
Hyperplane Initialized Local Search for MAXSAT

Doug Hains and Darrell Whitley and Adele Howe and Wenxiang Chen
Department of Computer Science

Colorado State University
Fort Collins, CO, U.S.A. 80523

{dhains,whitley,howe,chenwx}@cs.colostate.edu

ABSTRACT
By converting the MAXSAT problem to Walsh polynomials, we
can efficiently and exactly compute the hyperplane averages of fixed
order k. We use this fact to construct initial solutions based on
variable configurations that maximize the sampling of hyperplanes
with good average evaluations. The Walsh coefficients can also be
used to implement a constant time neighborhood update which is
integral to a fast next descent local search for MAXSAT (and for all
bounded pseudo-Boolean optimization problems.) We evaluate the
effect of initializing local search with hyperplane averages on both
the first local optima found by the search and the final solutions
found after a fixed number of bit flips. Hyperplane initialization
not only provides better evaluations, but also finds local optima
closer to the globally optimal solution in fewer bit flips than search
initialized with random solutions. A next descent search initialized
with hyperplane averages is able to outperform several state-of-the
art stochastic local search algorithms on both random and industrial
instances of MAXSAT.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Theory, Algorithms

Keywords
Local Search, Initialization, MAXSAT

1. INTRODUCTION
The early theoretical analysis of genetic algorithms emphasized

the potential for populations to explicitly estimate hyperplane av-
erages and to use this information to guide search [9, 7]. While
this line of research has been criticized [17], a similar idea is at
the foundation of estimation of distribution algorithms: informa-
tion about the interaction between variables can be used to guide
search [14, 8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13,July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$10.00.

For all k-bounded pseudo-Boolean optimization (PBO) prob-
lems, we can convert the evaluation functions into a polynomial
form in O(n) time. This allows us to quickly and exactly compute
low order hyperplane averages. We can then explicitly determine
which combination of variable assignments will lead to the highest
overall combined hyperplane average. By using this information to
initialize search we achieve two results: 1) search starts at a solu-
tion thatmustbe better than average, reducing the number of steps
needed to reach a local optimum, and 2) the initial solution is in a
region of the search space that is also better than average relative
to other regions. Thus, not only is the initial solution better than
average, solutions that are nearby in Hamming space must also be
better than average.

A wide range of important optimization problems are naturally
expressed as k-bounded PBO problems. In computing, this in-
cludes hardware verification, combinatorial auctions, design de-
bugging, software testing and graph coloring[13] as well as clas-
sic NP-hard problems such as MAXSAT, vertex cover, maximum
cut, and maximum independent set [1]. In biology, NK-landscapes
have been developed as a general model for interacting sets of com-
ponents (alleles, proteins, amino-acids) with applications in RNA-
folding [19, 18] and the study of viruses [5]. In physics, Ising spin
glasses correspond to PBO problems [4].

In this paper, we focus on MAXSAT for three reasons. First,
local search algorithms for MAXSAT have been widely studied
for more than 20 years. Thus, improving local search algorithms
for MAXSAT is very challenging. Second, there are many well
studied and widely available benchmark problems as well as real
world problems that have been reduced to MAXSAT problems.
Third, other methods for initializing search have been studied for
MAXSAT. In particular, other researchers have attempted to iden-
tify "backbone variables" as a way to initialize search [26].

We show how the Walsh transform can be used to efficiently cal-
culate the hyperplane averages of MAXSAT instances and then de-
scribe a method of using these averages to construct a solution.
This method consistently produces solutions with better evalua-
tions than those constructed with a uniform random distribution,
the standard practice for local search algorithms. We conjecture
that this method also finds solutions closer to the backbone. We
empirically test this conjecture on random instances of MAX-3SAT
and find that our hyperplane construction algorithm sets variables
in the backbone to their correct assignments in the majority of
cases.

The calculation of hyperplane averages requires Walsh coeffi-
cients; we show how the coefficients can also be used to implement
a constant time neighborhood update in local search. We use this
update to develop a constant time next descent local search algo-
rithm. This algorithm helps assess the effect of hyperplane initial-

ization on two factors: the first local optimum encountered and the
final solution aftern bit flips.

We find that the first local optima found by next descent search
when initialized with hyperplane averages have better evaluations
than those found by randomly initialized search. These results are
consistent across both real world and random instances of MAXSAT.
Furthermore, the first local optima are found more quickly and are
closer to an optimal solution on an industrial MAXSAT problem.

To assess the longer term impact of the initialization, the algo-
rithms are run forn bit flips, well past the first local optimum.
Again, the solutions found by hyperplane initialized search are al-
ways significantly better than those found by randomly initialized
search. When our Walsh-based next descent search algorithm is
initialized with hyperplane averages, it outperforms several state-
of-the-art stochastic local search algorithms for MAXSAT.

Finally, the speedup induced by exploiting Walsh coefficients
is greater for industrial problems, as opposed to randomly gener-
ated problems. Industrial problems tend to have a very high rate of
co-occurring variables due to the algorithms used to convert gen-
eral satisfiability expressions into CNF-SAT. These co-occurrences
translate into overlapping Walsh coefficients and more compact
Walsh polynomials, which translates into faster updates per move.

2. THEORETICAL FOUNDATIONS
A discrete functionf : {0, 1}n 7→ R can be decomposed into an

orthogonal basis

f(x) =

2n−1
X

i=0

wiψi(x)

wherewi is a real-valued weight known as aWalsh coefficientand
ψi is aWalsh function. The indexi and vectorx can be represented
as binary strings, and standard binary operations can be applied.
The Walsh function

ψi(x) = −1iT x(−1)bitcount(i∧x)

generates a sign: ifiT x is oddψi(x) = −1 and if iT x is even
ψi(x) = 1.

