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ABSTRACT
The ambulatory capabilities of legged robots offer the potential
for access to dangerous and uneven terrain without a risk to hu-
man life. However, while machine learning has proven effective
at training such robots to walk, a significant limitation of such ap-
proaches is that controllers trained for a specific robot are likely
to fail when transferred to a robot with a slightly different mor-
phology. This paper confronts this challenge with a novel strategy:
Instead of training a controller for a particular quadruped morphol-
ogy, it evolves a special function (through a method called Hyper-
NEAT) that takes morphology as input and outputs an entire neural
network controller fitted to the specific morphology. Once such a
relationship is learned the output controllers are able to work on a
diversity of different morphologies. Highlighting the unique poten-
tial of such an approach, in this paper a neural controller evolved
for three different robot morphologies, which differ in the length
of their legs, can interpolate to never-seen intermediate morpholo-
gies without any further training. Thus this work suggests a new
research path towards learning controllers for whole ranges of mor-
phologies: Instead of learning controllers themselves, it is possible
to learn the relationship between morphology and control.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – connectionism and neu-
ral nets

General Terms
Algorithms

Keywords
HyperNEAT, NEAT, Neuroevolution, Legged Robots

1. INTRODUCTION
Legged robots have long captured the interest of researchers in

robotics [12, 13, 15, 27]. Unlike their wheeled counterparts, they
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Figure 1: Quadruped Training Morphologies. The flexible neu-
ral controller trained on three quadrupeds with different leg seg-
ment lengths (0.25, 0.30, and 0.37 meters) learns to interpolate to
never-seen intermediate morphologies without further training.

offer a high degree of mobility and excel on rugged terrain. How-
ever, designing a controller for a legged robot is challenging be-
cause of the high number of degrees of freedom within each leg
and the need for tight coordination and balance.

Controllers for legged robots are often crafted and tuned for a
specific morphology, which can be a difficult and time-consuming
task [27]. Therefore, interest has increased in recent years in auto-
matically learning gaits for particular robots. In one seminal work,
Hornby et al. [12] trained dynamic gaits (i.e. gaits that require tran-
sient instability during ambulation) for the AIBO robot dog with
an evolutionary technique. The trained controller was actually in-
cluded in the commercial release of the robot. In fact, a range of
techniques have shown promise [5, 13, 15].

However, learned and hand-designed controllers both are likely
to fail when the robot’s morphology is altered, even if only slightly
[12]. This brittleness contrasts starkly with the capabilities of legged
animals in nature. For example, a foal can quickly learn to walk a
short time after birth. As noted by Lewis and Bekey [15], it is un-
likely that the locomotion controller in the foal is determined com-
pletely before birth or that any “learning algorithm could program
a nervous system ab initio with so few training epochs”. Thus rather
than learning a controller for a particular morphology, an intriguing
unexplored possibility is instead to learn a relationship between the
morphology of a robot and its control. In fact, the ability to exploit
such a relationship is a major goal for the field of robotics [15].

In this spirit, the main idea in this paper is to train a special func-
tion that takes morphology as input and outputs a neural network
controller fitted to the specific morphology. The implementation
of this idea is enabled by the Hypercube-based NeuroEvolution of
Augmenting Topologies (HyperNEAT) method [23], which is well-
suited to such an approach because it introduced the idea that a
function can be evolved that takes domain information as input and
outputs a controller. In particular, HyperNEAT evolves the pat-
tern of weights across the geometry of an artificial neural network



(ANNs) as a function of the positions of its nodes in space. This
capability allows large ANNs with regularities in connectivity to
evolve for high-dimensional problems [9, 10, 23, 26]. Here it is ex-
tended to the idea that the pattern of connectivity can also depend
on an indicator of the morphology of the robot being controlled.

In particular, the approach presented in this paper augments Hy-
perNEAT not only to create ANNs as a function of the domain
geometry but also based on the particular quadruped morphology.
By evolving a function that can output controllers for three differ-
ent morphologies (figure 1) with different leg lengths, HyperNEAT
can actually learn the relationship between morphologies and con-
trol policies. In this paper, attempting to train in this way is shown
to have the potential to interpolate to many intermediate morpholo-
gies never seen in training. No such interpolation is observed pos-
sible with the baseline static controllers, which work on almost no
morphologies other than the ones seen in training.

