 = a; o2 = b;}
 else {o1 = b; o2 = a;} }

Figure 2: Bitonic sort module for two numbers

#include "roccc-library.h"
void MedianFilter(int** A, int N, int** Out) {
 int i, j ;
 int s1, s2, s3, s4, s5, s6, s7, s8, s9 ;
 for (i = 0 ; i < N ; ++i) {
 for (j = 0 ; j < N ; ++j) {
 BitonicSort9(A[i][j], A[i][j+1],
 A[i][j+2], A[i+1][j], A[i+1][j+1],
 A[i+1][j+2], A[i+2],[j], A[i+2][j+1],
 A[i+2][j+2], s1, s2, s3, s4, s5,
 s6, s7, s8, s9) ;
 Out[i][j] = s4; } } }

Figure 3: Median filter on a 3X3 window using the
bitonic sort module

4.1.2 Data types
In addition to the standard C data types (char, int, long, float,
double) ROCCC supports variable bit width data types both
integer and fixed-point.

ROCCC does not assume a fixed target data-path width so
operations such as addition and multiplication do not need to be
truncated after every step. The user can elect to maximize
precision or adopt a C-like truncation model. For example, the
addition of two eight-bit numbers in software will result in an
eight-bit value, but in the generated hardware the result can be
stored and used as a nine-bit value. Floating-point operations are
assumed to be present in software, but require hardware
components. Different FPGA platforms may have varying levels
of support for floating point operations and since the hardware
generated is not specific to a certain platform, there can be no
assumptions made about the target platform’s resources. As a
solution, ROCCC gives the user the ability to manage a library of
intrinsics, which include floating point operations and integer
division. These libraries are reflections of hardware libraries such
as cores generated by Xilinx Core Generator [12] and generate
connections to include platform specific cores to handle the
floating-point operations. Changing the libraries can affect the
performance of the hardware, but is purely done through the GUI
and has no effect on the source code.

ROCCC supports user-defined tables to be accessed by the data-
path in some instances. These can be read-only or random access.
Some operations are more efficient when implemented as a look-
up table rather than an actual circuit; division is used as an
example later in this paper. These tables are implemented using
BRAMs when available. Random access tables may be written
once per loop iteration but may be read as many times as
necessary in each loop iteration.

4.1.3 Importing external modules
In many cases the development of hardware accelerators re-
quires IP that was created outside the scope of the project and
must be integrated into a larger design. Just as ROCCC is
designed to integrate modules into larger designs, external IP can
be imported and instantiated. Importing external IP requires the
user provide a description of the inputs, outputs, and latency of
the core through the GUI. A wrapper with default parameters such
as stall and done signals connects the external IP to the generated
data-paths. Calling external IP is identical to a module
instantiation and appears as a function call in C. External IP calls,
as well as module instantiations, can be inserted into application
code directly through the GUI.

4.2 Transformations and Optimizations
A major goal of ROCCC is to enable the exploration of large
design spaces through the tuning of optimizations on unchanging
source code. Two types of transformations are exposed to the user
in the GUI that facilitates design space exploration: High-level
transformations control the overall structure of the generated
hardware and can be used to create different memory
configurations. These include inlining of modules, redundancy,
loop optimizations, temporal common subexpression elimination,
and systolic array generation. Low-level transformations control
the utilization of the underlying hardware. These include
pipelining control and fan-out tree generation.

Loop unrolling typically increases parallelism but also increases
the necessary bandwidth to sustain a high throughput as well as
the area used. For example, if the loop in Figure 3 is unrolled once
so that two loop bodies are performed each iteration, the

throughput is doubled as two values are generated every clock
cycle. However, the resulting hardware requires two new data
elements from the A input stream every clock cycle in order to
maintain this. ROCCC provides fine-grained control over loop
unrolling and stream connections to a degree not normally seen.
Individual loops can be unrolled different amounts independently
of one another, creating memory access requirements specific to
individual streams.