The MAXSAT objective function is given by

f(x) =

m
X

j=1

fj(x, maskj)

where each subfunctionfj corresponds to a clause andmaskj se-
lects the bits used byfj . Since MAXSAT is a linear combination
of subfunctions, we can apply the Walsh transform to each clause:

w =

m
X

j=1

Wfj

wherew is a vector of polynomial coefficients andW is a discrete
Fourier transform known as the Walsh transform. This generates
the Walsh coefficients associated with each clause, and then adds
them together as needed. We will use the Walsh transform with-
out normalization, since this results in all of the Walsh coefficients
being integer values. Rana et al. [16] show that we can dispense
with matrixW and directly compute the Walsh coefficient associ-
ated with each clause. Each subfunctionfj contributes at most2k

nonzero Walsh coefficients to vectorw.
A single Max-3SAT clause generates eight coefficients: the con-

stantw0, three linear coefficients and four nonlinear (3 pairwise
and 1 order-3). Thus, overm clauses, there are at most4m nonlin-
ear coefficients.

We assume the Walsh coefficients and their signs have been com-
puted for some initial solutionx and will useb to index all of the
Walsh coefficients in vectorw′(x). Let p ⊆ b denote that every bit
in stringp that has value1 must also have value1 in stringb. For
the moment, assumep has only one bit set to value 1, and all others
are 0. We can then compute the sum of all of the Walsh coefficients
that are affected when local search flips bitp.

The Walsh function,bitcount(i ∧ x), counts how many 1-bits
are in the bit string produced by the logical operationi ∧ x. If the
bit flip in string x does not interact with a bit in stringi, it has no
impact on Walsh coefficient contributionψi(x)wi. If the bit flip in
x does interact with a bit in stringi, it flips the sign generated by
ψi(x) sincebitcount changes by exactly 1.

To exploit this idea, the vectorw′ will store the Walsh coeffi-
cients; this will include the sign relative to the current solutionx.

w′
i(x) = wiψi(x)

We next accumulate all of the Walsh coefficients that include a
single bitp.

Sp(x) =
X

∀b, p⊆b

w′
b(x) (1)

When a flip occurs, onlyk Walsh coefficients per clause change.
For example (indexing from right to left), assume the current solu-
tion (clause assignment) isx = 000 and we flip one bit such that
x1 = 001 then:

f(001) = f(000) − 2w′
1(x) − 2w′

3(x) − 2w′
7ψi(x)

f(001) = f(000) − 2S1(x)

The indices 1, 3, and 7 act as bit masks that select variables. This
leads to Lemma 1.

Lemma 1.
Let functionN(x) generate the set of neighbors of solutionx.

Let yp ∈ N(x) be the neighbor of stringx generated by flipping
bit p. Thenf(yp) = f(x) − 2(Sp(x)).

Whitley and Chen provide a detailed proof [25]. Assume bitp is
flipped; we must update sums inS that include Walsh coefficients
that are jointly indexed byp. Let b represent a bit string such that
w′

b is a nonzero Walsh coefficient.

Sq(yp) = Sq(x) − 2
X

∀b,(p∧q)⊆b

w′
b(x) (2)

The vectorw′(x) must also be updated. The sign is flipped for
those coefficients affected by flipping bitp.

∀b, if p ⊆ b, w′
b(yp) = −w′

b(x)

otherwise w′
b(yp) = w′

b(x)

For each clause that is affected, when 1 bit flips, there arek −
1 other sums inS that must be updated. Assumekc clauses are
affected: then there are at mostkc(k − 1) updates to sums inS
for each bit flip. If bitp is flipped we must also updateSp(yp) =
−S(x). This yields a total ofkc(k − 1) + 1 updates to vector S.

Whitley [24] translates this special case result into an O(1) bound
on the average case computation. Whitley and Chen extend that re-
sult to cover NK-landscapes [25]. This proof depends on holding
bits that appear in a large number of clauses tabu after they are

flipped to amortize cost; this can be particularly important on in-
dustrial MAXSAT problems.

If an element ofS does not change, the bit flip cannot yield a new
improving move. Therefore we can identify any new improving
move inO(1) time. For next descent, we simply maintain a list of
improving moves. As improving moves are created or destroyed by
updates to the vectorS, the list is updated as well. Then, we can
select any improving move randomly from the list.

Note that ifSj(x) is negative, then flipping bitj must yield an
improving move. Thus,Sj(x) can be used as a proxy forf(yj)
becausef(x) is constant asj is varied.

The detailed proof ofO(1) complexity per move is an amortized
average case result [25], which is beyond the scope of the current
paper. However, if every bit is flipped exactly once, the number of
updates tow′ is at mostck2k−2. As a special case, whenk = 3 we
obtainck(k − 1) = ck2k−2 = 6c which is independent of number
of variables or clauses.

2.1 Compact Walsh Polynomials for MAXSAT
In the general case, the Walsh polynomials associated with ran-

dom Boolean functions are exponentially large. However, this ig-
nores the fact that most evaluation functions are decomposable.

There are two ways to obtain MAXSAT problems: they can be
randomly generated, or they can be produced by reducing another
problem to a MAXSAT problem. Assume we wish to reduce the
following Boolean satisfiability problem (from Cormen et al. 2001)
into a MAX-3SAT problem.