Thus the main conclusion is that instead of learning controllers
themselves for a particular morphology, it does appear feasible to
learn the relationship between morphology and control, which can
lead to less model-specific controllers.

2. BACKGROUND AND RELATED WORK
This section reviews prior working in machine learning for legged

locomotion and then transitions to the Neuroevolution of Augment-
ing Topologies (NEAT) and HyperNEAT methods that underpin the
approach in this paper.

2.1 Legged Locomotion
A range of techniques have shown promise in automating the

achievement of effective gaits. Kimura et al. [13] trained a four-
legged robot with a reinforcement learning approach. A more bi-
ologically inspired approach by Lewis and Bekey [15] allowed a
specific quadruped robot to learn to walk in a short amount of time
based on a system of distributed adaptive modules. In the context of
evolutionary computation, some of the first experiments in legged
locomotion were performed by Beer [2], who generated static gaits
for a simulated hexapod. Recently Clune et al. [5] evolved co-
ordinated quadruped gaits with HyperNEAT. However, prior ap-
proaches in general focused on training a robot for a particular
morphology. Instead, the work presented here tries to learn the re-
lationship between morphology and control, which has not been
attempted so far.

2.2 Neuroevolution of Augmenting Topologies
(NEAT)

NEAT starts with a population of simple neural networks and
then adds complexity over generations by adding new nodes and
connections through mutations. By evolving networks in this way,
the topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to find a
suitable level of complexity. Because it starts simply and gradually
adds complexity, it tends to find a solution network close to the
minimal necessary size. However, as explained next, it turns out
that directly representing connections and nodes as explicit genes in
the genome cannot scale up to very large networks. For a complete
overview of NEAT see Stanley and Miikkulainen [21].

2.3 HyperNEAT
NEAT is called a direct encoding because each part of the so-

lution’s representation (i.e. each connection weight in the genome)
maps to a single piece of structure in the final solution network [8].
The significant disadvantage of this approach is that even when
different parts of the solution are similar, they must be encoded

and therefore discovered separately. This challenge is related to
the problem of learning controllers for multiple robot morpholo-
gies: After all, if individual controllers are encoded by separate ge-
netic code, even if a component of their capabilities is shared, the
learner has no way to exploit such a regularity. Thus HyperNEAT
introduces an indirect encoding instead, which means that the de-
scription of the solution is compressed such that information can
be reused, allowing the final solution to contain more components
than the description itself. Indirect encodings allow solutions to be
represented as a pattern of parameters, rather than requiring each
parameter to be represented individually [3, 10, 20, 22]. Hyper-
NEAT, reviewed in this section, is an indirect encoding extension
of NEAT that is proven in a number of challenging domains that re-
quire discovering regularities [5, 6, 9, 10, 23]. For a full description
see Stanley et al. [23] and Gauci and Stanley[10].

In HyperNEAT, NEAT is altered to evolve an indirect encoding
called compositional pattern producing networks (CPPNs [20]) in-
stead of ANNs. The CPPN in HyperNEAT plays the role of DNA
in nature, but at a much higher level of abstraction; in effect it en-
codes a pattern of weights that is painted across the geometry of
a network. Yet the convenient trick in HyperNEAT is that this en-
coding is itself a network, which means that CPPNs can be evolved
by NEAT. A CPPN is a composition of functions, wherein each
function loosely corresponds to a useful regularity. For example, a
Gaussian function induces symmetry and a periodic function such
as sine creates segmentation through repetition. In effect, the in-
direct CPPN encoding can compactly encode patterns with regu-
larities such as symmetry, repetition, and repetition with variation
[19, 20]. Thus as the CPPN increases in complexity, it encodes in-
creasingly complex amalgamations of regularities and symmetries
that are projected across the connectivity of a network [9, 10].

