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ABSTRACT
Multi-objective optimisation yields an estimated Pareto front
of mutually non-dominating solutions, but with more than
three objectives understanding the relationships between so-
lutions is challenging. Natural solutions to use as land-
marks are those lying near to the edges of the mutually non-
dominating set. We propose four definitions of edge points
for many-objective mutually non-dominating sets and exam-
ine the relations between them.

The first defines edge points to be those that extend the
range of the attainment surface. This is shown to be equiv-
alent to finding points which are not dominated on projec-
tion onto subsets of the objectives. If the objectives are
to be minimised, a further definition considers points which
are not dominated under maximisation when projected onto
objective subsets. A final definition looks for edges via al-
ternative projections of the set.

We examine the relations between these definitions and
their efficacy for synthetic concave- and convex-shaped sets,
and on solutions to a prototypical many-objective optimi-
sation problem, showing how they can reveal information
about the structure of the estimated Pareto front.

Categories and Subject Descriptors
G.1.6 [Mathematics of computing]: Global optimization;
G.1.10 [Mathematics of computing]: Applications

Keywords
Mutually non-dominating sets; many-objective optimisation;
visualisation; edge; extrema

1. INTRODUCTION
As optimisation algorithms become capable of tackling

multi-objective problems with at least four objectives, of-
ten called many-objective problems, it becomes important
to find ways of understanding and visualising the solutions
in the approximation to the many-objective Pareto front [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: A two objective mutually non-dominating set with
the two extremal individuals, corresponding to the edges,
marked with circles.

Recently a number of methods have been developed to map
the mutually non-dominated set of solutions to the plane or
three dimensions for visualisation [2, 3]. However, the in-
evitable loss of information concomitant with the dimension
reduction means that the problem owner or decision maker
may need help in navigating the visualisation. One way of
doing that is to identify landmark solutions — individuals
with known properties — against which other individuals
may be compared. Natural landmark individuals are ex-
tremal in one sense or another. For example, the individuals
that maximise or minimise any single objective provide nat-
ural reference points [3]. Singh et al. [4] have given a proce-
dure for finding the corners in multi-objective optimisation
problems. In this paper we extend these ideas by examining
what is meant by the edge of a mutually non-dominating
set.

Although we concentrate on the visualisation aspects of
edge points, they are also of interest for the design of multi-
objective evolutionary algorithms, where it is useful to pref-
erentially retain edge points in a search population, because
these points preserve the spread of the search and are inher-
ently diverse (e.g., [5, 6, 7]).

With two objectives the idea of edges is intuitively straight-
forward: as illustrated in Figure 1, the two individuals lying
at the ends of the set comprise the edges and all the other in-
dividuals lie in the interior. We assume throughout that the
criteria are to be minimised. Likewise, with three objectives
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Figure 2: Three objective concave and convex mutually non-
dominating sets showing extremal individuals. Individuals
minimising and maximising objectives are marked with ma-
genta circles and red triangles respectively. The convex set
comprises 1000 points uniformly sampled from the positive
octant a shell of unit radius. The concave set is generated
from the positive set by y 7→ −y + (1, 1, 1)T .

the observer of a scatter plot of a mutually non-dominating
set such as that shown in Figure 2 can readily identify which
points are close to the edges of the set and which points are
in the interior. Nonetheless, as we discuss later, defining
precisely which individuals comprise the edges in this case
is not entirely straightforward. Identifying these edges is im-
portant for understanding the extent of the set, although it
is generally unlikely that a decision maker, in choosing one
particular solution from the set, will pick one of the edge
individuals, rather preferring another solution that makes a
trade-off between all the objectives. With more than three
objectives the edge points cannot be directly identified vi-
sually and it is not a priori clear that visualisation methods
that map the set to the plane also map the edges in the
original high-dimensional objective space to the edges of the
planar visualisation.

In the rest of this paper we examine four definitions of the
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Figure 3: A mutually non-dominating set of points Y = {yi}
and the region that it dominates U . The attainment surface
S is shown with the thick black line. Points in the region
B dominate the reference point b, whose mth coordinate is
bm = maxy′∈Y y

′
m. Candidate points for sole domination by
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2) are shown in red; see
equation (6).

edges of a mutually non-dominating set, all of which gener-
alise the straightforward two-objective notion. Briefly, the
first of these defines edge points as those that extend the
range of the attainment surface. This turns out to identify
the same edge individuals as a straightforward generalisa-
tion of Singh et al.’s corner points. The other two possible
definitions look for edges in low-dimensional projections of
the set.