φ = ((x1 −→ x2) ∨ ¬((¬x1 ⇐⇒ x3) ∨ ¬x4)) ∧ x2.

This would be converted to a binary “parse" tree (which might dou-
ble the number of variables). Anintermediate form is then pro-
duced which “and’s" together expressions over triples of variables
of the form y1 ⇐⇒ y2 ∧ ¬x2.

To be more concise, assume we just want to convert the Boolean
expressionx2 ∧ ¬x3 to MAX-3SAT and we use theintermediate
form x1 ⇐⇒ x2∧¬x3 wherex1 is an introduced variable. Using
a truth table (see Cormen et al. 2001) to extract the DNF formulas
and then applying DeMorgan’s laws to obtain the CNF formulas
yields the following literal clauses.

(x2 ∧ ¬x3) ≡ ((¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

∧(¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3))

This reduction yields four clauses that reference exactly the same
three variables. It is simple to prove by enumeration of cases that all
“if and only if" expressions over three variables will yield exactly
four literal clauses unless the expression reduces to a simpler form.

Why is this important? If four clauses share exactly the same
variablesx1, x2 andx3 then the Walsh coefficientsw1,2, w2,3, w1,3

andw1,2,3 will capture all of the nonlinear interactions from all
four clauses simultaneously using just these four numbers. This, in
effect, compresses the representation back to a size that reflects the
underlying intermediate form.

Large uniform random MAXSAT problems have surprisingly
few duplicate nonlinear interactions. The maximum number of
nonlinear terms in MAX-3SAT is four. Randomly generated MAXSAT
problems with 100,000 variables typically have 3.999 unique Walsh
coefficients per clause; this number approaches 4.0 asn increases.

We analyzed 14 large industrial problems with variablek from
the MAXSAT 2012 challenge (http://maxsat.ia.udl.cat/); the prob-
lems range in size from 247,943 to 2,766,036 variables. As shown
in Table1, these real world problems have a median of just 1.17
Walsh coefficients per clause (mem-ctrl problem), just slightly more

Maximum Median Minimum
Instance b15 fpu mem-ctrl wb-46 rsd-KES
WPC 1.69 1.26 1.17 0.97 0.73

Table 1: The number of Walsh coefficients Per Clause (WPC).
We report the 2 maximum and 2 minimum WPC, as well as the
median WPC over 14 industrial problems.

than 1 integer number per clause. Some applications have less than
one Walsh coefficient per clause (e.g., wb-46 and rsd-KES as the
minimum).

Real world industrial problems have fewer Walsh coefficients on
average than random MAX-3SAT problems. As the update cost
during search is a function of the number of Walsh coefficients, the
update cost for industrial MAXSAT problems will be much faster
than updates on uniform random problems.

2.2 Computing Hyperplane Averages
The search space of a MAXSAT instance withn variables and

m clauses corresponds to an-dimensional hypercube. If we ‘fix’
the truth values ofj variables to 1 or 0, the search space is reduced
to a(n − j)-dimensional hyperplane.

The Walsh coefficients can be used to efficiently compute the av-
erage evaluation of solutions contained in any(n− j)-dimensional
hyperplane [16] [6]. Let h denote a(n−j) dimensional hyperplane
wherej variables have preassigned bit values. Letα(h) be a mask
with 1 bits marking the locations where thej variables appear in
the problem encoding, and 0 bits elsewhere. Let solutionx assign
values to thej variables. Letβ(h) = α(h) ∧ x. This meansβ(h)
has value 0 in all of the positions where thej bits do not appear,
and has the assigned values of the relevantj bits in the appropriate
bit locations. Then the average fitness of hyperplaneh is

Avg(h) = favg +
X

∀b,b⊆α(h)

wbψb(β(h))

wherefavg = wo is the average over the entire MAXSAT search
space, i.e.favg = (2k − 1)/(2k) ∗ m.

Although we can find the averages of any number of hyperplanes
using this method, for the current study we compute the averages of
the2km hyperplanes that exactly correspond to them clauses. For
example, in a MAX-3SAT problem, there are seven assignments
that can make a clause true. For each of these assignments, we can
compute the hyperplane averages: this tells us how, on average, this
assignment will impact the evaluation function over the remainder
of the search space. Note that we only need to compute the hy-
perplane averages once. Thus, we not only have local information
(whether the assignment makes a clause true or not), we also have
global information about how the assignment affects the rest of the
search space. The computational complexity to do this isO(n)
assumingm = cn andc is a constant.

3. HYPERPLANE VOTING
We now describe a method of exploiting hyperplane averages to

construct solutions to MAX-SAT that we callhyperplane voting.
While we use MAX-3SAT to describe the method, hyperplane vot-
ing can be applied to any MAX-SAT problem.

In MAX-3SAT, given a clausevi containing the variablesp, q,
andr, there are eight possible assignments of these variables: 000,
001, 010, 011, 100, 101, 110, and 111. We compute the averages
of the eight hyperplanes formed by fixingp, q and r to each of
these partial assignments and leaving the remaining variables free.
This process is repeated for each clause in the instance. Thus we

2 4 6 8 10 12 14

0
50

0
10

00
15

00

Clause/Variable Ratio

M
ea

n
U

ns
at

is
fie

d
C

la
us

es
Uniform Random
Hyperplane Voting

Figure 1: Mean number of unsatisfied clauses in randomly gen-
erated MAX-3SAT instances found by initializing solutions us-
ing a uniform random probability distribution and hyperplane
voting. n = 1000; in expectation, there should be1/8m unsat-
isfied clauses.

compute eight hyperplane averages for each clause for a total of
8m hyperplane averages. We then use the hyperplane with the best
average from each clause to calculate a probability distribution over
all n variables as follows.

