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ABSTRACT
As users of “big data” applications expect fresh results, we
witness a new breed of stream processing systems (SPS)
that are designed to scale to large numbers of cloud-hosted
machines. Such systems face new challenges: (i) to benefit
from the “pay-as-you-go” model of cloud computing, they
must scale out on demand, acquiring additional virtual ma-
chines (VMs) and parallelising operators when the workload
increases; (ii) failures are common with deployments on hun-
dreds of VMs—systems must be fault-tolerant with fast re-
covery times, yet low per-machine overheads. An open ques-
tion is how to achieve these two goals when stream queries
include stateful operators, which must be scaled out and
recovered without affecting query results.

Our key idea is to expose internal operator state explic-
itly to the SPS through a set of state management primi-
tives. Based on them, we describe an integrated approach
for dynamic scale out and recovery of stateful operators.
Externalised operator state is checkpointed periodically by
the SPS and backed up to upstream VMs. The SPS identi-
fies individual operator bottlenecks and automatically scales
them out by allocating new VMs and partitioning the check-
pointed state. At any point, failed operators are recovered
by restoring checkpointed state on a new VM and replay-
ing unprocessed tuples. We evaluate this approach with the
Linear Road Benchmark on the Amazon EC2 cloud platform
and show that it can scale automatically to a load factor of
L=350 with 50 VMs, while recovering quickly from failures.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Stateful stream processing, scalability, fault tolerance

1. INTRODUCTION
In many domains, “big data” applications [2], which pro-

cess large volumes of data, must provide users with fresh,
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low latency results. For example, web companies such as
Facebook and LinkedIn execute daily data mining queries
to analyse their latest web logs [25]; online marketplace
providers such as eBay and BetFair run sophisticated fraud
detection algorithms on real-time trading activity [24]; and
scientific experiments require on-the-fly processing of data.

Therefore stream processing systems (SPSs) have evolved
from cluster-based systems, deployed on a few dozen ma-
chines [1], to extremely scalable architectures for big data
processing, spanning hundreds of servers. Scalable SPSs
such as Apache S4 [23] and Twitter Storm [29] parallelise
the execution of stream queries to exploit intra-query paral-
lelism. By scaling out partitioned query operators horizon-
tally, they can support high input stream rates and queries
with computationally demanding operators.

A cloud computing model offers SPSs access to a virtu-
ally unlimited number of virtual machines (VMs). To gain
widespread adoption, however, cloud-hosted systems must
hide the complexity of data parallelism and failure recovery
from users, as evidenced by the popularity of parallel batch
processing systems such as MapReduce. Therefore cloud-
hosted SPSs face the same two fundamental challenges:

1. On-demand parallelism. To reduce financial costs un-
der “pay-as-you-go” pricing models in public cloud environ-
ments such as Amazon EC2 and Rackspace, an SPS should
acquire resources on demand. It should request additional
VMs at runtime, reacting to changes in the processing work-
load and repartitioning query operators accordingly.

2. Resource-efficient failure recovery. A cloud-deployed
SPS with hundreds of VMs is likely to suffer from failure. It
must therefore be fault-tolerant, i.e. be able to recover from
failures without affecting processing results. Due to the size
of deployments, the per-machine resource overhead of any
fault tolerance mechanism should be low. Since failures are
common, recovery must not affect performance adversely.

While mechanisms for scale out [27, 26] and fault toler-
ance [30, 28, 33] in stream processing have received con-
siderable attention in the past, it remains an open ques-
tion how SPSs can scale out while remaining fault tolerant
when queries contain stateful operators. Especially with
recently popular stream processing models [23, 29] that treat
operators as black boxes in a data flow graph, users rely on
operators that have large amounts of state, which potentially
depends on the complete history of previously processed tu-
ples [5]. This is in contrast to, for example, window-based
relational stream operators [1], in which state typically only
depends on a recent finite set of tuples.

When scaling out large stateful operators at runtime, op-



erator state must be partitioned correctly across a larger set
of VMs. Existing techniques either ignore this problem by
assuming stateless operators [23, 29] or restrict support to
a few relational operators [15]. Similarly, to recover stateful
operators, an SPS must restore operator state after failure
to maintain correct results. Active operator replication in-
curs a prohibitively high resource cost by doubling the num-
ber of required VMs, whereas passive replication has been
shown to lead to high recovery times, and upstream backup
techniques cannot efficiently recover operators whose state
depends on the complete history of processed tuples [8].