We are particularly concerned with the performance of
these definitions for many-objective sets. In addition to syn-
thetic two and three dimensional datasets, which are useful
because the edge points are easily visualised, we therefore
examine these methods on set of solutions to a 9-objective
problem, proposed as a prototypical many-objective prob-
lem by Hughes [8, 9]. Hughes considered the problem of
designing an appropriate set of waveforms that can be trans-
mitted by a Pulsed Doppler Radar to simultaneously mea-
sure the velocity and distance of a target. In the data we
use all the objectives are to be minimised. Objectives 1, 3,
5, and 7 are concerned with range, while objectives 2, 4, 6
and 8 relate to velocity; objective 9 is the total transmission
time of the waveform which is being optimised.

To be definite we assume that the set of mutually non-
dominating individuals Y = {yn}Nn=1 comprises N individ-
uals yn, each of which is an M -dimensional vector of ob-
jective values; yn,m denotes the value of the mth objective
for the nth point. Without loss of generality, we assume
that minimising the objective values corresponds to good
performance.

2. ATTAINMENT SURFACE EDGES
The idea underlying this characterisation of the edge points

of Y is that they extend the attainment surface [10]; that
is, they dominate (unbounded) regions that are not domi-
nated by other elements of Y. This is illustrated for a two-
dimensional set in Figure 3, in which the region {(u1, u2) | y11 <



u1 ≤ y21 and y12 < u2} is dominated only by y1. This re-
gion is unbounded, but note that there are regions close to
the attainment surface which are also dominated by a sin-
gle element of Y, but are bounded. For example, only y3

dominates the rectangle {(u1, u2) | y31 < u1 < y41 and y32 <
u2 < y22}. Our definition of an edge point of Y is thus a
point which extends the region dominated by the attainment
surface by appending an unbounded region.

To make this precise define the region dominated by Y:

U = {y |u ≺ y for some u ∈ Y} (1)

The attainment surface is the boundary of U [7]. Also, let
b be the point which has the maximum coordinate of any
element of Y in each dimension:

bm = max
yn∈Y

ynm (2)

Then let B be the region which is dominated by Y but lies
“below” b:

B = U ∩ {y |y ≺ b} (3)

Finally, we define a function that returns all the elements of
Y that (weakly) dominate a point y:

domsY(y) = {u ∈ Y |u � y} (4)

Given these preliminaries, we define y to be an attainment
surface edge point of Y if and only if there exists a u ∈ U \B
such that | domsY(u)| = 1. That is, y is an edge point if
there are points outside B (i.e., sufficiently far away from Y)
that are dominated by y alone.

In order to determine whether an element y ∈ Y is the sole
dominator of some point u ∈ U \ B we observe (see Figure
3) that points which might be dominated by a single yn lie
“directly above” or “directly to the side” of yn. With this
in mind, candidates for sole domination can be constructed
by extending each yn along each objective axis in turn into
U \ B and testing how many elements of Y dominate it. We
choose a particular hyper-rectangle to project onto, defined
in terms of a point b+ ∈ U \ B, whose coordinates are:

b+m = bm + ε, ε > 0 (5)

So long as it is positive, the value of ε is immaterial. If
the dimension of y is M , then, as illustrated in Figure 3,
M candidate points umn , m = 1, . . . ,M corresponding to yn
are constructed with coordinates:

uin =

{
yni i 6= m

b+m i = m
m = 1, . . . ,M (6)

By construction yn � umn for all m, but if each of the umn
are dominated by at least one other element of Y then yn is
not an edge point. In Figure 3 u1

