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ABSTRACT
Safety-critical systems require guarantees on their worst-case
execution times. This requires modelling of speculative hard-
ware features such as caches that are tailored to improve
the average-case performance, while ignoring the worst case,
which complicates the Worst Case Execution Time (WCET)
analysis problem. Existing approaches that precisely compute
WCET suffer from state-space explosion. In this paper, we
present a novel cache analysis technique for direct-mapped in-
struction caches with the same precision as the most precise
techniques, while improving analysis time by up to 240 times.
This improvement is achieved by analysing individual control
points separately, and carrying out optimisations that are not
possible with existing techniques.
Categories and Subject Descriptors: B.3.3 [Performance
Analysis and Design Aids]: Worst-case analysis
General Terms: Verification, Algorithms
Keywords: Instruction, Direct-Mapped, Cache Analysis.

1. INTRODUCTION
Hard real-time systems require accurate guarantees on the

functionality as well as the timing characteristics of programs.
Traditional speculative architectural features such as multi-
level caches and deep pipelines render the worst-case execu-
tion. Two types of memory architectures are used in real-time
systems: specialized compiler assisted caches, called scratch-
pads [2], and (widely available) conventional caches [3, 9, 11].
This article focuses on the static analysis [12] for predictable
direct-mapped instruction caches [9, 11], where locations in
main memory are mapped to unique cache lines.

Cache analysis involves computing the number of cache
misses that can happen in the instruction cache at specific
control points in a program. The program is usually trans-
lated to a control flow graph (CFG) [9], which contains control
points as its nodes. Analytically, the cache analysis problem
boils down to statically determining all possible cache states
(and therefore the number of misses in the worst case) at each
node using a suitable fixed point computation.

While a number of cache analysis approaches exist [11, 9],
some are not scalable (but more precise) while others over-
estimate cache misses (but are more scalable). In concrete
techniques like [9], all possible cache states are enumerated
explicitly at each control point, and very precise results can
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be obtained. However, these techniques suffer from state-
explosion, and do not scale for large programs. In [8], a prob-
abilistic approach for modelling cache behaviour is presented,
which is used for design-space exploration to reduce overall
analysis time by exploiting the structural similarities among
related cache configurations. In [7], the idea of cache con-
flict graphs is introduced where cache lines are analysed one
at a time. This approach is more scalable than concrete ap-
proaches, but loses precision as any relations between cache
lines are abstracted out. On the other hand, abstract tech-
niques like [10, 11] collapse multiple possible cache states at
every control point into a single abstract cache state. This
abstraction allows the algorithm to reach a fixed point much
faster, and hence larger programs can be analysed, but at the
cost of sacrificing precision.

In this article, we present a novel cache analysis technique
for direct-mapped caches that maintains the same precision as
the concrete techniques while significantly improving scalabil-
ity (for large benchmarks, analysis time is less than 2 minutes,
instead of 12 hours as in [9]). This improvement is achieved
by analysing individual control points at once, capturing and
aggregating instructions in a relative manner, and carrying
out certain optimisations that are not possible in other tech-
niques. The key contribution of this paper is a new algorithm
for static analysis that offers the same precision as the most
precise algorithms while being extremely scalable in compari-
son. It also compares very favourably with abstraction-based
analysis techniques with respect to analysis time.

This paper is organised as follows. The cache analysis
problem is formalized in Sec. 2. In Sec. 3 we present the
proposed approach. Qualitative and quantitative comparison
with the concrete and abstract approaches is presented in Sec-
tions 4 and 5 respectively. Finally, conclusions are presented
in Sec. 6. The Appendix further illustrates key aspects of the
proposed algorithm with additional experimental results to
demonstrate its advantages. Also, in Appendix E, we discuss
how the proposed approach for direct-mapped caches can be
extended to set-associative caches, which are also widely used
in predictable systems [3].

2. THE CACHE ANALYSIS PROBLEM
Our analytical cache model is based on the model of [9],

and is defined below. To improve readability, we represent
the terms “basic blocks” and “memory blocks” as “blocks” and
“instructions”, respectively.

Definition 1 (Cache model). The cache model for a
given program is defined as a tuple CM = 〈I, C, CI, G, BI〉,
where I is a finite set of instructions in the program, C =
{c0, c1, . . . , cN−1} is an ordered set of cache lines with N = |C|
as the total number of cache lines, and CI : C → 2I is the
direct-mapping function.



Also, G is a directed graph G = 〈B, binit, E〉 where B is a
finite set of basic blocks with binit ∈ B as the initial block, and
E ⊆ B ×B is the set of edges.

Finally, BI : B → (I ∪ {∓})N is the block to instruction
mapping function, where ∓ represents no instruction.

B1:
m1
m2
m3
m4

B2:
m5

B3:
m1

B4:
m3
m4

B5:
m2

B6:
m2
m3
m4

B7:
m6
m7
m8

B8:
m3
m4
m6

B9:
m8

(a) A control flow graph (CFG)

Cache Inst.
line
c0 m1,m5
c1 m2,m6
c2 m3,m7
c3 m4,m8

(b) Mapping of
instructions to
cache lines

Figure 1: An example cache model

Figure 1 shows the cache model of a sample program. It
presents a CFG in Figure 1(a), which contains 9 blocks (B =
{B1, . . . , B9}) with B1 as the initial block. Each block ex-
ecutes one or more instructions. The CFG has 8 instruc-
tions (I = {m1, . . . ,m8}) that are mapped to 4 cache lines
(C = {c0, c1, c2, c3}), as presented in Figure 1(b). Each cache
line has two unique instructions mapped to it (e.g., CI(c0) =
{m1,m5}). An instruction can be mapped only to a unique
cache line, representing a direct-mapped cache. A cache line,
at any time, can contain only one of the instructions that are
mapped to it (or is empty).

The edges describe program flow (sequential and branch-
ing) between the control points of the given program. We use
the short-hand B1 → B2 to describe a CFG edges such as
(B1, B2) ∈ E.. Each block also contains instructions (from I)
that it executes using the mapping function BI. For exam-
ple, B1 contains four instructions m1, m2, m3 and m4. We
restrict the model such that blocks can contain at most one
instruction mapped to any cache line (as per CI), which al-
lows us to represent the block to instruction mapping using a
vector indexed by C. E.g., BI(B1) = [m1,m2,m3,m4], with
BI(B1)[0] = m1 describing the instruction mapped to cache
line c0. If a block b does not contain an instruction mapped
to a cache line ci, then BI(b)[i] = ∓ (e.g., BI(B2)[1] = ∓).