Unlike in many common ANN formalisms, in HyperNEAT neu-
rons exist at locations in space. That way, connectivity is expressed
across a geometry, like in a natural brain. Formally, CPPNs are
functions that input the locations of nodes (i.e. the geometry of a
network) and output weights between those locations. That way,
when queried for many pairs of nodes situated in n dimensions, the
result is a topographic connectivity pattern in that space. Consider
a CPPN that takes four inputs labeled x1, y1, x2, and y2; this point
in four-dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output of the
CPPN for that input thereby represents the weight of that connec-
tion (figure 2). Because the connections are produced by a function
of their endpoints, the final structure is produced with knowledge of
its geometry. In effect, the CPPN is painting a pattern on the inside
of a four-dimensional hypercube that is interpreted as the isomor-
phic connectivity pattern, which explains the origin of the name
hypercube-based NEAT (HyperNEAT). Connectivity patterns pro-
duced by a CPPN in this way are called substrates so that they can
be verbally distinguished from the CPPN itself.

Each queried point in the substrate is a node in an ANN. The ex-
perimenter defines both the location and role (i.e. hidden, input, or
output) of each such node. As a rule of thumb, nodes are placed on
the substrate to reflect the geometry of the task [5, 23]. That way,
the connectivity of the substrate is a function of the task structure.
For example, the sensors of a robot can be placed from left to right
on the substrate in the same order that they exist on the robot. Out-
puts for moving left or right can also be placed in the same order,
allowing HyperNEAT to understand from the outset the correlation
of sensors to effectors. In this way, knowledge about the problem
geometry can be injected into the search and HyperNEAT can ex-
ploit the regularities of a problem that are invisible to traditional
neural network encodings.
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Figure 2: HyperNEAT Geometric Connectivity Pattern Inter-
pretation. A collection of nodes, called the substrate, is assigned
coordinates that range from −1 to 1 in all dimensions. (1) Ev-
ery potential connection in the substrate is queried to determine
its presence and weight; the dark directed lines in the substrate
depicted in the figure represent a sample of connections that are
queried. (2) Internally, the CPPN (which is evolved) is a graph
that determines which activation functions are connected. As in an
ANN, the connections are weighted such that the output of a func-
tion is multiplied by the weight of its outgoing connection. For
each query, the CPPN takes as input the positions of the two end-
points and (3) outputs the weight of the connection between them.
Thus, CPPNs can produce regular patterns of connections in space.

In summary, the capabilities of HyperNEAT are important for
the approach presented in this paper because they provide a for-
malism for producing policies (i.e. the output of the CPPN) as a
function of geometry (i.e. the inputs to the CPPN). As explained
next, not only can such an approach produce a single network but
it can also produce a set of networks that are each generated not
only as a function of the the domain geometry (as in the original
HyperNEAT) but also of the robot’s morphology.

3. APPROACH: LEARNING A RELATION-
SHIP BETWEEN MORPHOLOGY AND
CONTROL

The main idea in this work is that instead of training a particular
controller for a particular morphology, evolution will learn a CPPN
that takes morphology as input and outputs an entire neural network
controller fitted to the specific morphology. The hope for such an
approach, which has not been demonstrated previously, is that once
such a relationship is learned the output controllers are able to work
on a diversity of different quadruped morphologies.

To understand how a diversity of morphologies will be encoded
by the same CPPN, it helps to begin by considering how a single
CPPN encodes a single quadruped controller.

3.1 Static Quadruped Neural Controller
In this paper, a three-dimensional quadruped robot (figure 1) in

a realistic physics simulation using the freely available Open Dy-
namics Engine (see http://www.ode.org), is controlled by
a type of ANN called a continuous-time recurrent neural network
(CTRNN) that is able to express the non-linear dynamics found
in natural gaits and is common in other legged robot experiments
[16, 18]. The quadruped robot (figure 1) has a total of twelve de-
grees of freedom (DOF): two degrees in each hip joint (pitch and
roll) and one degree in each knee joint (pitch). Table 1 gives some

Table 1: Quadruped Simulation Parameter Settings
Parameter Value
Maximum Torque 5.0 newton meters
Proportional Constant 9.0
Torso Length 0.4 meters
Torso Width 0.2 meters
Torso Density 1.0 kilograms per cubic meter

of the physical parameters of the quadruped model that are the same
for all approaches.