By default, each input and output stream has one channel to
memory through which all values must go. If there are multiple
values generated in one clock cycle but only one output stream
channel, the data must be serialized. The number of channels to
memory may be configured on a stream by stream basis for each
input and output stream. Each stream may be configured have the
number of memory channels specified to support the highest
possible throughput. Conversely, the streams can be tuned to read
fewer elements per clock cycle on hardware platforms that cannot
support the ideal bandwidth. For multidimensional streams
support, the memory channels are further split up into address
channels and data channels. Loop unrolling in multiple
dimensions has different consequences on the resulting hardware
depending on which loop is unrolled. Unrolling the outer loop
results in more rows being fetched every clock cycle, which can
be processed by increasing the number of data channels. Unrolling
the inner loop, results in an increase to the size of each burst that
is fetched but not the number of channels available. Unrolling
either loop has the potential to increase parallelism.

Temporal common subexpression elimination [9] identifies
computations that are identical across consecutive iterations of a
loop and replaces those computations with a register. This can
drastically reduce the area requirements by eliminating large
blocks of hardware. A consequence of this optimization is that
some memory fetches might be determined to be unnecessary,
changing the stream interface.

Systolic array generation [5] completely transforms two-
dimensional computation into a one-dimensional computation
with much less area and high throughput. The memory
connections of the generated hardware are changed by this
optimization.
Different hardware platforms have different characteristics, such
as number of inputs per LUT, which can have an effect on the
relative cost of individual operations. When generating a
hardware pipeline, the decision of how many basic operations to
put into each level of the pipe is dependent on this information.
As the compiler has no knowledge of the underlying restrictions,
this control is again passed to the user.

The GUI provides both a basic slider to control the pipeline
construction and the advanced capability to specify the relative
cost of each basic operation on the underlying platform. Without
changing the source code, many different pipelines can be created
exploring the tradeoff of clock speed versus latency and area.

Another characteristic that differs from device to device is the
amount of routing resources. While high fan-out is to be avoided
in general, the specific limit on the amount of fan-out per element
is platform specific. Again, this control is given to the user in
order to control potential routing issues at the high level without
rewriting the application.

5. DESIGN SPACE EXPLORATION
In this section we examine the effect of the high and low level
transformations on clock speed and area on a concrete hardware

platform. The implementations were synthesized and placed and
routed for a Xilinx Virtex 6 LX760 FPGA.
Median Filter – Loop Unrolling and Throughput.

Shown in Figure 3, the median filter works on a 3x3-sliding
window of 8-bit data over a large 2D array. The 8-bit data is
meant to be representative and not restrictive, similar results can
be achieved for other bit widths. It uses the bitonic sort module
(Figure 2) and has 50 cycles latency. The application is
synthesized, placed and routed on the Xilinx Virtex 6 LX760,
with a generic wrapper consisting of two sets of dual clock
BRAMs connected to the I/O pins and acts as input and output to
the ROCCC generated code.
Results for Median Filter are shown in Table 2. Each row shows
the effect on area, clock speed, throughput, and throughput per
unit area resulting from unrolling the outer loop and adjusting the
input and output memory channels appropriately. Throughput per
unit area is reported in MB/s/slice and represents the gain in
throughput with respect to the amount of area added with each
transformation.

Table 2: Impact of loop unrolling on Median Filter

In/Out
Channels

Clock
(MHz)

Area
(slices)

Throughput
(MB/s)

Through
put / area

1/1 225 735 75 0.102

3/1 225 766 225 0.294

4/2 225 1215 450 0.370

8/6 200 3160 1200 0.380

The first row of Table 2 represents the base configuration, where
no transformations have taken place and the code was compiled
with the default options. In this case ROCCC generates hardware
that has only one input channel and one output channel. Before
any input can be processed, the hardware has to read three
elements from the one input channel, which takes three clock
cycles, effectively cutting the throughput into one third of its
potential.