2 is dominated by y3, y4,
y5 and u2

2 is dominated by y1. However, u2
1 is only (weakly)

dominated by y1, which is therefore an edge point.
Figure 4 presents three examples of edge identification

using the attainment surface. Figure 4(a) shows the edge
points identified in the concave set shown in Figure 2. Here
the method has identified points that agree reasonably with
intuition. However on the convex set Figure 4(b) shows
that the method fails to identify many of the points that
we would hope to lie in the edge set. The reason for this is
explained by considering the two edge points labelled α and
β. In terms of the first two coordinates y1 and y2, α and β

are near-optimal. It is therefore unlikely that another ele-
ment of the set will dominate regions with respect to these
coordinates that are not also dominated by α and β, mean-
ing that few of the individuals in the convex population are
on the edge; the relatively few individuals that are identi-
fied as edge points either have y1 or y2 coordinates smaller
than those of α or β, or have close to optimal y3 coordi-
nates. Figure 4(c) shows the edge points of an “hourglass”
set, which was constructed from the union of 400 samples of
appropriately translated concave and convex sets and thus
incorporates concave and convex regions. Here too the edge
points of the concave region have been well identified, but
points that are intuitively close to the edge of the convex
region do not correspond to this definition.

Straightforward application of this definition to high di-
mensional sets is not successful because almost all elements
of the set are identified as edge points. We find that all but
two of the 11000 individuals in a mutually non-dominating
9-dimensional criterion set [8, 9] are edge points, with simi-
lar outcomes for synthetic sets in many dimensions. This is
to be expected, as it is a side effect of the inability of the
dominance relation to discriminate between individuals in
high-dimensional spaces.

3. FROM CORNERS TO EDGES
We recall Singh et al.’s [4] definition of corner points which

at first sight appear to be good candidates for extremal
points lying on the edge of a mutually non-dominating set.
They consider the minimisation of M functions fi(x) where
x is a vector of decision variables. If, when minimising a
subset of k < M objectives, there exists a single minimising
point, then that point is a corner point. Clearly, in non-
degenerate cases, there are at least M corner points each
corresponding to the minimisation of a single objective, but
there are 2M − 1 possible combinations to be tested.

The definition of corner points might be adapted to a (fi-
nite) set of mutually non-dominating points as follows. Let
κ denote a set of indices and let yκn be the projection of
yn onto the indices indicated by κ. If |κ| = k then yκn is a
k-dimensional vector. Also, let the function nondom(A) be
the function that returns the maximal set of non-dominated
members of the set A:

nondom(A) = {u ∈ A | @(v ∈ A ∧ v ≺ u)}. (7)

Then yi is a corner of order k iff nondom({yκj |yj ∈ Y}) =
yκi ; that is, order k corners are the points that dominate all
others in at least one of the

(
M
k

)
subsets of k objectives.

Clearly, the extremal points in two-criterion sets (e.g., Fig-
ure 1) are also corners. However, with more objectives and
a finite set, corners defined like this do not correspond to
our intuitive notion of where the corners lie. In fact, for
the 3-criterion sets shown in Figure 2 the corners of order 1
are the points that minimise single objectives (marked with
circles) and there are no order 2 corners. Note that in the
concave case the so-called corners do not lie near to where
most people would place the corners.

The reason that there are no order 2 corners is because
on projecting onto a pair of criteria there are many non-
dominated points; that is | nondom({yκj |yj ∈ Y})| > 1.
Those points which are non-dominated when projected are
also candidate edge points. In fact, they turn out to be
precisely the same points as those edge points defined in
section 2 and are therefore those illustrated in Figure 4.
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(a) Concave
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Figure 4: Edge points (crosses) identified by the attainment surface method for concave, convex and hourglass sets.

To see that the non-dominated points following projection
onto criterion subsets are the same points as those which
extend the range of the attainment surface, suppose that y
is non-dominated when projected onto the indices κ; that
is, yκ ∈ nondom({yκj |yj ∈ Y}). Consequently for criteria
m ∈ κ, ym ≤ y′m for all y′ ∈ Y. Then let u ∈ U \ B be
defined as

um =

{
ym m ∈ κ
b+m m 6∈ κ

m = 1, . . . ,M (8)

By construction y ≺ u. On the other hand, if y′ is domi-
nated when projected onto the indicies κ, then there exists
a m ∈ κ and y′′ ∈ Y such that y′′m < y′m. Therefore if there
is a u ∈ U \ B such that y′ ≺ u, then y′′ ≺ u so that y′

is not the sole dominator of u. Thus we have shown that if
y is non-dominated when projected onto indices κ then it
is the sole dominator of a point U \ B and is therefore an
attainment surface edge point.