The contents of the cache at any time during the program
execution is called a cache state, and is represented as a vec-
tor cs = [inst0, . . . , instN−1] where each insti represents the
instruction contained in cache line ci ∈ C. When execution
begins, we assume that there is no instruction (represented
by >) in each cache line. The cache is assumed to be empty.
For the example presented of Fig. 1, the empty cache state
is represented by cs> = [>,>,>,>]. During execution, or
traversal of the CFG, instructions are loaded into the cache as
the basic blocks are executed (starting from the initial block).
E.g., after executing the instructions in B1 the cache state is
cs1 = [m1,m2,m3,m4]. In this example, cs> is a reaching
cache state of B1, while cs1 is a leaving cache state of B1.
Since all 4 instructions needed by B1 were not present in cs>,
we say that there were 4 cache misses.

Given any reaching cache state cs of a block b, we can com-
pute the number of cache misses by comparing the instruc-
tions in cs and BI(b). E.g., given a reaching cache state cs =
[m1,m2,m3,m4] of block B2 (with BI(B2) = [m5,∓,∓,∓]),
there is a single miss on cache line c0 because the instruction
m5 needed by the block (as per BI(b)[0] = m5) is not present
in the cache state (cs[0] = m1).

It is generally possible for a block to have multiple reach-
ing cache state. Here, we compute the worst-case miss count
wmcb as the maximum number of cache misses possible, as
defined below.

Definition 2 (The Cache Analysis Problem).
Given a cache model CM , the cache analysis problem is the
computation of the number of worst case cache misses (wmcb),
for all basic blocks b ∈ B, along all possible executions.

3. PROPOSED APPROACH
Our approach for the static analysis of direct-mapped caches

is based on the intuition that analysing a single basic block
bref of the CFG at a time allows us to (a) reduce the number of
blocks needed to compute the worst and best case miss counts
for bref , and (more importantly), (b) we can abstract cache
states computed during the fixed point algorithm w.r.t. the
instructions executed by bref . This may significantly reduce
the number of possible cache states and consequently reduce
analysis time. We use Fig. 1 to illustrate these benefits.

First principle: During the analysis of block bref = B8,
since B8 does not execute any instruction on cache line c0
(BI(B8)[0] = ∓), we can ignore block B2 as the execution of
B2 can only affect the cache line c0. We call B2 a vacuous
block because it does not interfere with any of the cache lines
used by B8, and it can be removed when analysing B8.

Second principle: During the analysis of block bref = B8,
the instructions contained in another block, say B1, can be
abstracted such that they only refer to their effect on the
analysis of B8. Given that BI(B8) = [∓,m6,m3,m4] and
BI(B1) = [m1,m2,m3,m4], the instructions in B1 can be
abstracted as the vector [×, 1, 0, 0]. Here, the first element ‘×’
means that the instruction is not of interest as the reference
block does not use this cache line (BI(B8)[0] = ∓). The sec-
ond element ‘1’ means that for cache line c1, the instruction
in B1 is different from the instruction in B8 (BI(B1)[1] =
m2 6= m6 = BI(B8)[1]). Finally, for the third and the fourth
elements ‘0’ means that for cache line c2, the instruction in
B1 is the same as the instruction in B8 (BI(B8)[2] = m3 =
BI(B1)[2]). Also, when there is no instruction on cache line
ci in a block the abstract representation is ‘∓’. The ability of
reducing the number of instructions (|I|) in the CFG to just
four relative instructions (×,∓, 0, 1) significantly reduces the
memory foot print and analysis time, without sacrificing pre-
cision. This is a key optimization that enables us to propose
a scalable analysis technique without sacrificing precision.

Alg. 1 presents an overview of our approach. Each block in
the CFG is analysed individually (described using the for-loop
on lines 1–5). For each reference block bref in B, on line 2, we
first reduce the CFG by removing the vacuous blocks and then
compute the relative instructions w.r.t. bref . Next, on line 3,
a fixed point algorithm is used to compute all possible cache
states of the reference block. Finally, on line 4, the number of
cache misses in the worst case are computed. We now present
the details of each of these steps.



Algorithm 1 Overview of the proposed approach

Input: A cache model CM = 〈I, C, CI, G, BI〉.
Output: Compute the worst miss count (wmc) for all basic blocks.

1: for each bref ∈ B do
2: {Reduced CFG, compute relative instructions (Sec. 3.1)}

(Gr, BIr) = Reduce(CM, bref )
3: {Compute reaching relative cache states (Section 3.2.3)}

RCSr
bref

= FP (CM,Gr, BIr)

4: {Compute cache misses in the worst-case (Section 3.3)}
wmcbref = MAXmc(RCSr

bref
)

5: end for
6: return wmcb for all blocks b in B {Solution for the cache

analysis problem (Definition 2)}

3.1 CFG Reduction
Alg. 2 presents the pseudocode of the Reduce algorithm

that returns a reduced graph Gr from a given CFG G. Given G
and a reference block bref , we first represent the instructions
in each block w.r.t. the reference block, and then remove any
vacuous blocks. Line 1 initializes Gr as a copy of G. Then,
for each block b in Gr, and each cache line ci, a relative block
to instructions mapping BIr is created (lines 2–7). Depend-
ing on whether the instruction originally contained in b (in
G) is of no-interest to the reference block (line 3), different
(line 4) or identical (line 5) to the instruction contained in
the reference blocks, or is equal to ∓ (line 6).

Algorithm 2 Reduce: Reduce the CFG and abstract inst.

Input: Cache model CM = 〈I, C, CI, G, BI〉 and a reference block
bref ∈ B.

Output: Gr = 〈Br, binit, E
r〉 and BIr : Br → ({×,∓, 1, 0})N

1: Initialize Gr as a copy of G with BIr(b) = ∅ for all b ∈ Br.
2: for each b ∈ Br and for each ci ∈ C do
3: BIr(b)[i] = ×, if (BI(bref )[i] = ∓){not of interest}
4: BIr(b)[i] = 1, if (BI(bref )[i] 6= BI(b)[i]) {different}
5: BIr(b)[i] = 0, if (BI(bref )[i] = BI(b)[i]) {identical}
6: BIr(b)[i] = ∓, if (BIr(b)[i] 6= × ∧ BI(b)[i] = ∓){no inst.}
7: end for
8: for each b ∈ Br do
9: if (BI(b) ∈ ({×,∓})N ) ∧ (b 6= binit) {check for all vacuous

blocks, excluding initial block} then
10: Remove b from Br, and adjust Er

11: end if
12: end for

Next, on lines 8–11, blocks for which the mapping func-
tion BIr returns × or ∓ for every element of the vector BIr(b)
are declared as vacuous and are removed from the graph. The
removal of a vacuous block br involves adjusting the edges Er

of the graph Gr such that each predecessor of br now has a
direct edge to each of the successors of br. More details and
the full Reduce Algorithm appear in Appendix A.

Fig. 2 shows the reduced CFG returned by the algorithm
Reduce when bref = B8. Note that the vacuous block B2 is
removed from Gr. Also, every block now contains the relative
instructions.

3.2 Fixed point Computation
3.2.1 Relative cache states

Since block to instructions mapping is described using rel-
ative instructions, we also compute cache states in a relative
fashion. A relative cache state is defined as follows.