The second row shows the effect of specifying three input
memory channels with no other transformations. This allows all
the necessary data to be read in one clock cycle, allowing the
output to be generated every clock cycle resulting in a tripling of
throughput. The area is slightly larger as the hardware has to deal
with multiple connections, but some internal hardware
components that serialized the incoming data are actually
simplified in this implementation leading to a small increase in
area.

The third and fourth row show the effect of unrolling the outer
loop once and six times, corresponding to connecting to an
interface of 32-bits and 64-bits respectively. Each unrolling
allows the number of input and output channels to increase and
still produce all output every clock cycle, resulting in a large
increase in throughput and maximizing the throughput per unity
area for this experiment.
Average Filter – Lookup Tables and Arithmetic Cores.

Average Filter computes the average of each 3x3-sliding window
in the input array. We compare two versions where the division is
either implemented as a look-up table or as an instantiation of an
IP core generated by Xilinx Core Generator. Results are shown in
Table 3.
For all transformations the achievable clock speed was 225 MHz.
Again, the first row shows the default configuration with one

input and one output, the second row shows three input channels
but no transformations, and the third and fourth row show the
configuration of unrolling the outer loop once and six times to
interface with a 32-bit and 64-bit interface. In addition to loop
transformations, the Average Filter example was synthesized
using both a ROCCC compiled look up table (as reported in the
column labeled Area Table) and an integer division core
generated (as reported in the column labeled Area Divider).

Table 3: Average Filter implementations using table lookup or
integer division core (clock in both cases is 225 MHz)

In/Out
Channels

Area
Table
(slices)

Area
Divider
(slices)

Throughput
(MB/s)

Through
put / area

1/1 218 283 75 0.344

3/1 225 275 225 1.00

4/2 253 351 450 1.78

8/6 498 826 1350 2.71

The results of these transformations provide similar throughput
while the Table implementation takes less area, even when
unrolling causes duplication of the table to support multiple reads
per clock cycle. The throughput per unit area reported in Table 3
is reported for the Table implementation, which is the more space
efficient design. Using lookup tables and unrolling the loop
provides nearly 8X improvement in terms of throughput per unit
area over the default case.
Max Filter – Temporal Common Sub-expression Elimination.

Max Filter computes the maximum value in a sliding 3x3 window
on a 2D array (image) of height x width as shown in Figure 4. We
use it to show the impact of temporal common sub-expression
elimination (TCSE), when combined with loop unrolling, in area
and throughput.

The results are shown in Table 4. The original implementation,
with no optimizations, is in the first row and has three input
channels and generates one output element every clock cycle. It
consists of four Max modules taking up 311 slices. When TCSE
is applied, two of these components are removed and only one
new data element is needed each cycle resulting in a lower area
for the same throughput.
 The third row of Table 4 shows the results when the outer loop is
unrolled five times, taking in seven elements each clock cycle and
generating five outputs. Applying TCSE (fourth row) results in
smaller area, increased in clock speed and two variables being

reused across iterations requiring only five input elements every

void MaxFilterSystem(int** A, int N, int** Out) {
 int i, j ;
 int maxCol1, maxCol2, maxCol3, winMax ;
for (i = 0 ; i < N ; ++i) {
 for (j = 0 ; j < N ; ++j) {
 MaxFilter(A[i][j], A[i][j+1], A[i][j+2], maxCol1);
 MaxFilter(A[i+1][j],A[i+1][j+1],A[i+1][j+2], maxCol2);
 MaxFilter(A[i+2][j],A[i+2][j+1],A[i+2][j+2], maxCol3);
 MaxFilter(maxCol1, maxCol2, maxCol3, winMax);
 Out[i][j] = winMax ; } } }

Figure 4: Max filter on a 3X3 window

clock cycle. Assuming the necessary memory bandwidth is
available, this exploration shows that a 48% increase in area
results in 5X higher throughput and a 3.38X higher throughput per
unit area.