We make the observation that both scale out and failure
recovery affect operator state, and therefore can be solved
more efficiently using a single integrated approach. Our key
idea is to externalise internal operator state so that the SPS
can perform explicit operator state management. The
SPS (i) obtains access to operator state through a well-
defined interface; (ii) maintains information about the pre-
cise set of tuples that have been processed by an operator
and are thus reflected in its state; and (iii) assumes a stream
data model with a key attribute in order to be able to par-
tition state with correct semantics. We then define a set
of primitives for state management that allow the SPS to
checkpoint, backup, restore and partition operator state.

Based on these primitives, we describe an integrated ap-
proach for scale out and recovery of stateful operators
in an SPS. In our approach, the SPS checkpoints state peri-
odically and backs it up to VMs hosting upstream operators.
Tuples that are not yet reflected in a checkpoint are buffered
by upstream operators until included in a checkpoint.

(i) To scale out stateful operators, the SPS monitors queries
for bottleneck operators and, according to a scale out policy,
parallelises individual operators at runtime. The upstream
VM with the checkpointed state of the bottleneck opera-
tor requests the allocation of extra VMs and deploys new
partitioned operators, alleviating the bottleneck. To reduce
the impact of delays when provisioning new VMs, the SPS
maintains a VM pool of pre-allocated VMs for fast scale out.

(ii) To recover a failed stateful operator, the upstream VM
with the most recent checkpointed state of the failed opera-
tor requests a new VM and restores the failed operator from
that checkpoint. Since unprocessed tuples were buffered by
the upstream operator, they can be replayed to bring the
restored state up-to-date. To speed up operator recovery,
the failed operator may be scaled out before recovery.

We evaluate how our approach scales out queries as part of
a prototype SPS using closed and open loop workloads. We
report the performance of the Linear Road Benchmark [5] on
the Amazon EC2 cloud platform. Our results show that the
system can scale to a load factor of L=350 using 50 VMs—
the second highest result reported in the literature. It auto-
matically partitions individual operators at a fine granular-
ity, with little impact on processing latency, while recovering
large stateful operators within seconds.

In summary, the paper makes the following contributions:

1. a description of operator state and associated manage-
ment primitives to be used by an SPS;

2. an integrated approach for automatically scaling out bot-
tleneck operators and recovery of failed operators based
on managed operator state;

3. an experimental evaluation on a public cloud, showing

that this approach can parallelise complex queries to a
large number of VMs, while being resilient to failures.

Next we analyse the problem; §3 presents our state man-
agement technique; based on this, we introduce the inte-
grated approach for scale out and recovery (§4); §5 discusses
integration with an SPS; §6 provides experimental results;
and we finish with related work (§7) and conclusions (§8).

2. BACKGROUND

2.1 Problem Statement
We want to enable the deployment of SPSs on infrastruct-

ure-as-a-service (IaaS) clouds, such as Amazon EC2 and
Rackspace, across hundreds of VMs. An SPS in a cloud
setting must support the automated deployment and man-
agement of stateful streaming queries. In particular, this re-
quires (i) the exploitation of intra-query parallelism to scale
processing across VMs; (ii) the masking of failures for con-
tinuous processing; and (iii) adaptation to a VM model.

Stateful operators. Stream processing operators can be
stateless (e.g. filter or map) or stateful (e.g. join or aggre-
gate). Relational stream models [22] use the concept of a
finite window of tuples to define the current state of an op-
erator. Sliding windows in such models encourage the use of
operators with small amounts of state, which only depends
on the last few processed tuples. More recently, streaming
data flow graph models [29, 23] have gained in popularity, es-
pecially as a way for incrementally processing large datasets.
They permit users to implement black-box operators (e.g. a
frequency counter) that maintain arbitrary state, potentially
depending on the entire history of the data stream.

Such stateful operators with state, which cannot easily
be recreated by re-processing a small section of the input
stream, are not well supported by current SPSs. Existing
systems typically assume that operators are either state-
less [23] or that state can be ignored when e.g. recovering
operators [29]. While this simplifies the architecture of the
SPS, it puts a considerable burden on developers when they
need scalable and fault-tolerant stateful operators.