Definition 3 (Relative cache state). A relative
cache state csr is a vector [instr0, . . . , inst

r
N−1], where each

element instri ∈ {1, 0,>,⊥,×}. The set of all possible relative
cache states is denoted as CSr.

Each relative instruction instri of a relative cache state csr =
[instr0, . . . , inst

r
N−1] is described w.r.t. the instruction (BI(bref )

B1:
ciBIBIr

c0m1 ×
c1m2 1
c2m3 0
c3m4 0

B4:
ciBIBIr

c0 ∓ ×
c1 ∓ ∓
c2m3 0
c3m4 0

B5:
ciBIBIr

c0 ∓ ×
c1m2 1
c2 ∓ ∓
c3 ∓ ∓

B6:
ciBIBIr

c0 ∓ ×
c1m2 1
c2m3 0
c3m4 0

B7:
ciBIBIr

c0 ∓ ×
c1m6 0
c2m7 1
c3m8 1

B8:
ciBIBIr

c0m1 ×
c1m2 0
c2m3 0
c3m4 0

B9
ciBIBIr

c0 ∓ ×
c1 ∓ ∓
c2 ∓ ∓
c3m8 1

Figure 2: The reduced graph Gr obtained from the Reduce
algorithm, with the reference block bref = B8.

[i], i ∈ [0, |C|]) in the reference block bref for the cache line
ci ∈ C. instri = 1 or instri = 0 means the instruction
in the cache is different or identical respectively to the in-
struction executed in the reference block bref . E.g., given
BI(bref )[i] = m1, instri = 1 or instri = 0 means the instruc-
tion on cache ci is not m1 or m1 respectively. instri = >
means that cache line ci is empty, whereas instri = ⊥ means
that the cache has an unknown instruction. Finally, instri = ×
means that the instruction on this cache line is not of interest
during the analysis of bref . Also, a relative cache state before
executing block b is know as a reaching relative cache state
of b. Similarly, a relative cache state after executing block b is
know as a leaving relative cache state of b. More details about
relative cache states are presented in Appendix B.

3.2.2 The Transfer Function
An important operation in the fixed point computation is

the transformation of a reaching relative cache state into a
leaving relative cache state. This transformation, called the
transfer function T : CSr×B → CSr, is illustrated as follows.

csr1 =[×, 1, 0, 1]

BIr(b) =[×, 0,∓, 1]

T (csr1, b) = csr2 =[×, 0, 0, 1]

csr1

BIr(b)
csr2

T

For any cache line ci, the instruction csr2[i] in the leaving
relative cache state is equal to BIr(b)[i] only if there is an
instruction in block b (BIr(b)[i] = 1 or BIr(b)[i] = 0). Oth-
erwise, the instruction csr2[i] is the same as the instruction
csr1[i] in the reaching cache state. For the above example,
given BIr(b) = [×, 0,∓, 1] and csr1 = [×, 1, 0, 1], after exe-
cution of block b, csr2 = [×, 0, 0, 1]. For cache lines c1 and
c3, block b executes instructions that relate to the reference
block, and for cache lines c0 and c2, its does not execute any
relevant instructions. Therefore, the contents of the leaving
cache states are updated to be the same as the instructions
executed by the block on cache lines c1 and c3, and remain
the same as the reaching cache state for cache lines c0 and c2.

3.2.3 Fixed point computation
Alg. 3 shows the fixed point algorithm FP used to compute

all possible reaching relative cache states for the referenced
block in the reduced graph Gr. We illustrate the fixed point
computation using Tab. 1, which shows the possible reaching
and leaving relative cache states of each block in the reduced
graph (Fig. 2) in every iteration of FP .

During initialization, the reaching cache state of the initial
block is set to csr> (line 2) because the cache is considered



empty initially. For every other block, on line 2, the initial
reaching cache state is unknown (csr⊥). As shown in Tab. 1,
The initial reaching relative cache state of the initial block
B1 is set to csr> = {[×,>,>,>]}, while for every other block,
the initial reaching relative cache state is csr⊥ = {[×,⊥,⊥,⊥]}
(iteration 1, column 3, Tab. 1).

Algorithm 3 FP : Fixed point computation

Input: A cache model CM = 〈I, C, CI, G, BI〉, reduced graph

Gr = 〈Br, binit, E
r〉 and BIr : Br → ({×,∓, 1, 0})N .

Output: Reaching relative cache states of block bref (RCSr
bref

).

1: Create initial cache state csr> where for every ci ∈ C, csr>[i] = ×
if BIr(bref ) = ×, or csr>[i] = > otherwise.

2: RCSr1

binit
= {csr>}, and RCSr1

b = {csr⊥} for all other b ∈ Br.

3: i = 1
4: repeat
5: for each b ∈ Br do

6: LCSri

b = T (RCSri

b , b)

7: end for
8: i = i + 1; {Next iteration}
9: for each b ∈ Br do

10: if b = binit then

11: RCSri

binit
= {csr>} ∪ (

⋃
LCSri

b′ | (b
′, b) ∈ Er)

12: else

13: RCSri

b =
⋃

LCSri

b′ | (b
′, b) ∈ Er

14: end if
15: end for

16: until ∀b ∈ Br, RCSri

b = RCSri−1

b {Termination condition}
17: return RCSr

bref

Table 1: Computing all possible reaching relative cache states
of the reference block bref (B8).

Itr.
(i)

Block
(b)

Reaching Relative

Cache States (RCSi
b)

Leaving Relative Cache

States (LCSi
b)

1 B1 {[×,>,>,>]} {[×, 1, 0, 0]}
B4 {[×,⊥,⊥,⊥]} {[×,⊥, 0, 0]}
B5 {[×,⊥,⊥,⊥]} {[×, 1,⊥,⊥]}
B6 {[×,⊥,⊥,⊥]} {[×, 1, 0, 0]}
B7 {[×,⊥,⊥,⊥]} {[×, 0, 1, 1]}
B8 {[×,⊥,⊥,⊥]} {[×, 0, 0, 0]}
B9 {[×,⊥,⊥,⊥]} {[×,⊥,⊥, 1]}

2 B1 {[×,>,>,>]} {[×, 1, 0, 0]}
B4 {[×, 1, 0, 0], [×,⊥,⊥, 1]} {[×, 1, 0, 0], [×,⊥, 0, 0]}
B5 {[×, 1, 0, 0], [×,⊥,⊥, 1]} {[×, 1, 0, 0], [×, 1,⊥, 1]}
B6 {[×, 1, 0, 0], [×,⊥,⊥, 1]} {[×, 1, 0, 0]}
B7 {[×, 1, 0, 0], [×,⊥,⊥, 0]} {[×, 0, 1, 1]}
B8 {[×, 1, 0, 0], [×, 0, 1, 1]} {[×, 0, 0, 0]}
B9 {[×, 1,⊥,⊥], [×, 0, 0, 0]} {[×, 1,⊥, 1], [×, 0, 0, 1]}

3 . . . . . . . . .
4 . . . . . . . . .