Let vi = {p, q, r} be the three variables in clausei. Let Ai :
vi 7→ {0, 1} be the partial assignment of the variables in clause
i that correspond to the hyperplane with the highest average for
clausevi. Let truej count the number of times that variablej is set
to 1 across all partial assignmentsA and lettotalj count the total
number of times that variablej appears across all clauses (assign-
ments):

truej =
X

∀i:j∈vi

Ai(j)

totalj = truej +
X

∀i:j∈vi

(1 ⊕ Ai(j))

where(1 ⊕ Ai(j)) = 1 whenAi(j) = 0. We define the following
probability distribution over truth assignments based on the hyper-
plane voting:

P (j = 1) =
truej

totalj

Solutions are then constructed by generating a random value in the
range of(0, 1) for each variable. If the random value generated for
variablej is greater thanP (j = 1), j is set to 1, otherwisej is set
to 0.

We generated uniform random MAX-3SAT instances withn =
1000 andc/v varying from 1-15. 100 solutions were constructed
using each of hyperplane voting and uniform random initialization.
Figure1 shows the mean unsatisfied clauses of the initial solutions
constructed for each instance. Hyperplane voting significantly de-
creases the number of unsatisfied clauses in the initial tour.

3.1 Estimating Backbone Variables
We are aware of only two other initialization methods for MAXSAT

that are able to improve over a uniform random solution, due to

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Backbone Variables

P
ro

ba
bi

lit
y

of
 c

or
re

ct
ly

 a
ss

ig
ni

ng
 b

ac
kb

on
e

va
ria

bl
e

Figure 2: Probability of correctly setting backbone variables
based on the hyperplane voting method of a randomly gener-
ated MAX-3SAT instance. The horizontal line marks a prob-
ability of .5; points over this line indicate a bias towards the
correct assignment of a backbone variable.

Zhang et al. [26] and Qasem et. al [15]. In both of these cases, lo-
cal search must first be run multiple times with a uniform random
initialization to construct a set of local optima. The frequency of
assignments for each bit found in the set of local optima are then
used to initialize subsequent runs of local search. It is hypothesized
that these frequencies can provide a good estimation of theback-
bone, a subset of variables that are consistently assigned either true
or false across all global optima [26, 15].

We conjecture that hyperplane voting is also able to produce a
good estimate of the backbone. To determine how well our proba-
bility distribution estimates the backbone, we found the backbone
to 10 randomly generated MAX-3SAT instances withn = 20 and
m = 85 by enumerating the search space to find all optimal solu-
tions. We then generated the probability distribution for initializing
variables for each of these instances using the hyperplane voting
method described above.

Figure2 depicts the probability of assigning a backbone variable
the correct truth assignment using hyperplane voting. Any point
over .5 denotes a bias towards correctly assigning a variable to the
backbone. We counted the number of correct assignments based
on hyperplane voting on all instances and found that hyperplane
voting biases the initial assignment towards the backbone in 121 of
the 163 backbone variables found across these 10 instances. We can
consider the probability distribution found by hyperplane voting as
a prediction of the backbone variable assignments. The mean abso-
lute error of these predictions against the correct assignments of the
backbone variables averaged 0.27 with a standard deviation of .08
across the 10 instances. Hyperplane voting provides a remarkably
good estimation of the backbone variables considering that no prior
sampling of the space is required.

4. INITIALIZING LOCAL SEARCH
Hyperplane voting can improve the initial solution and provide

an estimation of the backbone variables on random instances of
MAX-3SAT, but how do the solutions produced by hyperplane vot-
ing influence subsequent search? We investigate the effect of hy-

perplane voting on two factors: the first local optimum encountered
and the final solution aftern bit flips. In these experiments, we have
two sets of benchmark problems: random and industrial instances.

4.1 Random Instances
We generated random MAX-3SAT problems by assigning three

variables to each ofm clauses fromn variables with equal proba-
bility. To examine the effect of problem size, we chosen =500,000,
1,000,000, 1,500,000 and 2,000,000. The number of clauses was
set tom = 4.27n as this is the standard value used in many SAT
and MAXSAT studies [10]. The bottom rows in Table2 show the
exactn andm values of these problems as well as the mean evalu-
ation of 50 solutions constructed by hyperplane voting and random
initialization.

4.2 Industrial Benchmarks
To address the effectiveness on application problems, we se-

lected a subset of the 52 industrial instances from the MAXSAT
2012 challenge. The number of variables (n) and number of clauses
(m) are shown in the top rows of Table2. These problems were
used in a circuit-board testing method utilizing MAXSAT solvers [2,
20]. These problems therefore represent circuits converted to a
Boolean formula in conjunctive normal form as previously described.