Conversely, suppose that y is an attainment surface edge
point. Then there exists a u ∈ U \ B such that y ≺ u, but
no other y′ ∈ Y dominates u. Let κ be the indices for which

yk ≤ uk < y′k (9)

Clearly κ is not empty because y ≺ u and y′ ⊀ u for all
y′ ∈ Y (y′ 6= y). Then (9) shows that when projecting
onto the criteria κ, we have yκ ≺ (y′)κ for all y′ ∈ Y,
which establishes that attainment surface edge points are
non-dominated when projected onto some criterion subset.

We anticipate that the equivalence we have shown be-
tween points that extend the attainment surface and points
which are non-dominated when projected onto some subset
of the criteria will be of use in evolutionary multi-objective
algorithms, such as [5, 6, 7], which seek to preserve diversity
and the spread of the estimated Pareto front by preferen-
tially retaining and perturbing solutions on the periphery of
the solution set.

In section 5 we return to the notion of identifying edges
through projections onto criterion subsets, but we first con-
sider an alternative way of identifying edges.

Figure 5: Non-dominated points identify the boundary of
a set. Non-dominated regions of the set in the plane are
marked in red.

4. DOMINANCE-BASED EDGES WITH
ROTATIONS

The motivation for this method comes from the fact that,
as illustrated in Figure 5, the non-dominated elements of
a set define a portion of the set’s edge. The edges of the
set could therefore be identified as the union of the non-
dominated points as the set is rotated.

In general the points of a multi-criterion non-dominated
set are not co-planar, so in order to use this idea with many-
criterion non-dominated sets we first project the points in Y
onto a plane in which they remain mutually non-dominating.

Without loss of generality, we assume that the elements of
Y are non-negative (ynm ≥ 0 for all n,m). Then the simplex
defined by the numbers {λm : λm > 0}Mm=1 is the portion
of the (hyper-) plane which lies in the positive orthant and
which intersects the coordinate axes at distances λm from
the origin, as illustrated in Figure 6. The simplex is therefore
the segment of the plane in the positive orthant defined by

n · y = d ym ≥ 0, m = 1, . . . ,M (10)

where the elements of the unit vector n normal to the sim-
plex are nm = d/λm and the perpendicular distance to the
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Figure 6: Projection of a point y onto the simplex defined
by {λ1, λ2, λ3}; y is projected to ŷ.

origin d can be found as

d−2 =

M∑
m=1

λ−2
m . (11)

Points are then projected onto the simplex by:

ŷn = yn/(yn · n), (12)

and we emphasise that the projection of Y results in a set
of mutually non-dominating points. The choice of the λm
clearly affects the particular projection, but since the domi-
nance relations between the points are unaffected, the method
is not sensitive to the precise values. We have used λm =
mediany∈Y ym here.

To identify the edges of this set, we now rotate the ŷn
in the plane of the simplex and identify the non-dominated
points in each rotation.

Coordinates for the ŷn on the simplex may be simply
found by projecting the ŷn onto their principal components
or equivalently by singular value decomposition. Let Ŷ =
[ŷ1 − µ, . . . , ŷN − µ] be the matrix whose columns are the

mean-centred ŷn and let Ŷ = UΣVT be the singular value
decomposition of Ŷ. Then the first M − 1 columns of the
orthonormal matrix U span the subspace of the simplex (the
last column is a vector normal to the simplex). Coordinates
of yn mapped to the simplex are thus

ỹn = UT
M−1(ŷn − µ) (13)

where UM−1 denotes the matrix of the first M − 1 columns
of U.

Rather than exhaustively quartering all rotations, we gen-
erate rotations Q at random. Uniformly distributed random
rotations are generated by, for example, a QR decomposition
of (M − 1)× (M − 1) dimensional matrices whose elements
are Gaussian distributed. The signs of the columns of Q are
arbitrary, so in all 2M−1 rotations can be cheaply generated
from a single QR decomposition by appropriately flipping
the signs of the columns of Q.

Figure 7: Edge points of the hourglass set identified from
non-dominated points after projection onto the simplex and
64 random rotations and associated flips.

As each rotation is generated the non-dominated points
nondom({Qỹn |yn ∈ Y}) are found and the corresponding
y added to the identified edge points.