5 B1 {[×,>,>,>]}
B4 {[×, 1, 0, 0], [×, 1, 0, 1],

[×, 0, 0, 1]}
B5 {[×, 1, 0, 0], [×, 1, 0, 1],

[×, 0, 0, 1], [×, 0, 0, 0]}
B6 {[×, 1, 0, 0], [×, 1, 0, 1],

[×, 0, 0, 1]}
B7 {[×, 1, 0, 0], [×, 1, 0, 1],

[×, 0, 0, 1]}
B8 {[×, 1, 0, 0],[×, 0, 1, 1]}
B9 {[×, 1, 0, 0], [×, 0, 0, 0],

[×, 1, 0, 1]}

The repeat-until loop (lines 4–16) is the fixed point itera-
tion. In each iteration i, each reaching relative cache state

contained in the set RCSri

b for every block b is transformed

into a leaving relative cache state (in set LCSri

b ) by applying
the transfer function (lines 5–7). E.g., for block B1 in iteration
1, given the only reaching relative cache state [×,>,>,>], the
corresponding leaving relative cache state is T ([×,>,>,>],
B1) = {[×, 1, 0, 0]} (see Tab. 1).

Then we compute, the reaching relative cache states of each
block for the next iteration. For each block, the set of reaching
relative cache states is the union of the sets of the leaving
relative cache states of all of its predecessors (line 13). For
binit, the additional reaching cache state csr> is also added to
this set (line 11). E.g., the predecessors of B4 are B1 and B9
(see Fig. 2). Hence, their sets of leaving cache states (resp.
{[×, 1, 0, 0]} and {[×,⊥,⊥, 1]}) for iteration 1 are aggregated

together to form the reaching cache state of B4 in iteration 2.
The iterations continue until the fixed point is reached, i.e.,

when two consecutive iterations yield the same sets of reach-
ing relative cache states for all blocks (line 35). For the re-
duced CFG shown in Fig. 2, the fixed point is reached in
the 5th iteration. Also during the fixed point, as an opti-
misation, a relative cache state csrk is dropped if there ex-
ists csrj such that, if for all cache lines (ci), when the rela-
tive instruction in csrj is the same as the instruction in csrk
(csrj [i] = csrk[i]) or, the relative instruction in csrj captures
a cache miss (csrj [i] = 1). E.g., given four possible reaching
cache states {[0, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 1]}, we can
safely ignore the first two cache states, because the third state
captures the worst case behaviour. However, we must still
carry the last state, resulting in the reduced set {[0, 1, 1, 1],
[1, 0, 0, 1]}.

3.3 Computing the number of cache misses
The final step in the cache analysis algorithm is the compu-

tation of the number of cache misses in the worst case. This
is done by analysing the relative cache states of the reference
block bref as computed by the fixed point algorithm. For each
reaching cache state csr = [instr1, . . . , inst

r
N−1], and for every

cache line ci ∈ C, insti = 1 represents a cache miss on ci. The
total number of misses when the reaching cache state csr is
the number of 1’s contained in csr. The reaching cache states
with the highest number of 1’s correspond to the worst-case
miss counts of bref respectively. E.g., as shown in Tab. 1, the
two reaching cache states of the reference block B8 as com-
puted by the fixed point algorithm FB are {[×, 1, 0, 0] and
[×, 0, 1, 1]}. The first reaching cache state has one occurrence
of ‘1’ while the second one has two occurrences of ‘1’. Thus,
the maximum miss count for B8 is 2, i.e., wmcB8 = 2.

4. QUALITATIVE COMPARISON
Tab. 2 provides a qualitative comparison between the con-

crete [9], abstract [4], and the proposed approaches. Figure 3
illustrates the basic block B8 of the CFG shown in Fig. 2 with
its two predecessors B6 and B7. We use this example to show
the differences in the ways the three approaches represent and
aggregate cache states.

Table 2: Qualitative comparison of the three approaches.

App.Fixed Prec-Time Optimisation Max no. of cs
point ision at each pro-

-gram point

Conc.all blocks high slow none (I/N)N

Abs. all blocks low fast merge cache states constant

Pro. one block high med. (1) reduce graph (3)N

at a time (2) reduce cache lines
(3) relative instructions

In the concrete approach [9], a cache state (cs) is de-
scribed as a vector [inst0, . . . , instN−1] where each insti rep-
resents a single instruction contained in cache line ci ∈ C or
is empty (>), i.e., insti ∈ CI(ci) ∪ {>}. E.g., the sets of
leaving cache states for B6 and B7 are {[m5,m2,m3,m4]}
and {[m5,m6,m7,m8]} respectively (see Fig. 3(a)). The set
of reaching cache states of B8 is the union of these sets, as
shown in Fig. 3(a). This set represents the fact there are only
two states in which the cache can be before B8 is executed.

In the abstract approach [4], a cache state is described as
a vector [set0, . . . , setN−1] where each seti represents a set
of instructions that must be contained in cache line ci ∈ C.
That is, seti ⊆ CI(ci) ∪ {>}.. E.g., the abstract leaving
cache states for B6 and B7 are [{m5}, {m2}, {m3}, {m4}] and
[{m5}, {m6}, {m7}, {m8}] respectively (see Fig. 3(b)). For



B6
{[m5,m2,m3,m4]}

B7
{[m5,m6,m7,m8]}
∪

{[m5,m2,m3,m4], [m5,m6,m7,m8]}

B8

(a) Concrete approach [9]

B6
[{m5},{m2},{m3},{m4}]

B7
[{m5},{m6},{m7},{m8}]
∪

B8

[{m5},{ },{ },{ }]

(b) Abstract approach [4]

B6
{[×, 1, 0, 0]}

B7
{[×, 0, 1, 1]}

∪

B8

{[×, 1, 0, 0], [×, 0, 1, 1]}

(c) Proposed approach
Figure 3: Illustration of the combining cache states.

each of these abstract cache states, each cache line contains
precisely one instruction. Hence, these two abstract cache
states are equivalent to the concrete cache states [m5,m2,
m3,m4] and [m5,m6, m7,m8] shown in Fig. 3(a). Next, the
abstract reaching cache state of B8 is the pair-wise inter-
section over the vector elements of the above abstract cache
states, giving [{m5}, { }, { }, { }] (see Fig. 3(b)). A cache
line ci, with an empty set represents any instruction (that is
mapped to ci, CI(ci)) or no instruction. E.g., the empty set
on cache line c1, represents three possible states {m2,m6,>}.
Similarly, [{m5}, { }, { }, { }] represents [{m5}, {m2,m6,>},
{m3,m7,>}, {m4,m8,>}]. This abstract reaching cache state
represents 27 possible concrete cache states, which are com-
puted using cross product as:

{m5} × {m2,m6,>} × {m3,m7,>} × {m4,m8,>}
={[m5,m2,m3,m4], [m5,m2,m3,m8], [m5,m2,m7,m4],

[m5,m2,m7,m8], ...}
While two of these possible concrete states [m5,m2,m3,m4]

and [m5,m6,m7,m8] are valid (as discussed above), many
others, such as [m5,m6,m3,m4], are not reachable because
instructions m6 and m3 cannot be loaded into the cache by
any one of the predecessor blocks of B8. As the above example
shows, the abstract approach may lose precision due to joins,
which may introduce non-reachable cache states. Yet, the
fixed point algorithm converges faster for the same reason.