Instance n m Hyperplane Random
div-8 246943 810105 90076 146660
fpu 257168 928310 87601 159129

wb-problem-46 300846 789283 97079 165097
wb-conmax1 277950 1221020 89124 182860

c2-1 400085 1121810 130552 231442
i2c-25 521672 1581471 193869 309250
b15 581064 1712690 277864 368333

mrisc 844900 2905976 233463 509772
rsd-41 1186710 3829036 292403 685756
rsd-37 1513544 4909231 382916 876443

mem-ctrl2 1974822 6795573 610751 1182789
wb-4m8s-48 2766036 8774655 769608 1594813

3sat-.1m 100000 427000 24343 53416
3sat-.5m 500000 2135000 122078 266942
3sat-1m 1000000 4270000 244557 533762

3sat-1.5m 1500000 6405000 367019 800636
3sat-2m 2000000 8540000 489144 1067515

Table 2: The left most columns respectively indicate the in-
stance, the number of variablesn and number of clausesm
found in selected industrial instances from the 2012 MAXSAT
challenge (top) and in random instances (bottom). The right
two columns are the mean number of unsatsified clauses in 50
solutions constructed by hyperplane voting and uniform ran-
dom initialization, respectively. P -values of standardized T-
tests between the evaluations were< 1 × 10−100 in all cases.

4.3 Effect on Local Optima
Does initializing local search with hyperplane voting improve

the solutions found? We use the fast Walsh update to theS vector
to implement a next descent search algorithm (see Algorithm1)
which we callWalshSAT-N(N=Next Improving Moves). If at least
one improving move exists, it will be taken. If no improving moves
exist, an equal move is taken; otherwise a random move is made.

We first examine the effect of initialization on the first local op-
timum found. We ran WalshSAT-N on both sets of instances until
a local optimum was found. (When the improving move buffer is
empty, the search halted, and steps 9-16 are not executed.) We ran
two versions of WalshSAT-N: hyperplane voting and uniform ran-
dom initialization for step 2. Each was executed in 50 trials record-

ing both the evaluations of the local optima found and the number
of bit flips required to reach a local optimum. The means and stan-
dard deviations of evaluations are shown in Table3; the means and
standard deviations of the number of bit flips to a local optimum
are shown in Table4. Welch paired T-tests confirm that the local
optima found by hyperplane initialized search are significantly bet-
ter than those found by randomly initialized search (p < .000001
in all tests).

Not only are the local optima found by hyperplane initialized
search better than those found by random initialized search, but
they are also found in less bit flips. Thus the initial solutions con-
structed by hyperplane voting are closer to better local optima than
random solutions.

Although hyperplane initialization finds better solutions in less
bit flips, this could be detrimental to the overall search if the lo-
cal optima are further away from aglobally optimal solution. Is
hyperplane initialization guiding the search closer to globally op-
timal solutions or away from them? To answer this question, we
calculated the Hamming distance of the local optima found by hy-
perplane initialized search to a known globally optimal solution
on the i2c-25 industrial instance. The Hamming distances and the
evaluation differences are shown in Figure3 for instance i2c-25.
The local optima found by hyperplane initialized search are closer
to the global optima than those found by random initialized search.
Thus, in this case hyperplane initialization does lead the search to
better parts of the space.

4.4 Effect on Longer Runs
Of course stochastic local search algorithms are typically run be-

yond the first local optimum. To evaluate the effect of hyperplane
voting on longer runs, we ran both our hyperplane and random ini-
tialized WalshSAT-N forn bit flips, wheren is the number of vari-
ables in the instance. We did 50 runs per instance and recorded
the evaluation of the final solution found by each run. To deter-
mine how well WalshSAT-N is doing relative to other algorithms,
we also ran several algorithms from the UBCSAT search package
[23]: GSAT, IRoTS, and AdaptG2WSAT.

GSAT [21] was chosen as it is a well-studied algorithm for SAT
and MAXSAT that is very similar to our Walsh-based next descent.
The main difference is that GSAT always takes the move that results

Algorithm 1: Next Descent Search using Walsh Polynomials

1 Compute Walsh coefficients; Generate initial solution x.
2 Initialize S(x).
3 Let ImprovingMoves = {i|Si(x) < 0}.
4 Let EqualMoves = {i|Si(x) = 0}.
5 while Termination Criteria not Met do
6 if ImprovingMoves 6= ∅ then
7 Select j with uniform probability from

ImprovingMoves.
8 else
9 if EqualMoves 6= ∅ then

10 Select j with uniform probability from
EqualMoves.

11 else
12 Select j with uniform probability from all

possible moves.
13 Flip bit j in x.
14 Update S(x), ImprovingMoves and EqualMoves.
15 if j ∈ ImprovingMoves then
16 Remove j From ImprovingMoves

Initialization Hyperplane Random
div-8 23303± 323 34057± 337
fpu 25378± 161 36148± 158

wb-46 35263± 165 44543± 158
wb-conmax1 23905± 226 41334± 205

c2-1 32019± 153 56237± 284
i2c-25 49448± 320 75279± 329
b15 60289± 252 74245± 216

mrisc 46095± 1447 118353± 1172
rsd-41 110032± 284 191260± 388
rsd-37 140915± 422 244059± 412

mem-ctrl2 143141± 717 254937± 752
wb-4m8s-48 261290± 437 423034± 538

3sat-.1m 7179± 66 10379± 72
3sat-.5m 35969± 126 51974± 171
3sat-1m 72101± 214 104206± 328

3sat-1.5m 108148± 213 156103± 356
3sat-2m 143891± 253 208178± 386

Table 3: Mean and standard deviations of the evaluation of 10
local optima found by WalshSAT-N. Industrial benchmarks are
on the top and random are on the bottom. P-values from t-tests
comparing the means of both methods were< 1×10−100 in all
cases.