This method of determining edges is demonstrated for the
hourglass set in Figure 7. It is clear that a reasonable set of
points has been identified as edge points, both on the upper,
concave portion and on the lower, convex section. However,
the relationship of these edge points to those found with the
attainment surface or by projection onto subsets of the cri-
teria is not clear. We note also that if Y, when projected
onto the simplex, has “deep and narrow” concavities then
this method will be unable to locate edge points in the con-
cavities.

We also applied this method to the task of identifying the
edge of the 9-criterion radar data. However, like the other
methods, it too identifies all points as being on the edge.
Again, this is due to the relative lack of discrimination pro-
vided by the dominance relation in high dimensional spaces.

5. CRITERION SUBSET EDGES
In section 3 we identified edges as the non-dominated

points after projection onto k of the M criteria. As we
showed there, these points are the points which extend the
range of the attainment surface. However, reference to Fig-
ure 2 for example shows that points which maximise one
of the criteria also lie on the intuitive edges of concave and
convex fronts. In this section we therefore extend the crite-
rion for a point to be an edge point by including points that,
after projection onto k of the criteria, are not dominated if
the criteria were to be maximised rather than minimised.

To be specific, let the function nondom(Y) be the function
which returns the maximal set of non-dominated members
of Y under maximisation:

nondom(Y) = {y ∈ Y | @(v ∈ Y ∧ v � y)} (14)

Then, with yκ denoting the projection of y onto the criteria
specified by κ, our final definition of the set of edge points



Figure 8: The hourglass data projected onto criteria y2 and
y3. Points which are non-dominated under minimisation
and maximisation are marked with green and red crosses
respectively.

Figure 9: Edge points of the hourglass data identified
as non-dominated under minimisation or maximisation af-
ter projection onto criterion subsets. Points which are
non-dominated under minimisation and maximisation are
marked with green and red crosses respectively; those which
are non-dominated under both are marked in black.

order k = |κ| is:

{yn |yκn ∈ nondom({yκn |yn ∈ Y})}
⋃

{yn |yκn ∈ nondom({yκn |yn ∈ Y})}. (15)

As an illustration, Figure 8 shows the projection of the
hourglass data onto criteria y2 and y3. Points which are
non-dominated under minimisation and maximisation are
marked with green and red crosses respectively and those
that are non-dominated under both are marked in black. It
can be seen that these correspond to different regions of ex-
tremal points. Figure 9 shows all the edge points identified
after projections onto all the criterion subsets. As the figure
illustrates, this definition of edge points has identified a uni-
form spread of points corresponding to what we intuitively
identify as edges.
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Figure 10: Attainment surfaces under minimisation and
maximisation. The attainment surfaces of a mutually non-
dominating set of points Y = {yi} under minimisation and
maximisation are shown by green dashed and red dotted
lines respectively.
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Figure 11: Dominance distance MDS visualisations of 200
samples from the radar data. Solutions are coloured by their
average rank. The best and worst solutions on each objective
are labelled by that objective in blue and red respectively.

The attainment surface of Y under maximisation S̄ may
be defined as the boundary of the region dominated under
maximisation by the elements of Y. Figure 10 illustrates
the attainment surfaces under minimisation and maximi-
sation for a set of mutually non-dominating points in the
plane. Whereas the attainment surface under minimisation
is a conservative interpolation of the set [7] in the sense that
every point in S is weakly dominated by an element of Y,
the attainment surface under maximisation can be seen to
be an optimistic interpolation of Y. Using the same argu-
ments as presented in section 3, the edge points identified as
non-dominated under maximisation are exactly those which
extend the range of the attainment surface under maximisa-
tion. We note that for two criteria, the extremal points are
edge points because they extend both S and S̄; of course,
this is not the case with more than two criteria.

To visualise the edges of the radar dataset we first project
it into two dimensions. Rather than use the objective val-
ues directly, we seek to capture the order relations between
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Figure 12: Cellular visualisations of the radar population embedded into 2 dimensions with dominance distance MDS. Cells
are coloured according to the median frequency with which edge points in the cell are edge points in a k-criterion subset.

the elements of the set. This is done by defining a domi-
nance distance between elements, which quantifies the ex-
tent to which two elements are on average greater than, less
than or equal to other elements in the set. The dominance
distance is formally a metric [3]. Metric multi-dimensional
scaling (MDS, [11, 12]) is then used to find an embedding in
Euclidean space which preserves the dominance distances.
Figure 11 shows the dominance distance MDS visualisation
of 200 solutions of the radar data, in which solutions are
coloured by their average rank. As the figure shows, the
visualisation provides a topographic low-dimensional repre-
sentation of the data. Additional details and visualisations
are given in [3].