Finally, in the proposed approach, cache states are rel-
ative to the instructions of the reference block. As shown in
Fig. 3(c), the reaching relative cache states of B8 are com-
puted by taking a union of the predecessor’s leaving relative
cache states, {[×, 1, 0, 0]}, {[×, 0, 1, 1]}}, as shown in Fig. 3(c).
The relative cache state representation allows us to optimize
performance without sacrificing precision. E.g., as shown in
Fig. 3(c), one of the reaching relative cache state of B8 is
{[×, 1, 0, 0]}. It represents 6 possible concrete cache states,
which are computed using cross product as:
{[×, 1, 0, 0]} ={>,m1,m5} × {>,m2} × {m3} × {m4}

={[>,>,m3,m4], [>,m2,m3,m4], [m1,>,m3,m4],

[m1,m2,m3,m4], [m5,>,m3,m4], [m5,m2,m3,m4]}
Thus, the translation results in 6 concrete cache states.

However, the extra states, unlike in the abstract approach,
do not effect the precision of the analysis.

Table 3: Comparing the cache states and WCET estimates
between the three approaches as we analyse block B8.

App. cache state wmcB8

(Worst)
Concrete {[m5,m2,m3,m4], [m5,m6,m3,m4]} 2
Abstract [{m5}, {m2,m6}, {m3,m7}, {m4,m8}] 3
Proposed {[×100], [×011]} 2

Comparison of the precision: By analysing the reach-
ing cache states of B8, we can compute wmcB8 and com-
pare the precision among the three approaches. We present
this comparison using Table 3. For block B8 (BI(B8) =
[∓,m6,m3,m4]), given the set of possible reaching cache states
for each approach (in column 2), the WCET estimate (wmc)
is presented in column 3. We note that the concrete ap-
proach has higher precision (smaller WCET), compared the

abstract approach. Also, the proposed approach maintains
this high precision. The optimised use of relative cache states
is only possible in the proposed approach because it analyses
one block at once. Both the concrete and abstract approaches
analyse all blocks in the CFG together.

Comparison of the complexity: The time complexity of
each of the three approaches depends on the number of blocks
in the CFG, the complexity of the merging and equivalence
operations, and the maximum number of cache states that
can be created (or the height of the lattice). The number
of blocks of the CFG is fixed at |B|, while we assume that
the merging and equivalence operations between cache states
can be performed in O(N) times (N is the number of cache
lines). Therefore, the complexities are of the form O(|B| ×
N ×HeightOfLattice). To compute the height of the lattice,
we assume that each cache line has an equal share d|I|/Ne (I
is the set of instructions) of instructions mapped to it, and
that |I| and N are sufficiently large so that we can ignore the
presence of ⊥ and > in the computed cache states.

For the concrete approach, there are (d|I|/Ne)N possible
reaching cache states. Hence the complexity of the approach is
O(|B|×N×(d|I|/Ne)N ). For the abstract approach, because
of the point-wise intersection operation used to merge cache
states for every cache line, the height of the lattice is constant
at 1 for a single cache line, or N for all cache lines. The
complexity of this approach is therefore O(|B|×N2). Finally,
for the proposed approach, each cache line has precisely 5
relative instructions {×, 0, 1,⊥,>} mapped to it. However,
recall that if a cache line has × assigned to it, it means the
cache line is not used (and hence cannot contain any other
instruction during the analysis). Similarly, > is used only for
the initial node. The number of cache states possible (over N
cache lines) in our approach is therefore 3N . The complexity
of our approach is therefore O(|B| ×N × 3N ) for one call to
the fixed point algorithm. Given that we repeat this process
|B| times (once for every block), and that the CFG reduction
operation is linear to the size of the CFG (again, |B|), the
complexity of our approach is therefore O(|B|3 ×N × 3N ).

As can be seen above, the complexity of the abstract ap-
proach is significantly lower than the concrete approach as
well as our approach. Also, the complexity of the proposed
approach does not depend on the number of instructions in
the program, which helps us achieve much better performance
than the concrete approach, as discussed in the next section.

5. BENCHMARKING AND RESULTS
We compare the precision and analysis time of the concrete,

abstract, and proposed approaches over a set of benchmarks
consisting of five control applications from [6]. In addition,
we created two examples: a BubbleSort program and a Syn-
thetic example. The benchmarking results are presented in
Tab. 4. The first column presents the examples followed by
their description (column 2). The number of C lines of the
program and its memory footprint is presented in columns 3
and 4 respectively. The largest examples are CruiseController



and RailRoadCrossing, with more than 4000 lines of code.
Each program is compiled to execute on the MicroBlaze

(MB) processor [1]. We choose MB due to the availability
of timing analysis tools [5]. The CFG for each example is
extracted automatically from its compiled binary, and each
loop of the CFG is unrolled once for more precise cache anal-
ysis [4]. For MicroBlaze with 64 MB main memory, the size
of the cache can be configured from 128 bytes to 64 KB [1].
Using these proportions, in our experiments we explore cache
sizes between 0.1% and 1% of the program’s size.

Table 4: Benchmark programs and their characteristics.
Example Description LOC Size
BubbleSort (BS) Bubble sort algorithm 128 2KB
Synthetic (SY) Branching and loops 180 4KB
Flasher (FL) Distributed lights 384 9KB
DrillStation (DS) Drilling station 1800 62KB
ConvBelt (CB) Airport conveyor belt 1280 44KB
RailRoadCros. (RR) Rail road cnt. 4613 163KB
CruiseCntroler (CC) Cruise control model 4194 146KB

For the first two examples (BS, SY), the WCET estimates
from the proposed approach was identical to that of the con-
crete approach (see Table 5 in Appendix D). However, for the
rest of the examples, the concrete approach failed to termi-
nate (analysis time is more than 12 hours, represented using
“T.O” in Table 5). Thus, we only focus on comparing between
the proposed and the abstract approaches.