The neural architecture for the quadruped is distributed into sep-
arate substrate modules for each of the four legs (figure 3). Similar
decentralized architectures have been applied by Téllez et al. [24]
to generate the walking behavior of an Aibo robotic dog, are ob-
served in walking biological organisms [17], and also have inspired
hand-designed control architectures for hexapod robots [4].

Each leg module has one input, two hidden, and three output
nodes. The inputs provide the current angle of the anterior-posterior
hip joint. The ANN outputs movement requests for each degree of
freedom in the model, i.e. for each independent axis of rotation for
all joints in the model. The outputs are scaled to match the angular
range of the corresponding DOF, which is interpreted as the angle
that the neural network is requesting. The difference between the
requested angle and the current orientation of the DOF denotes the
disparity between the state the network is requesting and the cur-
rent state of the model. A proportional controller applies torque
to reduce this disparity. In other words, the neural network directs
the low-level controllers towards a particular state. This method of
control are similar to those in Reil and Husbands [18] and Lehman
and Stanley [14].

To generate a controller for the quadruped, a CPPN (figure 3b)
with inputs x1, y1, x2, y2, x_m1, y_m1, x_m2, and y_m2 first
queries each of the four substrates shown in figure 3a to determine
the intra-module connection weights between the input/hidden, hid-
den/hidden, hidden/output, and output/output nodes of each mod-
ule (determined by CPPN output W ). That is, inputs x and y de-
scribe the internal position of each node inside their correspond-
ing module, whereas the x_m and y_m inputs determine the po-
sition of the module itself (e.g. the module controlling the anterior
left leg is located at (x_m = −1, y_m = 1)) within the larger
substrate. The CPPN can thus emphasize the influence of x_m
and y_m for increasing heterogeneity or minimize it to produce
greater homogeneity between different leg modules. Subsequently,
the inter-module connections between corresponding neighboring
hidden and output neurons are determined (dotted lines in figure 3a)
by CPPN output M . This approach to encoding separate modules
within a single substrate is inspired by the multiagent HyperNEAT
approach [7], which showed how several similar ANNs can be en-
coded by the same CPPN. However, an added idea here is also to
encode connections between such modules, to help them synchro-
nize in time.

Additionally the bias and time constant values for each hidden
node are determined by CPPN outputs T and B. By convention
those values are determined by a node-centric query at (x1, y1,
x_m1, y_m1, 0.0, 0.0, 0.0, 0.0), where x2, y2, x_m2, y_m2 are
simply set to zero. The time constants and bias values for the out-
put nodes are fixed for all approaches to 0.1 and 3.0, respectively.
These values have been found to work well for a variety of differ-
ent morphologies. Most importantly, the key idea in this section is
that the CPPN takes a set of geometric parameters and outputs a
connectivity pattern for a network.
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Figure 3: Distributed Substrate Architecture and CPPN. The
quadruped architecture is divided into four different substrate mod-
ules (a). Each module is responsible for controlling a single leg,
where the inter-module connections allow neighboring nodes in
different modules to communicate (dotted line). Each leg module
has one input (black), two hidden (white), and three output nodes
(gray). The CPPN (b) takes the internal position of each node in-
side their corresponding module (x.y) and the the position of the
module itself (x_m, y_m) as input to generate the intra-module
connections (determined by output W ), inter-module connections
(outputM ), time constants (output T ), and node biases (outputB).
The flexible neural controller additionally receive the current leg
length L as input when determining the time constant and bias val-
ues of the hidden nodes.

Following Beer [1] the activation of each neuron in the CTRNN
is determined by the following equation:

yt+1
i = yti +

T

τi
(−yti +

N∑
j=1

wjiσ(y
t
j + θj)), (1)

where:

• yt+1
i is the activation of node i at time step t+ 1.