Intra-query parallelism. A cloud-hosted SPS can improve
the processing throughput of computationally expensive que-
ries by parallelising operators, which would otherwise be-
come a bottleneck. Existing systems have identified this re-
quirement and include mechanisms to indicate the potential
for operator-level parallelism [23, 27, 29].

Decisions about parallelising operators can occur stati-
cally—at query deployment time—or dynamically—at run-
time. Static scale out requires knowledge of resource re-
quirements of operators, which depend on stream rates and
data distributions, and are typically estimated by cost mod-
els [32]. Therefore dynamic scale out is preferable in a cloud
setting because the SPS can adapt to changes in the work-
load, observing resource consumption and VM performance.

To scale out dynamically, the SPS must identify the bot-
tleneck operator, limiting processing throughput of a query.
This is challenging for complex query graphs, in which oper-
ator performance may be compute or network-bound. The
SPS must have a scale out policy that reacts to bottleneck
operators based on observable system and query metrics. In
addition, it requires the reconfiguration of the query exe-
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Figure 1: Example of query and execution graphs

cution graph at runtime without affecting the correctness
of results. This is simple for stateless operators: the SPS
can create new operator instances and split the streams.
For stateful operators, however, operator state must also be
split across partitioned instances based on operator seman-
tics, e.g. by join key and table tag when using an improved
repartition join [9].

Fault tolerance. Previous studies have shown that a sub-
stantial fraction of machines in large data centres develop
faults during operation [12]. We assume a typical failure
model, in which machine and network failures are modeled
as independent, random crash-stop failures. Similar to other
cloud-deployed applications, an SPS must be fault tolerant
and cope with regular failures.

After the loss of a VM with operators, stream processing
must resume from the point at which the operators failed.
Recovering a stateful operator is challenging because it only
produces correct output with the correct state. Operator
state that depends on a finite subset of a stream (e.g. for a
windowed stream join) can be reconstructed using upstream
backup [7] by replaying past tuples. However, this increases
recovery times and becomes infeasible for operators whose
state depends on all past tuples.

Due to the large number of involved machines in a cloud-
hosted SPS, the per-node resource overhead of any fault tol-
erance mechanism must be low. Active replication strategies
are therefore impractical because they typically double re-
source requirements, thus substantially increasing the cost
of a cloud deployment. Passive replication has a lower re-
source overhead, making it more applicable.

In addition, to reduce the impact of failure, fast recov-
ery is important. Failure recovery incurs an additional re-
source demand on top of regular processing by the SPS. For
example, processing performance may be reduced when re-
processing past tuples during recovery [29].

VM deployment. A cloud-hosted SPS must adapt to the
specifics of an IaaS cloud model. In particular, IaaS plat-
forms are known to exhibit delays on the order of minutes
when provisioning new VMs. When a cloud-hosted SPS
scales out at runtime, this may lead to unpredictable perfor-
mance, e.g. incurring a period of degraded throughput due
to overload until a VM becomes available.

2.2 System Model

Data model. A stream s is an infinite series of tuples t ∈ s.
A tuple t = (τ, k, p) has a logical timestamp τ , a key field k

and a payload p. The timestamp τ ∈ N+ is assigned by a
monotonically increasing logical clock of an operator when a
tuple is created in a stream. Tuples in a stream are ordered
according to their timestamps. Keys are not unique and
used to partition tuples (see §3.1). They can be computed
as a hash based on the payload.

Operator model. Tuples are processed by operators. An
operator o takes n input streams, denoted by the set Io =
{s1, . . . , sn}, processes their tuples and produces one or more
output streams, Oo. For ease-of-presentation, we assume
that an operator emits only a single output stream (unless
the downstream operator is partitioned). The notation Io[τ ]
specifies all tuples in the input streams with timestamps less
than τ where τ = (τ1, . . . , τn) are the timestamps of the in-
dividual input streams.

An operator function fo defines the processing of opera-
tor o on input tuples: fo : (Io, τo, θo, σo) → (Oo, τo, θo, σo).
At each invocation of fo, the operator accepts a finite set of
tuples Io[τo] where τo are the timestamps of the most recent
tuples already processed. After processing, the operator ad-
vances to new positions in the input streams and updates the
value of τo. A stateful operator has access to state θo, which
is updated after processing. We assume that operators are
deterministic and do not have other, externally visible side-
effects. The timestamp σo specifies the oldest tuples that
affected the state θo, i.e. the state depends only on tuples
with timestamps σoi ≤ τ i ≤ τoi for each input stream si. A
stateless operator has θo = ∅.