Initialization Hyperplane Random
div-8 47397± 130 70286± 466
fpu 44939± 204 76344± 229

wb-46 41872± 204 77691± 221
wb-conmax1 43333± 201 87359± 272

c2-1 68563± 161 109088± 516
i2c-25 97916± 523 151806± 494
b15 138701± 274 182851± 364

mrisc 108900± 208 248026± 1429
rsd-41 120934± 604 296584± 530
rsd-37 158945± 724 378430± 712

mem-ctrl2 313428± 1018 591649± 1209
wb-4m8s-48 361978± 519 730023± 644

3sat-.1m 14143± 87 29358± 164
3sat-.5m 70913± 180 146720± 346
3sat-1m 142196± 290 293265± 417

3sat-1.5m 213439± 381 440030± 590
3sat-2.0m 284533± 409 586619± 720

Table 4: Mean and standard deviations of the number of bit
flips to a local optimum by next descent search using both ran-
dom and hyperplane initialization. The p-values from t-tests
comparing the means of the two methods were< 1 × 10−100.

in the bestchange to the evaluation, whether it be improving or
disimproving. Like GSAT, our Walsh-based next descent will take
an improving move if one exists, otherwise it will take an equal
move and in the last case it will select a disimproving move. Unlike
GSAT, our algorithm randomly selects from each of these cases and
is not guaranteed to always take the best move.

IRoTS, or Iterated Robust Tabu Search [22], was chosen as it
was the best performing incomplete solver in the MAXSAT 2012
competition. It will always take the move that satisfies the largest
number of unsatisfied clauses with respect to the current solution,
given that the move is not Tabu. IRoTS also incorporates a pertur-
bation stage if a new best improving move has not been found for
some number of bit flips.

264000 266000 268000 270000

50
00

0
55

00
0

60
00

0
65

00
0

70
00

0
75

00
0

Hamming Distance to Optimal

E
va

lu
at

io
n

D
iff

er
en

ce
 to

 O
pt

im
al

Hyperplane
Random

Figure 3: The Hamming distances and evaluation differences
to a known globally optimal solution from local optima found
by WalshSAT-N on the i2c-25 instance. 10 runs were initial-
ized with hyperplane voting, and 10 runs were initialized with
uniform random solutions.

AdaptG2WSAT [12] was chosen as it has been shown to be the
best performing algorithm in UBCSAT on industrial instances [11].
It has performed exceptionally well in several SAT competitions [12].
AdaptG2WSAT works in two phases. The first phase is a steep-
est descent search that lasts until a local optimum is reached. The
second phase uses a heuristic based on the Novelty family of algo-
rithms to choose the bit to flip, although the steepest descent search
is invoked if improving moves are found.

We ran the UBCSAT algorithms, using the default parameters,
for the same number of bit flips and runs as WalshSAT-N. The mean
and standard deviations of the final solutions are shown in Table5.

As our Walsh-based search algorithm is very similar to GSAT,
we expected that it would find similar quality solutions when ini-
tialized with random solutions and that it would outperform GSAT
when initialized with hyperplane voting. Table5 confirms this.
Surprisingly, we see that our simple Walsh-based next descent method
outperforms both IRoTS and AdaptG2WSAT when initialized with
hyperplane voting. This result highlights the power of hyperplane
initialization: our search algorithm is able to outperform more so-
phisticated stochastic local search algorithms when leveraging hy-
perplane information.

The last issue is cost: how much time is required to executen
bit flips by each of the tested algorithms? Table6 shows means
and standard deviations of the time in seconds of each of the 10
runs for each algorithm in the right-hand columns. The left column
of Table 6 times shows the initialization time required to Walsh
coefficients and hyperplane averages. The median time required
to compute the coefficients on industrial instances is 4.06 seconds.
Not only does hyperplane initialized WalshSAT-N find better solu-
tions in most cases, but it is generally faster than the algorithms in
UBCSAT, in some cases by an order of magnitude or more.

Furthermore, there is the hidden cost of converting industrial
problems, such as the circuit board debugging problems used here,
from their original SAT formulation to CNF-SAT. The Walsh co-
efficients can be more efficiently computed from the intermediate
form than from the CNF-SAT form, making it unnecessary to con-
vert to CNF-SAT.

Instance WalshSAT-N (HP) WalshSAT-N (RND) GSAT ADAPTG2WSAT IROTS
div-8 5467± 197 13761± 196 13066± 187 10795± 93 12314± 481
fpu 10917± 77 13044± 108 12838± 125 10247± 111 11022± 136
wb-problem-46 8532± 168 13379± 185 13178± 164 8794± 131 10939± 532
wb-conmax1 11554± 160 19130± 210 17071± 173 12212± 127 13537± 120
c2-1 12819± 80 19524± 148 19595± 116 16056± 251 13473± 90
i2c-25 12146± 131 21586± 209 20352± 193 18288± 318 21951± 145
b15 24517± 149 30803± 172 31509± 149 27920± 176 30604± 153
mrisc 6435± 258 40851± 690 39628± 588 34301± 768 41244± 114
rsd-41 17256± 138 72363± 612 68708± 494 50298± 228 55212± 271
rsd-37 22976± 167 92361± 688 87911± 533 64162± 355 70568± 325
mem-ctrl2 29649± 368 75729± 714 73071± 584 38277± 535 58833± 533
wb-4m8s-48 87829± 698 151520± 407 148248± 372 122306± 375 122962± 475

3sat-.1m 2912± 35 4124± 49 4034± 52 3052± 61 2959± 50
3sat-.5m 14605± 70 20718± 120 20210± 107 15396± 153 14875± 77
3sat-1m 29249± 125 41511± 164 40418± 165 30856± 134 29638± 146
3sat-1.5m 43951± 156 62218± 187 60515± 203 46180± 209 44349± 141
3sat-2m 58415± 186 82898± 225 80696± 220 61466± 182 59123± 178

Table 5: Means and standard deviations of evaluations of solutions found after n bit flips by several algorithms. Our Walsh based
algorithm (left two columns) was initialized using hyperplane averages(HP) and random solutions (RND).