For a cache size of 1% of the program size, normalised
WCET estimates w.r.t. the results from the abstract ap-
proach are presented in Figure 4(a). Across all the bench-
marks, we observe that the WCET computed by the proposed
approach is always less than or equal to the estimates from the
abstract approach. On average, the WCET estimate from the
proposed approach is 15% smaller than the abstract approach.
For a 0.1% relative cache size, the WCET analysis results are
presented in Figure 4(b). Here, the proposed approach does
not gain extra precision (w.r.t. the abstract approach), be-
cause the cache size is too small.

In terms of analysis time, the proposed approach always
takes less than 3 minutes for each example, which is signifi-
cantly faster than the concrete approach. However, the ab-
stract approach is even much faster (always takes less than 4
seconds) than the proposed approach. For the largest example
(RR), the proposed approach takes 142 seconds compared to
the 4 seconds taken by the abstract approach, but the WCET
estimate is tighter by 19% (1− 250725/308505).

Finally, Fig. 5 shows the WCET vs analysis time for the
control applications (last 5 benchmarks). Since the concrete
approach failed to terminate, its WCET is represented by the
WCET of the proposed approach (since both yield identical
results). On average, compared to the abstract approach, the
WCET from the proposed approach is 16% tighter. For the
analysis time, the proposed approach always completes in less
than 3 minutes, compared to the timeout after 12 hours for
the concrete approach.

In Appendix D, we explore eight other cache sizes between
0.2% and 0.9%. For the RailRoadCrossing example, on av-
erage across the eight cache sizes, the WCET of proposed
approach gives 16 % much tighter results on average, and up
to 19 % tighter result than the abstract approach.

6. CONCLUSIONS
We proposed a new cache analysis approach for precise anal-

ysis of instructions in direct-mapped caches. The proposed
approach presents a new abstraction, and compared to the
concrete approach it significantly reduces the analysis time
without sacrificing the precision. This is unlike the concrete
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Figure 4: Comparing the WCET estimates (the smaller
the better) of the abstract and proposed approaches
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Figure 5: Comparing WCET and analysis time for the last
five examples (1% relative cache size)

or the abstract approaches, where scalability or precision must
be sacrificed. Overall, the proposed approach enables precise
and efficient WCET analysis even for larger programs. In the
future, we will be extending our approach for analysing set
associative caches and design space exploration of caches.
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APPENDIX
A. REDUCING THE CFG AND COMPUTING

RELATIVE INSTRUCTIONS
Given a cache model CM = 〈I, C, CI, G, BI〉 and the

reference block bref ∈ B, the objective of the algorithm is: (1)
to compute a new reduced graph Gr = 〈Br, binit, E

r〉 which
contains only these blocks that are relevant for the analysis of
block bref (described earlier in Example 1) and, (2) to com-
pute the function BIr which describes the relative instruc-
tions executed by the blocks in Br w.r.t. bref , referred as
the relative instruction mapping function (described earlier in
Example 2). The algorithm contains the following three steps.

Step 1: Initialise (lines 2 to 4) On line 2, we initialise Gr

to have the same content as G, i.e., same set of blocks
(Br = B), initial block (binit), edges (Er = E). On
lines 3 to 4, we initialise the function BIr such that it
does not contain any relative instructions for any block.
For the example CFG (presented in Figure 1(a)), the
graph Gr is presented in Figure 6(a).

Algorithm 4 Reduce: Reduce the CFG and compute relative
instructions
Input: Cache model CM = 〈I, C, CI, G, BI〉 and a reference block

bref ∈ B.

Output: Gr = 〈Br, binit, E
r〉 and BIr : Br → ({×,∓, 1, 0})N

1: {Step 1: Initialise}
2: Br = B, Er = E, Gr = 〈Br, binit, E

r〉 {Copy all blocks and
edges}

3: for each b1 ∈ Br do
4: BIr(b1) = ∅ {Initialise the vector BIr(b1)}
5: end for

6: {Step 2: Relative instruction mapping}
7: for each b1 ∈ Br do
8: for each ci ∈ C do
9: if (BI(bref )[i] = ∓){not of interest} then

10: BIr(b1)[i] = ×
11: end if
12: if (BI(bref )[i] 6= BI(b1)[i]) {different instruction} then

13: BIr(b1)[i] = 1
14: end if
15: if (BI(bref )[i] = BI(b1)[i]){same instruction} then

16: BIr(b1)[i] = 0
17: end if
18: if (BI(b1)[i] = ∓){no instruction} then
19: BIr(b1)[i] = ∓
20: end if
21: end for
22: end for

23: {Step 3: Remove vacuous blocks and update edges}
24: for each b1 ∈ Br do
25: if (BI(b1) ∈ ({×,∓})N ) ∧ (b1 6= binit) {check for all vacuous

blocks, excluding initial block} then
26: {Compute predecessors and successors of b1}
27: Preds = {b2|b2 → b1 ∈ Er}
28: Succ = {b2|b1 → b2 ∈ Er}
29: {Remove incoming and outgoing edges of b1}
30: for each b2 ∈ Preds do
31: Er = Er \ {b2 → b′1}
32: end for
33: for each b2 ∈ Succ do
34: Er = Er \ {b2 → b′1}
35: end for
36: {Add new edge from each predecessor to each successor }
37: for each b′p ∈ Preds do

38: for each b′s ∈ Succ do

39: Er = Er ∪ {b′p → b′s}
40: end for
41: end for
42: Br = Br \ {b1} {Remove block b1}
43: end if
44: end for

Step 2: Relative instruction mapping (lines 7 to 22)
Given a reference block bref ∈ B and a cache line ci,
the instruction of any blocks b1 ∈ Br can be expressed
as different (1) when BI(b1)[i] 6= BI(bref )[i] (checked
on line 12), or same (0) when BI(b1)[i] = BI(bref )[i]
(checked on line 15), or no instruction (∓) when there
is no instruction in b1 on cache line ci, BI(b1)[i] = ∓
(checked on line 18), or not of interest (×) when there is
no instruction in bref on cache line ci, BI(bref )[i] = ∓
(checked on line 9). This relation is captured using the
relative instruction mapping BIr(b1). For illustration,
refer to Example 2 in Section 3.

For the graph Gr in Figure 6(a), the relative mapping
(w.r.t. B8) for every block is shown in Figure 6(b). Note
that for all blocks b in Br, if the reference block (bref )
does not have an instruction on cache line ci (BI(bref )[i] =
∓), then for cache line ci, the relative instruction for all
blocks is × (BIr(b)[i] = ×). This shows that during the
analysis of bref , the cache line ci is not considered. For
example, in Figure 6(b), the reference block B8 does not
have an instruction on cache line c0 (BI(B8)[0] = ∓).
Thus, for cache line c0, the relative instruction for all
blocks is × (BIr(b)[i] = ×).