Query model. As shown at the top of Fig. 1, a query is
specified as a directed acyclic query graph q = (O,S) where
O is the set of operators and S is the set of streams. A
stream s ∈ S is a directed edge between two operators, s =
(o, o′) where {o, o′} ⊆ O. A query has two special operators,
src and snk , which act as the sources and sinks for data
streams, respectively. We assume that sources and sinks
cannot fail. An operator u is upstream to o, denoted by
u ∈ up(o), when ∃(u, o) ∈ S. Similarly, an operator d is
downstream to o, d ∈ down(o), when ∃(o, d) ∈ S.

Query execution. A query is deployed on a set of nodes. A
node can host multiple operators but, without loss of gen-
erality, we assume one operator per node. We distinguish
between the logical representation of a query, in terms of
its query graph, and its physical realisation, as shown at
the bottom of Fig. 1. In the physical execution graph q̄,
an operator o may be parallelised into a set of partitioned
operators o1 . . . oπ. The value π ∈ N+ is the parallelisation
level of o. Each oi implements the semantics of o. It takes
as input a partitioned stream s1 . . . sπ, which is obtained
from the original stream s. The current execution graph is
maintained by a logically centralised query manager.

3. STATE MANAGEMENT
Next we describe our approach for externalising and man-

aging operator state. State in stream processing is typically
considered an implementation detail [1] and only managed
for specific purposes, such as persistence [30] or overload
handling [19]. In contrast, we (i) make operator state ex-
ternally visible to the SPS and (ii) define primitives for the
SPS to manage state in a generic fashion. Based on these



primitives, the SPS supports more complex operations such
as scale out and failure recovery, which affect operator state.

3.1 Query State
The state of a query consists of the operator state of each

query operator. We divide the operator state into processing
state, buffer state and routing state, as illustrated in Fig. 2.
The figure shows a query with three operators for collecting
word frequencies in a text stream every minute: a stateless
word split operator o, which tokenises a stream of strings
into words, and two partitioned stateful word count opera-
tors c1 and c2, which maintain a windowed frequency count
of words. We use the query as a running example below.

Processing state. Output tuples from stateful operators
depend on input tuples and the history of past tuples. Op-
erators typically maintain an internal summary of this his-
tory of input tuples, which we term the operator’s processing
state. The current processing state θo of an operator o was
computed from all past tuples with σoi ≤ τ i ≤ τoi : si ∈ Io.

Exposing the processing state to the SPS has several rea-
sons: (i) it enables the SPS to recover stateful operators
more efficiently after failure. Instead of re-processing all
tuples in the range σoi ≤ τ i ≤ τoi, recreating the process-
ing state, the SPS can restore the state directly from a state
checkpoint, as described in §3.2; and (ii) it allows the SPS to
redistribute processing state across a set of new partitioned
operators to support scale out.

Based on our data model, we define the processing state of
an operator o as a set of key/value pairs, θo = {(k1, v1), . . .}.
Each key k is unique and refers to the corresponding tuple
keys from the input streams (see §2.2). Its associated value v
stores the portion of processing state that the operator re-
quires when processing tuples with that key. In addition, the
processing state is associated with a vector of timestamps τo,
as returned by the operator function fo. It specifies the most
recent timestamps of input tuples that are reflected in θo.

An operator can maintain state using efficient data struc-
tures internally and only translate it to key/value pairs when
requested by the SPS. To expose its processing state, the de-
veloper of an operator o implements a function get-processing-
state(o)→ (θo, τo). It is invoked by the SPS and takes a copy
of the state. It locks all internal operator data structures to
obtain a consistent copy and records the timestamp τo of
the most recent tuples that affected the state.

In Fig. 2, we give an example of processing state for the
word frequency operators. To simplify presentation, keys
are assumed to be the first letter of a word. The upstream
word split operator sends the word “first” to the word count
operator c1 at τ = 1, resulting in the processing state θc1 =
{(’f’,“first:1”)} and timestamp τc1 = (1). The words “set”,
“second” and “set” are processed by c2, instead, which at
τc2 = (4) holds processing state θc2 = {(’s’,“second:1, set:2”)}.