In common with the other definitions of edge points, with
many criteria the vast majority of points are edge points.
Table 1 shows the variation of the number of edge points
identified in 2000 radar data points. Clearly the fraction of
edge points grows with the number of criteria. For compar-
ison the table also shows the number of order k edge points
for 2000 points uniformly distributed on the positive orthant
of a spherical shell in 9 dimensions; here the convex nature
of the front is apparent in the disproportionate number of
edge points from maximisation.

Figure 12 shows the dominance distance embedding of
the radar data divided into cells, each of which is coloured
according to the median frequency of edge cells for orders
k = 2, . . . ,M −1 = 8. As shown, identified edge points tend

Radar front Convex front
|κ| Min Max Both Min Max Both
2 469 201 87 151 372 49
3 1611 1182 951 498 1691 482
4 1949 1793 1745 941 2000 941
5 1993 1950 1943 1693 2000 1693
6 1998 1986 1984 1693 2000 1693
7 1998 1996 1994 1894 2000 1894
8 1998 1998 1996 1981 2000 1981

Table 1: The number of order k = |κ| edge points in 2000
solutions from the radar estimated Pareto front and from
a 9-criterion convex mutually non-dominating set. Columns
show the number of edge points arising from non-dominance
under minimisation, under maximisation and the number
that are non-dominated under both.

to occur more frequently close to the edges of the dominance
distance MDS projection. The projection and this definition
of edge points therefore concur about where the boundaries
of the set lie. For all orders the maximum density of edge
points is found on the horns of the crescent, which is also
where the points maximising or minimising individual crite-
ria are mostly located, as shown in Figure 11.

An additional interesting feature revealed by this visuali-
sation of the edge points is the region of higher edge point



Figure 13: Dominance distance MDS embedding of the radar
data with points coloured according to the type of objective
for which they are most highly ranked. Red: range. Blue:
velocity. Black: duration. There is a distinct boundary
between solutions which best optimise range criteria and
those which best optimise velocity criteria or transmission
time. This boundary is in the same position as the high
density of edge points shown in Figure 12.

density crossing the embedding from top to bottom towards
the righthand third of the embedding. The criteria on which
the radar data is optimised divide into three groups. One
group (f1, f3, f5 and f7) relate to the range at which a radar
can discern targets. The second group (f2, f4, f6 and f8)
relates to the velocity at which the radar can be moving and
still discern targets, while the final group (f9) comprises a
single objective, the transmission time of the radar wave-
form. Individual solutions tend to optimise one of these
groups of criteria at the expense of the others [3]. Plotting
the solutions coloured according to which of these groups is
best optimised, Figure 13, shows that the high edge point
density region corresponds to the transition between solu-
tions that best optimise the range objectives and those that
best optimise the velocity objectives.

6. CONCLUSION
Three of our definitions of edge points are closely related

to the attainment surface, which plays a fundamental role in
understanding which points lie close to the edges of a mutu-
ally non-dominating set. We have shown that the definition
of edge points as those points which extend the range of
the attainment surface yields precisely the points which are
non-dominated in a projection onto a subset of the criteria.

Note that the edge points identified as the maximal mutu-
ally non-dominating points after projection onto subsets of
the criteria have also been considered by di Pierro et al. in
their k-preference ordering [13], in which a many-objective
point is considered important if it remains non-dominated
when projected onto criterion subsets. Although somewhat
counter-intuitive we have shown that points which remain
non-dominated under maximisation after projection onto
criterion subsets are also important, because they too are
on the edges of the set. They play a particularly important
role in convex-shaped sets.

Of the four candidate definitions of edge points we prefer

the final one (§5), which identifies edge points as those points
which, after projection onto k criteria, are not dominated
under either minimisation or maximisation. As the examples
show, it most fully captures the intuitive notion of edges and
is simple to compute.

As the number of criteria increases and almost all points
are edge points and thus extend the range of the attainment
surface, we emphasise that regions with a high frequency of
edge points correspond to the boundaries of low-dimensional
visualisations, and furthermore reveal previously unknown
structure in a many-objective optimisation problem.
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