Step 3: Remove vacuous blocks and update edges (
lines 24 to 12). As described in Example 1, we can re-
move vacuous blocks which do not affect the precision of
the reference block bref . We define a block b1 ∈ Br to be
vacuous, if BIr(b1) ∈ ({×,∓})N . This check is done on
line 25. It is possible for the initial block (binit) to be vac-
uous. However, if the initial block has more than one suc-
cessors, removing the initial block may result in multiple
initial blocks. Thus, to simplify the analysis, we do not
remove the initial block even when it is vacuous (line 25).
If a block b1 is vacuous, we first compute the predecessors
(line 27) and the successors (line 28) of b1. Secondly, we
remove the incoming edges to b1 from each predecessor
block (on lines 30 to 32) and, we remove the outgoing
edges from b1 to each successor block (on lines 33 to 35).
Thirdly, we create a transition from each predecessor to
each successor of b1. This is achieved using the nested
loop on lines 37 to 41. Finally, on line 42, the vacuous
block b1 is removed. For the graph shown in Figure 6(b),
blocks B2 and B3 do not contain any relative instructions
(BIr(B2) = [×,∓,∓,∓] and BIr(B3) == [×,∓,∓,∓],
thus, they are removed for the graph and the updated
graph Gr is presented in Figure 6(c). This is the reduced
graph Gr (w.r.t. to bref = B8).

B. RELATIVE CACHE STATES
We describe the contents of a cache using the notion of rel-

ative cache states. It is described as a vector [instr0, inst
r
1, . . . ,

instrN−1], where each element instri is described w.r.t. the
instruction (BI(bref )[i]) in the block bref .

Definition 4 (Relative cache state). Given a refer-
ence block bref , a relative cache state csr ∈ ({1, 0,>,⊥,×})N ,
is a vector [instr0, inst

r
1, . . . , inst

r
N−1], where each element instri

∈ {1, 0,>,⊥,×}. Also, the set of all possible relative cache
states (w.r.t bref ) is denoted as CSr.

Before we illustrate relative cache states, we introduce two
key terms essential to cache analysis. For any basic block b,
the reaching relative cache states represent the set of relative
cache states prior to the execution of a basic block and the
relative leaving cache states represent the set of cache states
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Figure 6: Illustration of Algorithm 4 with bref = B8.

after the execution of the basic block. We denote the reach-
ing relative cache states of a basic block b as RCSr

b and the
relative leaving cache states of a basic block b as LCSr

b .
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A fragment of the reduced graph (Figure 6(c)) is presented
in Figure 7. Using this graph we illustrate relative reaching
and leaving cache states of a block. Given the reference block
bref = B8 with BI(bref ) = [∓,m6,m3,m4] and the relative
instruction mapping of each block (described by the function
BIr), we illustrate the relative cache state as we start exe-
cuting the initial block B1. Initially, the cache is empty and
the reference block does not have an instruction on cache line
c0 (BIr(bref )[0] = ∓). Thus the instruction on cache line c0
is not of interest (×) resulting in the initial cache state of
[×,>,>,>], denoted as csr>. Note this initial cache state is
unlike the concrete approach, where the initial state is repre-
sented using the vector [>,>,>,>].

In our approach, given the reference block bref (in this case
bref = B8), we are only interested in the cache line c1, c2,
c3. Thus, we ignore the cache state w.r.t cache line c0, as
it does not affect the precision of the reference block. Also,
by ignoring c0, allows for a memory efficient implementation.

In this case, the relative cache state can be represented using
a vector with only three elements, instead of four elements,
saving 25% of memory.

After execution of block B1, where the relative instruc-
tions are described by BIr(B1) = [×, 1, 0, 0], cache lines c1,
c2, c3 will contain relative instructions 1, 0, 0. Hence af-
ter B1 executes, the relative cache state csr = [×, 1, 0, 0].
Here, csr[0] = × represents the instruction on cache line c0
is not of interest. csr[1] = 1 represents that the instruction
in the cache is not m6, because BI(bref )[1] = m6. csr[2] = 0
represents that the instruction in the cache is m3, because
BI(bref )[2] = m3. Similarly, csr[3] = 0 represents the in-
struction in the cache is m4 (BI(bref )[3] = m4).

The relative cache state csr> is the state of the cache prior
to the execution of the basic block B1. Thus, RCSr

B1 =
{[×,>,>,>]} is the set of reaching relative cache states of
block B1. Similarly, LCSr

B1 = {[×, 1, 0, 0]} is the set of rela-
tive leaving cache states of block B1.

Now, the control reaches a branch due to which, it is pos-
sible to execute either block B6 or block B7. In this case,
RCSr

B6 = LCSr
B1 = RCSr

B7. After executing blocks B6 (or
B7), the state of the cache is [×, 1, 0, 0] (or [×, 0, 1, 1]).

Block B8 has two incoming edges: from blocks B6 and B7.
To compute RCSr

B8, we need to join LCSr
B6 and LCSr

B7. In
this case, the join function is a union over the set of relative
cache states. Thus, RCSr

B8 = LCSr
B6 ∪ LCSr

B7, resulting in
RCSr

B8 = {[×, 0, 1, 1], [×, 1, 0, 0]}.

C. COMPUTING ALL POSSIBLE REACHING
RELATIVE CACHE STATES OF THE REF-
ERENCE BLOCK

The first step for cache analysis involves the computation of
all possible reaching relative cache states of bref (RCSr

bref
),

using the fixed point computation algorithm presented in Al-
gorithm 5.

As illustrated in Figure 7, the initial state of the cache is
empty(csr>), and is based on the instructions of the refer-
ence block. Similarly, like the concrete and the abstract ap-



proaches, we must also introduce the unknown cache state
(csr⊥ ), which is explained later during this algorithm. In
general, the empty/unknown cache state is different for each
bref ∈ B. Thus, for a given reference block bref , we first com-
pute the empty cache state csr>, and unknown cache state csr⊥
on lines 2 to 8.

For each cache line ci, if the reference block bref does not
have an instruction (in this case, BIr(bref ) = ×), then the
cache state on ci is not of interest during the analysis of
the reference block bref . Thus, the relative instruction on
cache line ci of csr> and csr⊥ is set to × (line 4). Otherwise
(BIr(bref ) 6= ×), on line 6, for cache line ci, the empty cache
state is set to be > (csr>[i] = >), and the unknown cache state
is set to be ⊥ (csr⊥[i] = ⊥).

Using relative cache states csr> and csr⊥, we initialise the
reaching relative cache states for all blocks (lines 11 to 17).
Since we assume that initially the state of the cache is empty,
on line 13 for the initial block binit we set its reaching as

RCSr1

binit
= {csr>}. Here, the notation RCSri

b represents the
reaching relative cache states of block b in iteration i. E.g.,

RCSr1

binit
represents the reaching relative cache states of block

binit for iteration 1. For rest of the blocks, the initial state of
the cache is unknown. Thus, on line 15, we set their reaching
cache states as {csr⊥}. After initialisation, we compute the
relative leaving cache states of each block, on lines 19 to 22.
We apply the transfer function(T ) to every block and its cor-
responding reaching relative cache states.