Buffer state. An SPS typically interposes output buffers be-
tween operators, which buffer tuples before sending them to
downstream operators (see Fig. 2). Buffers compensate for
transient fluctuations of stream rates and network capacity.

Tuples in output buffers contribute to the query state
managed by the SPS: (i) output buffers store tuples that
have not yet been processed by downstream operators and
therefore must be re-processed after failure; (ii) after dy-
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word counter
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Figure 2: Different types of state in a stateful query
for counting word frequencies

namic operator scale out, tuples in output buffers must be
dispatched to the correct partitioned downstream operator.

We model the output buffer of operator o to a parti-
tioned downstream operator d as having buffer state βo =
{(d1, {t1, . . .}), . . .} with t1 ∈ (o, d1) (see §2.2). It stores a
finite number of past output tuples. The notation βo(d

i)
refers to the output tuples for a partitioned downstream op-
erator di.

Tuples in an output buffer are discarded after they are
no longer needed for recovery (see §4.2). An operator trims
tuples from an output buffer by removing tuples with times-
tamps older than τ when it executes the function trim(o, τ).

Routing state. An operator o in the query graph may cor-
respond to multiple partitioned operators o1, . . . , oπ in the
execution graph. An upstream operator u has to decide to
which partitioned operator oi to route a tuple. Since the par-
titioning can change dynamically, an operator has explicit
routing state, which must be restored after failure.

For an operator o, we define the routing state as ρo =
{(d1, [k1, k2]), . . . , (dπ, [kπ−1, kπ])}, which maps the keys k ∈
[ki, kj) to a partitioned downstream operator di. For exam-
ple, the word split operator in Fig. 2 has ρo = {(c1, [’a’, ’l’]),
(c2, [’l’, ’z’])}. It sends words starting with letters up to ’l’
to operator c1 and with letters from ’l’ to c2.

3.2 Operations
The above operator state can be manipulated by the SPS

through a set of state management primitives.

Checkpoint state. The SPS can obtain a representation of
the processing state θo and the buffer state βo of an oper-
ator o in the form of a checkpoint. This is taken by the
function checkpoint-state(o) → (θo, τo, βo). It obtains the
processing state θo safely by calling the user-implemented
function get-processing-state(), which also returns the times-
tamp τo of the most recent tuples in the streams from the
upstream operators that affected the state checkpoint. This
permits the SPS to discard tuples with older timestamps,
which are duplicates, during replay (see below).

The function checkpoint-state is executed asynchronously
and triggered every checkpointing interval c, or after a user-
defined event, e.g. when the state has changed significantly.
A short checkpointing interval results in a smaller number
of tuples that must be re-processed to bring the process-



Algorithm 1: Operator state backup and restore

operator identifier function: id : O → N ,
upstream op. of o: up(o) = {o1, . . . , oi, . . . , om}
previous backup operator: backup(o) = oj or ⊥ if undef.
function backup-state(o)

1 (θo, τo, βo)← checkpoint-state(o)
2 i = hash(id(o)) mod |up(o)|
3 store-backup(oi, o, θo, τo, βo)
4 for u in up(o) do trim(u, τoj) : sj = (u, o)
5 if backup(o) 6= ⊥ ∧ backup(o) 6= oi then
6 delete-backup(backup(o), o)

7 backup(o)← oi

function restore-state(o, θ, τ , β, ρ)
8 set-processing-state(o, θ, τ)
9 βo ← β, ρo ← ρ

function replay-buffer-state(u, o)
10 for t in βu(o) do send o: t

ing state up-to-date, but it incurs a higher overhead. Note
that the checkpointing interval should be shorter than the
window size of the operator. If checkpoints are taken more
rarely, they contain processing state that is superseded by
tuples that must be re-processed. To reduce the size of
checkpoints, it is also possible to use incremental checkpoin-
ting techniques [17].

Note that routing state is not included in the state check-
point because it only changes in case of scale out or recovery
and not during regular tuple processing. Instead, routing
state is maintained by the query manager (see §2.2).

Backup state. The operator state, as returned by check-
point-state, can be backed up to an upstream operator in
anticipation of a restore or partition operation. After the
operator state was backed up, already processed tuples from
output buffers in upstream operators can be discarded be-
cause they are no longer required for failure recovery.