It should also be noted that a fast descent search with constant
time updates could also be applied to the UBCSAT algorithms to
make them faster during the first phase. However, the second phase
still accounts for the vast majority of these runs. Although it is
likely possible to further optimize the second stage, it would require
a non-trivial amount of engineering to optimize the algorithms and
it is not clear if this could be accomplished without significantly
changing their behavior.

5. CONCLUSIONS
We have investigated the use of hyperplane averages as a means

to initialize stochastic local search for MAXSAT. This method uses
configurations of variables that correspond to hyperplanes with good
averages to construct a probability distribution over all variables.

Solutions constructed by hyperplane initialization have better eval-
uations than those found by randomly assigning solutions. For
small enumerable instances, these initial solutions were shown to
have variable assignments consistent with the correct assignment
for backbone variables in the majority of cases.

We evaluated the use of hyperplane initialization on local search
on both industrial and random instances of MAXSAT. We exam-
ined two factors of the search: the first local optimum encountered
by the search and the final solution aftern bit flips.

We found that the first local optima found by next descent search
when initialized by hyperplane averages had better evaluations than
those found by search initialized with random solutions. Further-
more, the hyperplane initialized search required less bit flips to find
the first local optimum. Comparing the Hamming distance of local
optima to a globally optimal solution on industrial instances, we
found that search initialized with hyperplane averages found local
optima closer to the global optimum.

Finally, we ran our search using both initializations on the in-
stances along with several algorithms from UBCSAT. WalshSAT-
N with hyperplane initialization consistently found better solutions
than search initialized with random solutions. Surprisingly WalshSAT-
N was able to outperform the UBCSAT algorithms in the vast ma-
jority of cases. This includes AdaptG2WSAT which was shown
to be the best performing algorithm in UBCSAT on industrial in-
stances [11]. WalshSAT-N was also much faster than these algo-
rithms, but this is largely due to the use of next-improving moves

instead of greedy best-improving moves used by AdaptG2WSAT
and GSAT.

This work has demonstrated the effectiveness of using hyper-
plane averages to initialize the search. Although our results are
on MAXSAT, this method can be applied to any pseudo-boolean
function, such as NK-landscapes or spin glass problems. Our fu-
ture work will explore other methods of guiding local search based
on the variable interaction information contained within the Walsh
coefficients.

6. ACKNOWLEDGMENTS
This research was sponsored by the Air Force Office of Scientific

Research, Air Force Materiel Command, USAF, under grant num-
ber FA9550-11-1-0088. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. This research utilized
the CSU ISTeC Cray HPC System supported by NSF Grant CNS-
0923386.

7. REFERENCES
[1] E. Boros and P.L. Hammer. Pseudo-boolean optimization.

Discrete applied mathematics, 123(1):155–225, 2002.
[2] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris.

Automated design debugging with maximum satisfiability.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(11):1804–1817, 2010.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
Introduction to algorithms. MIT press, 2001.

[4] C. DeSimone, M. Diehl, M. Juenger, P. Mutzel, G. Reinelt,
and G. Rinaldi.Exact Ground States of Two-Dimensional J
Ising Spin Glasses. Max-Planck-Inst. für Informatik,
Bibliothek & Dokumentation, 1996.

[5] S.F. Elena, R.V. Solé, J. Sardanyés, et al. Simple genomes,
complex interactions: Epistasis in RNA virus.Chaos, 20,
2010.

[6] D. Goldberg. Genetic Algorithms and Walsh Functions: Part
I, A Gentle Introduction.Complex Systems, 3:129–152,
1989.

Instance Init WalshSAT-N (HP) WalshSAT-N (RND) GSAT ADAPTG2WSAT IROTS
div-8 4.1 0.89± 0.03 0.79± 0.02 9.29± 0.15 15.39± 0.11 223.02± 1.49
fpu 3.04 1.06± 0.02 0.93± 0.02 9.28± 0.09 16.72± 0.19 256.14± 0.56

wb-problem-46 1.05 0.83± 0.01 0.72± 0.01 16.49± 0.13 19.56± 0.18 330.99± 0.84
wb-conmax1 3.94 1.33± 0.01 1.15± 0.01 8.5± 0.12 22.12± 0.32 302.75± 1.16

c2-1 2.36 1.49± 0.02 1.42± 0.02 28.06± 0.16 36.14± 0.36 591.01± 0.73
i2c-25 2.51 1.86± 0.05 1.6± 0.03 49.29± 0.37 68.35± 0.93 1060.14± 2.58
b15 2.49 3± 0.05 2.74± 0.05 43.3± 0.29 92.57± 0.97 1276.63± 2.34

mrisc 19.72 2.96± 0.03 2.74± 0.04 107.18± 2.03 186.58± 2.27 2655.03± 48.91
rsd-41 12.96 4.33± 0.04 3.68± 0.04 236.4± 1.97 330.39± 5.14 5264.28± 16.95
rsd-37 17.25 5.57± 0.03 4.74± 0.03 388.23± 2.83 590.85± 6.71 8644.43± 9.58

mem-ctrl2 46.24 6.11± 0.48 5.71± 0.06 616.32± 4.25 1293.1± 9.19 13804.98± 70.77
wb-4m8s-48 17.39 10.06± 0.3 8.57± 0.22 1282.47± 6.4 2563.23± 33.95 29413.65± 56.36