• yti is the activation of node i at time step t.

• τi is the time constant of node i determined by the CPPN and
scaled into the range [0.1, 2.0].

• θj is the bias for node i determined by the CPPN and scaled
into the range [−3.0, 3.0].

• T is the time slice and set to 0.01 for the experiments in this
paper.

• wji is the weight between node i and j wherew ∈ [−5.0, 5.0].

• σ is the sigmoid activation function.

3.2 Flexible Neural Controller
A flexible neural controller poses a greater challenge; how can

a single CPPN encode a set of different architectures for different
quadruped morphologies, all related but requiring slightly different
gaits to locomote?

The main idea is that a single CPPN is able to create different
ANNs based on both the robot’s internal geometry and its current
leg length. While the connectivity pattern of the network is gen-
erated as described in the previous section, now the leg length is

provided as an additional input to the CPPN for the node-centric
queries of the time constants and biases of the hidden nodes. These
neurons function as the main Central Pattern Generators (CPGs) of
the quadruped, controlling the rhythmic movement of the legs of
the robot. CPGs have been suggested as important functional units
of the central nervous system [11] The hypothesis in this work is
that given the right neural connectivity, a change in the time con-
stants can modulate the gait of the robot to fit a certain morphol-
ogy. Additionally, by supplying the CPPN with a morphology-
dependent input (e.g. leg length) and evaluating it on a variety of
different morphologies, it should be able to learn a relationship be-
tween morphology and control.

While the CPPN in this paper is only augmented with a single
additional input, in principle more inputs could be added (i.e. joint
ranges, maximum torque, torso densities, etc.), allowing the CPPN
to produce an even wider range of different controllers for different
robot morphologies.

A key question about such a flexible neural controller is whether
the CPPN can also in principle generate controllers for intermedi-
ate leg scales on which it was not trained. This capability would
allow one CPPN to produce neural networks for a variety of differ-
ent morphologies without further training. The controllers would
be able to interpolate between the policies of the learned morpholo-
gies, thereby allowing less model-specific controllers than have
heretofore been possible.

3.3 Experimental Setup
Because initial random controllers for legged robots and all of

their immediate perturbations tend to fall they provide a bad gradi-
ent for an objective-driven evolutionary search [14, 25]. There-
fore, this paper employs a variant of evolutionary search called
novelty search that has been shown to overcome such deception in
locomotion-based problems in the past [14]. Novelty search is re-
warded when it finds novel behaviors and whenever a significantly
novel gait is discovered, it is recorded into a permanent archive that
characterizes the distribution of prior solutions in behavior space.
A detailed description of novelty search can be found in Lehman
and Stanley [14]. For the purposes of this study, it is the chosen
learning approach for both static and flexible controllers. In the fu-
ture, when more is known about the proper incentives to encourage
flexible controllers to evolve consistently, a more targeted method-
ology may be warranted. However, at present novelty search, which
is agnostic about the specific objective of the search, is a good
choice for an initial exploration of what is possible.

To investigate the effect of flexible evolving controllers, both
static and flexible neural architectures are trained and tested. Each
neural controller is evaluated on three robot morphologies (figure 1)
with leg segment lengths of 0.25, 0.30, and 0.37 meters. Each eval-
uation lasts for the duration of 15 simulated seconds and is termi-
nated if the robot falls.

Creating controllers for morphologies not seen in training is chal-
lenging because the new quadruped robots must be assigned gaits
automatically. Yet such a capability could be important to learning
controllers for whole ranges of morphologies. To test this capabil-
ity, the best CPPN of each generation of training is tested on sev-
eral different quadrupeds with intermediate leg sizes without fur-
ther learning.

3.3.1 Experimental Parameters
The size of each HyperNEAT population was 300 with 10%

elitism and a termination criterion of 600 generations. Sexual off-
spring (75%) did not undergo mutation. Asexual offspring (25%)
had 0.6 probability of weight mutation, 0.06 chance of link addi-
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Figure 4: Average Training Performance. The average best fit-
ness over generations is shown for the static and flexible neural
controller. The flexible methods performs slightly (though not sig-
nificantly) better than the static approach.

tion, and 0.005 chance of node addition. The available CPPN ac-
tivation functions were sigmoid, Gaussian, absolute value, cosine,
and sine, all with equal probability of being added.