The iteration index (i) is incremented (line 23) to signal
the start of the next iteration. Next, on lines 25 to 34, the
reaching relative cache states of each block are computed. For
the initial block binit, we know that the reaching relative cache
state is always empty. Thus, on line 27, we always set its

reaching as RCSri

binit
= {cs>}. For rest of the blocks, we

first initialise the reaching relative cache state as empty set
(line 29), and on lines 30 to 32, the reaching cache states are
computed by looking at the relative leaving cache states of the
predecessors (b′) of the block b and using the union operation.

The iterative process, repeat-until loop on lines 18 to 35, is
repeated until a fixed point is reached, i.e., if two consecutive
iterations have the same sets of reaching relative cache states
for all blocks (line 35).

D. RESULTS

Example
abstract proposed concrete Gain

WCET ATWCET ATWCET AT(col5/
(clks)(sec) (clks)(sec) (clks)(sec) col2)

BubbleSort 2571 0.7 2571 36.6 2571 44 1
Synthetic 14134 1.4 14134 8.2 14134 311 1
Flasher 117508 1.8 95908 41.9 T.O T.O 0.82
DrillStation 31881 1.9 27453 45.1 T.O T.O 0.86
ConvBeltModel 21344 1.7 18104 35.1 T.O T.O 0.85
RailRoadCrossing 308505 4.0 250725 142.0 T.O T.O 0.81
CruiseController 357206 3.6 288374 113.7 T.O T.O 0.80

Table 5: Quantitative comparison between the abstract, pro-
posed and concrete approaches

The WCET and the analysis time for abstract is presented
in columns 2 and 3 respectively of Table 5. Similarly, the
following columns present results for the proposed and con-
crete approaches. Final column presents the WCET estimate
of the proposed approach w.r.t. the abstract approach. The
proposed approach is tighter by 13% on average, and up to
19% tighter than the abstract approach.

Using the cache size between 0.2% and 0.9% of the pro-
gram size, for each example, the WCET analysis results are
presented in Figures 8(a)–8(h). Across all the benchmarks,

Algorithm 5 FP : Fixed point computation for the proposed
approach

Input: A cache model CM = 〈I, C, CI, G, BI〉, reduced graph

Gr = 〈Br, binit, E
r〉 and BIr : Br → ({×,∓, 1, 0})N .

Output: Reaching relative cache states of block bref (RCSr
bref

).

1: {Initialise csr> and csr⊥}
2: for each ci ∈ C do
3: if BIr(bref )[i] = × then

4: csr>[i] = ×, csr⊥[i] = × {When bref has no instruction
(in this case, BIr(bref ) = ×) on cache line ci, initialise emp-
ty/unknown cache states as not of interest.}

5: else
6: csr>[i] = >, csr⊥[i] = ⊥ {When bref has an instruction on

cache line ci, initialise empty/unknown cache states as >/⊥.}
7: end if
8: end for
9: i = 1 {iteration counter}

10: {Initialise RCSr for all blocks }
11: for each b ∈ B do
12: if b = binit then

13: RCSr1

binit
= {csr>} {for the initial block, the initial state of

the cache is always empty}
14: else

15: RCSr1

b = {csr⊥} {for rest of the blocks, the initial state of
the cache is unknown}

16: end if
17: end for

18: repeat
19: {Compute LCSr for all blocks}
20: for each b ∈ Br do

21: LCSri

b = T (RCSri

b , b)

22: end for

23: i = i + 1; {Next iteration}
24: {Compute RCSr for the next iteration i + 1}
25: for each b ∈ Br do
26: if b = binit then

27: RCSri

binit
= {csr>}

28: else

29: RCSri

b = ∅
30: for each LCSri

b′ , where (b′, b) ∈ Er do

31: RCSri

b = RCSri

b ∪ LCSri

b′
32: end for
33: end if
34: end for

35: until ∀b ∈ Br, RCSri

b = RCSri−1

b {Termination condition}
36: return RCSr

bref

we observe that the WCET estimates from the proposed ap-
proach is always less than or equal to the estimates from the
abstract approach. With 1% relative cache size, on average,
the WCET of proposed approach gives 13 % much tighter re-
sults and upto 19% tighter result than the abstract approach.
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(a) 0.2% relative cache size
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(b) 0.3% relative cache size
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(c) 0.4% relative cache size
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(d) 0.5% relative cache size
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(e) 0.6% relative cache size
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(f) 0.7% relative cache size
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(g) 0.8% relative cache size
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Figure 8: Comparing the WCET of the abstract and proposed approaches between 0.2% and 0.9% relative cache sizes
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Figure 9: Extending and comparing the proposed approach to set associative caches

E. EXTENDING OUR APPROACH TO SET
ASSOCIATIVE CACHES

The proposed approach can easily be extended for timing
analysis of set associative caches. For a 4 way set associative
cache with the least recently used replacement (LRU) pol-
icy [3], a comparison of the join operation between the con-
crete and abstract approaches is presented in Figure 2 of [3].
Using this exact example, we reproduce Figures 9(a) and 9(b).
Here, block B4 has three predecessor blocks (B1, B2 and B3).
The stack(s) next to the transitions represent the state of the
cache, for each cache line. The order represents the history,
the recent instruction is on top of the stack, and the least
recent instruction is at the bottom of the stack.

For the concrete approach (Fig. 9(a)), the reaching cache
states of B4 are computed as the union of all the leaving cache
states of the predecessor blocks, resulting in three cache states.
This is very precise, but will not scale for large programs. In
the case of the abstract approach (Fig. 9(b)), the instructions
are combined based on the upper bound of its age. E.g., for the
leaving cache states of B1, B2 and B3, instruction ‘a′ resides
on top (first), top (first) and second positions, respectively.
Since, the upper age bound (oldest) is the second position,
the join function abstracts the age of instruction ‘a′ as second
position. Similarly, instruction ‘b′ and ‘c′ are computed as

third position. In contract, instruction ‘d′, only exists in the
leaving cache state of B1, and not in B2 and B3. In this case,
we cannot guarantee its presence, so it is removed from the
stack. Similarly, instructions ‘e′ and ‘f ′ are removed during
the join operation. This abstraction, improves scalability, but
lacks precision.

For the proposed approach (Fig. 9(c)), the instructions in
the cache are presented w.r.t. the instructions of the refer-
ence block, 0 if identical , or 1 otherwise. E.g., let us assume
that instructions a, b, d are abstracted as 1, and c, e, f are ab-
stracted as 0. This abstraction is similar to the idea of relative
cache states presented earlier in Sec. 3.2.1. Once again, the
join operation performs the union over the reaching relative
cache states, maintaining both precision and scalability.

Since the join operations of each approach is similar to their
counter parts in direct-mapped analysis, we believe the com-
plexity of the three approaches may be similar to Tab. 2. Also,
the WCET and the analysis time may reflect the trends seen
in Figures 4 and 5.