3sat-.1m 2.16 0.79± 0.02 1.03± 0.03 2.13± 0.02 2.27± 0.03 39.85± 0.09
3sat-.5m 11.42 6.83± 0.37 4.99± 0.09 45.45± 0.26 51.94± 0.92 987.82± 1.04
3sat-1m 23.35 12.06± 1.68 13.18± 1.03 184.18± 3.47 216.62± 2.92 4002.1± 11.81

3sat-1.5m 36.19 16.48± 0.21 20.75± 0.5 408.69± 1.43 567.89± 6.49 9245.38± 52.67
3sat-2m 48.57 22.4± 0.22 26.45± 2.97 735.17± 4.49 1132.09± 7.91 16407.38± 17.97

Table 6: The left column shows the average time to compute the Walshcoefficients and hyperplane averages required by WalshSAT-
N. The remaining columns report the mean and standard deviation oftime in seconds to executen bit flips for the various algorithms.

[7] D. Goldberg.Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[8] D. Goldberg, B. Korb, and K. Deb. Messy Genetic
Algorithms: Motivation, Analysis, and First Results.
Complex Systems, 4:415–444, 1989.

[9] J. Holland.Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975.

[10] H. Hoos, K. Smyth, and T. Stützle. Search space features
underlying the performance of stochastic local search
algorithms for MAX-SAT. InProc. Parallel Problem Solving
from Nature (PPSN VIII), pages 51–60, 2004.

[11] L. Kroc, A. Sabharwal, C.P. Gomes, and B. Selman.
Integrating systematic and local search paradigms: A new
strategy for maxsat. InProceedings of the 21st international
jont conference on Artifical intelligence, pages 544–551,
2009.

[12] C. Li, W. Wei, and H. Zhang. Combining adaptive noise and
look-ahead in local search for sat.Theory and Applications
of Satisfiability Testing–SAT 2007, pages 121–133, 2007.

[13] J. Marques-Silva and J. Planes. Algorithms for maximum
satisfiability using unsatisfiable cores. InProceedings of the
conference on design, automation and test in Europe, pages
408–413. ACM, 2008.

[14] M. Pelikan, D. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic model.
Technical Report 99018, IlliGAL, Septemper 1999.

[15] M. Qasem and A. Prugel-Bennett. Learning the large-scale
structure of the MAX-SAT landscape using populations.
IEEE Transactions on Evolutionary Computation,
14(4):518–529, 2010.

[16] S. Rana, R.B. Heckendorn, and D. Whitley. A tractable
walsh analysis of SAT and its implications for genetic
algorithms. InProceedings of the National Conference on
Artificial Intelligence, pages 392–397, 1998.

[17] C. R. Reeves and J. E. Rowe. Landscapes. InGenetic
Algorithms – Principles and Perspectives: A guide to GA
theory, pages 231–263. Springer, 2002.

[18] C.M. Reidys and P.F. Stadler. Combinatorial landscapes.
SIAM Review, 44:3–54, 2002.

[19] C.M. Reidys, P.F. Stadler, and P.K. Schuster. Generic
properties of combinatory maps and neutral networks of
RNA secondary structures.Bull. Math. Biol., 59:339–397,
1997.

[20] S. Safarpour, H. Mangassarian, A. Veneris, M.H. Liffiton,
and K.A. Sakallah. Improved design debugging using
maximum satisfiability. InFormal Methods in Computer
Aided Design, 2007. FMCAD’07, pages 13–19. IEEE, 2007.

[21] Bart Selman, Hector Levesque, and David Mitchell. A new
method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 440–446, San Jose, CA, 1992.

[22] K. Smyth, H.H. Hoos, and T. Stützle. Iterated robust tabu
search for MAX-SAT. InIn Proc. of the 16th Conf. of the
Canadian Society for Computational Studies of Intelligence,
pages 129–144, 2003.

[23] D.A.D. Tompkins and H.H. Hoos. UBCSAT: An
implementation and experimentation environment for SLS
algorithms for SAT and MAX-SAT. In Holger H. Hoos and
David G. Mitchell, editors,Theory and Applications of
Satisfiability Testing: Revised Selected Papers of the Seventh
International Conference (SAT 2004, Vancouver, BC,
Canada, May 10–13, 2004), volume 3542 ofLecture Notes
in Computer Science, pages 306–320, Berlin, Germany,
2005. Springer Verlag.

[24] D. Whitley. Defying gravity: constant time steepest ascent
for MAX-kSAT. Technical report, Department of Computer
Science, Colorado State University, December 2011.

[25] D. Whitley and W. Chen. Constant Time Steepest Ascent
Local Search with Statistical Lookahead for NK-Landscapes.
In GECCO ’12: Proc. of the annual conference on Genetic
and Evolutionary Computation Conference, 2012.

[26] W. Zhang, A. Rangan, and M. Looks. Backbone guided local
search for maximum satisfiability. InProc. International
Joint Conference on Artificial Intelligence, volume 18, pages
1179–1186, 2003.

	Introduction
	Theoretical Foundations
	Compact Walsh Polynomials for MAXSAT
	Computing Hyperplane Averages

	Hyperplane Voting
	Estimating Backbone Variables

	Initializing Local Search
	Random Instances
	Industrial Benchmarks
	Effect on Local Optima
	Effect on Longer Runs

	Conclusions
	Acknowledgments
	References