4. RESULTS
Results were collected from 25 runs of static-controller evolution

and 25 runs of flexible-controller evolution. The main question is
whether the flexible neural controller’s ability to potentially learn
a relationship between morphology and control benefits its perfor-
mance when transferred to never-seen intermediate morphologies.

In training on the three morphologies shown in figure 1 both
methods perform similarly (figure 4). The final performance on
these three cases with the flexible method is 4.88 meters traveled on
average (σ = 3.15) in the allocated time, which is slightly (though
not significantly according to the Student’s T-test) better than the
static method, which travels 3.84 meters on average (σ = 1.21).
Interestingly, a significant difference between the two methods is
their standard deviation (p < 0.0001 according to the F-test). This
result suggests that the best controllers possible are more likely to
be found at the tail of the distribution of flexible controllers, which
is where the potential for genuine interpolation may be confirmed.

Indeed, the best gait discovered by the dynamic method trav-
eled 12.39 meters (averaged over the three training morphologies),
while the best gait discovered by the static method traveled only
6.24 meters. Figure 5 shows the neural dynamics of the best evolved
gait from the flexible setup for the medium sized robot (leg seg-
ment length = 0.30 meters). Evolution discovered a dynamic trot
gait, which is characterized by the motor outputs of the opposing
legs being in antiphase with each other.

4.1 Interpolation Performance
More interestingly, the key question is whether any such con-

trollers can work on morphologies never seen in training. Recall
that the flexible neural approach encodes multiple controllers as a
function of their morphology. To test the capability to interpolate
to unseen morphologies, leg segment increments of 0.01 meters
in the interval from 0.25 (small training morphology) to 0.37 me-
ters (large training morphology) were attempted. The threshold for
passing the interpolation test is based on the qualitative behavior of
the evolved solutions and defined as traveling at least 6.00 meters
in the allotted amount of time.

An interesting discovery is that two flexible controllers are in-
deed able to pass this threshold in 12 and 11 out of 13 morpholo-
gies, respectively. In contrast, the best discovered static controller

Table 2: Training and Interpolation Results
Training performance Static Flexible
Average Distance Traveled 3.84 (σ = 1.21) 4.88 (σ = 3.15)
Max Distance Traveled 6.24 12.39
Interpolation performance Static Flexible
# Solved Average 0.52 (σ = 0.71) 2.16 (σ = 3.68)
# Solved Best 2 12

Figure 5: Motor Neuron Dynamics. The neural dynamics of the
four hip outputs (pitch) controlling a medium quadruped with 0.30
meters leg segment length are shown. The dynamics of the op-
posing legs (e.g. anterior left and anterior right) are directly in an-
tiphase with each other, which results in a dynamic trot-like gait.

fails for 11 out of the 13 morphologies. Reflecting the high vari-
ance in solutions, the flexible method solves on average 2.16 inter-
mediate morphologies (σ = 3.68), while the static approach only
solves 0.52 on average (σ = 0.71), which is statistically significant
(p < 0.05).

Thus the results (summarized in table 2) do confirm that such
relationships exist and can be discovered. The CPPN that outputs
these controllers for different leg lengths is the first network inter-
polator of its kind of which the authors are aware. Videos of this
best evolved neural network controller are available at:
http://youtu.be/oLSSt5GyHNk.

An important question is why the best discovered flexible con-
troller that works on 12 out of 13 morphologies, fails on an interme-
diate leg segment length of 0.35 meters. Interestingly, varying the
leg length CPPN input slightly (from 0.35 to 0.355), increases per-
formance on this intermediate segment length from 2.11 to 11.18
meters traveled. This result indicates that a working controller for
this intermediate leg length exist, although it might be sometimes
expressed at a slightly different position in the space of the CPPN
encoded ANNs.