 Table 4: Impact of TCSE on Max Filter with loop unrolling

6. CONCLUSION
The automatic translation of programs written in HLLs to FPGA-
based hardware accelerators is a daunting task. These tools have
to (1) overcome a large semantic gap between temporal,
sequential and control driven programs and spatial, parallel and
data/event driven circuits; and (2) without any of the
virtualizations commonly available with CPUs and GPUs. In this
paper we describe the ROCCC C to VHDL compilation tool, one
of over 40 similar tools developed in academia and industry. The
focus of ROCCC is on compiling a subset of C into hardware
accelerators while providing an extensive set of compiles time
transformations and optimizations under user control via a GUI-
based console. We report the experimental evaluation of the
impacts of some of these transformations on the circuit costs
(area) and performance (throughput).

7. ACKNOWLEDGMENTS
This work was supported in part by NSF Awards CCF-1219180
and IIS-1161997 and by AFRL Contract FA945309C0173.

8. REFERENCES
[1] ROCCC 2.0 - www.jacquardcomputing.com, 2013.

[2] Bertin, P., Roncin, D, and Vuillemin. J. Introduction to
 programmable active memories, pages 300–309. Prentice
 Hall, 1989.

[3] Bertin, P., Roncin, D, and Vuillemin. J. Programmable
 active memories: a performance assessment. In Parallel

Architectures and Their Efficient Use. Paderborn, Germany,
Nov. 1992, Lecture Notes in Computer Science, pages 119–
130. Springer Verlag, 1992.

[4] Buyukkurt, B., Cortes, J., Villarreal, J. and Najjar, W. A.
Impact of high-level transformations within the ROCCC
framework. ACM Trans. Architecture and Code
Optimizations (TACO), 7(4):17:1–17:36, Dec. 2010.

[5] Buyukkurt, B. and Najjar, W. A. Compiler Generated
Systolic Arrays for Wavefront Algorithm Acceleration on
FPGAs. In Int. Conference on Field Programmable Logic
and Applications (FPL), September 2008.

[6] Buyukkurt, B., Guo, Z., and Najjar, W. A. Impact of loop
unrolling on area, throughput and clock frequency in
ROCCC: C to VHDL compiler for FPGAs. In Proc. Int.
Workshop On Applied Reconfigurable Computing (ARC),
March 2006.

[7] Guo, Z., Buyukkurt, B. and Najjar, W. A. Input data reuse in
compiling window operations onto reconfigurable hardware.
In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES), pages
249–256, New York, NY, USA, June 2004. ACM Press.

[8] Guo, Z., Najjar, W. and Buyukkurt, B. Efficient hardware
code generation for FPGAs. ACM Trans. on Architecture and
Code Optimizations (TACO), 5(1):26, May 2008.

[9] Hammes, J., Bohm, A.P.W., Ross, C., Chawathe, M., Draper,
B., Rinker, R., and Najjar, W. Loop Fusion and Temporal
Common Sub-expression Elimination in Window-based
Loops. In Reconfigurable Architecture Workshop, April
2001.

[10] Villarreal, J., Park, A., Najjar, W. and Halstead, R.
Designing modular hardware accelerators in C with ROCCC
2.0. In 18th IEEE Ann. Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2010, pages 127 –
134, May 2010.

[11] Villarreal. J. Compiled acceleration of C programs on
FPGAs. Ph.D. Thesis, U. California Riverside, USA, 2008.
AAI3332643.

[12] Xilinx Core Generator System
www.xilinx.com/tools/coregen.htm

In/Out
Channels

Clock
(MHz)

Area
(slices)

Through
put

(MB/s)

Through
put / area

3/1 225 311 225 0.723

1/1 with
TCSE

225 266 225 0.846

7/5 220 526 1100 2.092

5/5 with
TCSE

225 460 1125 2.446