4.2 Relationship Between Morphology and
Control

The better performance of the flexible approach stems from its
ability to generate a neural controller fitted to a specific morphol-
ogy. How is this relationship represented in the underlying ar-
chitecture? Figure 6a shows a correlation between time constant
values of the hidden nodes, which are determined through by the
CPPN (see Section 3.2), and the change of the leg length input.

In particular, the time constant values of the hidden nodes ex-
hibit a significant positive correlation (r = 0.97, p < 0.01) with
the increased leg segment length. This change in time constant
values results in an increased period of the hip (pitch) oscillation
(figure 6b), thereby prolonging the leg stride of the robot (i.e. the
larger the robot’s legs, the larger the leg strides it has to make). This
correlation suggests that the CPPN has actually learned a functional
relationship between different robot morphologies and the network



(a) Relationship Between Time Constant And Leg Size

(b) Hip Output Pattern for Three Different Morphologies

Figure 6: Morphology-Dependant Change. The relationship be-
tween the leg length of the robot and the time constant values of the
hidden nodes are shown in (a). An increase in leg sizes correlates
clearly with an increase of the time constant values controlling the
two right legs. The right anterior hip (pitch) output generated by
the three training quadrupeds are shown in (b). The period of the
oscillation increases with the length of the robot’s legs, resulting in
a prolonged leg stride.

Figure 7: Interpolated Locomotion Example. The composite
image shows a quadruped robot with an interpolated leg segment
length of 0.28 meters (which was never seen in training) success-
fully locomoting from left to right. In this example evolution dis-
covered a dynamic trot gait, which is characterized by the motor
outputs of the opposing legs being in antiphase with each other.

architectures that are necessary to control them. Figure 7 shows the
successful interpolation to an intermediate leg length.

5. DISCUSSION AND FUTURE WORK
The major contribution of this work is conceptual. It introduces

the idea that learning a relationship between morphology and con-
trol may ultimately be more practical than learning individual con-
trollers. Yet to learn such a relationship requires a representation
that outputs controllers, which is what a CPPN can do. An inter-
esting further challenge is to design different representations than
CPPNs that would enable alternative learning methods to Hyper-
NEAT to learn such relationships as well.

While training a flexible CPPN-based controller-generator on
three different morphologies might be expected to generate con-
trollers on those three morphologies, the surprise in this paper was
the discovery that the best such CPPNs actually can generate inter-
mediate controllers as well for morphologies never seen in training.
This discovery suggests that there is a tangible relationship between
morphology and controller architectures that can be discovered and
exploited, at least with quadrupeds. While the reward system in the

experiment (i.e. novelty search) was not set up explicitly to encour-
age such interpolation, now that we know it is possible to do it, a
further important task is to craft reward functions that indeed pro-
duce interpolating controllers consistently.

This task is more complex than it may sound; it is likely that
simply rewarding several intermediate morphologies would present
a deceptive landscape to the search algorithm, which is one reason
novelty search is a good initial choice. However, now that such
solutions are confirmed to exist, the prospect of devising a better
reward scheme to find them consistently is more promising.

Perhaps in the future it will be possible to vary the morphology
of certain canonical types of robots such as quadrupeds or bipeds
and simply pop in a generic controller-generator that fashions an
appropriate controller for the particular variant. Such a capability
could one day liberate roboticists from the minutia of designing
morphology-specific controllers to concentrate instead only on the
best morphology for the job.

6. CONCLUSION
This paper contemplated the possibility that a relationship can be

learned automatically by the computer between robot morphology
and the appropriate controller architecture. To investigate this ques-
tion, a special encoding called a CPPN was provided as input infor-
mation about robot morphology and in turn output a morphology-
specific controller. A significant discovery was that in some cases
such CPPNs actually can output effective controllers for almost ev-
ery intermediate morphology that had not been seen in training.
Thus it appears that achieving such a capability is feasible and
the technique for doing so will likely continue to be refined. Ul-
timately such flexible neural controllers promise to impact the field
of robotics by moving away from body-specific controllers.
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