When an upstream operator has many downstream op-
erators that use it for state backups, the backup operation
incurs significant overhead, which may result in a scale out
of the upstream operator. In that case, operators should
balance the backup load across all of their partitioned up-
stream operators.

Algorithm 1 defines function backup-state(o) for backing
up the state of operator o. First, the SPS creates a check-
point (line 1). It then selects a backup operator backup(o)
among the upstream operators of o. The backup load is
spread among all upstream operators by using a hash func-
tion (line 2). The operator state is backed up in line 3.
After the state backup, the output buffers of the upstream
operators are trimmed (line 4). If the upstream opera-
tors are repartitioned, the choice of backup(o) may change.
If the new backup operator is different from the previous
one (line 5), the old backup operator is released (line 6).

Restore state. Backed up operator state is restored to an-
other operator to recover a failed operator or to redistribute
state across partitioned operators. The function restore-
state(o, θ, τ , β, ρ), described in Algorithm 1, takes the state
to restore to operator o. It then initialises the processing
state using the function set-processing-state (line 8) and also
assigns the buffer and routing states (line 9).

After the state was restored from a checkpoint, the func-
tion replay-buffer-state(u, o) is used to replay unprocessed

Algorithm 2: Operator state partitioning

1 key interval : (kl,kh) : (o,[kl,kh]) ∈ ρu ∧ u ∈ up(o)
2 key split : (k1, . . . , kπ) : kl = k1 < . . . < kπ+1 = kh

function partition-processing-state(o, π)
3 (θ, τ , β)← retrieve-backup(backup(o), o)
4 for i← 1 to π do
5 θi ← {(k, v) ∈ θi : ki ≤ k < ki+1}
6 τi ← τ
7 if i 6= 1 then βi ← ∅ else β1 ← β

8 store-backup(backup(oi), oi, θi, τi, βi)

function partition-routing-state(u, o, π)
9 ρu ← ρu \ {(o, [kl, lh])}

10 for i← 1 to π do
11 ρu ← ρu ∪ {(oi, [ki, ki+1])}
12 store-routing-state(u, ρu)

function partition-buffer-state(u)
13 for (o, T ) in βu do
14 for t = (τ, k, p) in T do
15 for (o′, [k1, k2]) in ρu do
16 if k1 ≤ k < k2 then β(o′)← β(o′) ∪ {t}

17 βu ← β

tuples in the output buffer from an upstream operator u to
bring the operator o’s processing state up-to-date. Before
operator o emits new tuples, it resets its logical clock to the
timestamp τ from the restored checkpoint so that down-
stream operators can detect and discard duplicate tuples.

Partition state. When a stateful operator scales out, its
processing state must be split across the new partitioned
operators. This is done by repartitioning the key space of
the tuples processed by the operator. In addition, the rout-
ing state of its upstream operators must be updated to ac-
count for the new partitioned operators. Finally, the buffer
state of the upstream operators is partitioned to ensure that
unprocessed tuples are dispatched to the correct partition.

In Algorithm 2, we define the function partition-processing-
state(o, π), which partitions the state of operator o for π new
partitioned operators o1, . . . , oπ. The partitioning is per-
formed from the state saved by backup(o) to allow parti-
tioned operators to recover in case of failure. First, the key
range processed by o, as specified by the routing state of
the upstream operator u, is split into π intervals (lines 1–2).
The key space can be distributed evenly using hash parti-
tioning, or the key distribution can be used to guide the
split. The operator state is retrieved from backup(o) (line 3)
and is split by partitioning the processing state (line 5). The
timestamps associated with the processing state are copied
for each partition, and the buffer state is assigned to the
first partition (lines 6–7). Finally, the operator state for
each partition is stored in backup(oi) in order to provide
an initial backup for each partition; afterwards backup(o) is
removed safely from the system (line 8).

The function partition-routing-state(u, o, π) is used to up-
date the routing state of each upstream operator u. The
entry for the old key interval is removed and key intervals
for the new partitioned operators are added (lines 9–11).
The routing state is then stored at the query manager to be
recovered in case of failure (line 12).

An upstream operator u can repartition its buffer state βu
according to the updated routing state ρu using the func-
tion partition-buffer-state(u). It iterates over the tuples in
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βu (lines 13–14), assigning each tuple to a partition accord-
ing to the ρu key intervals (lines 15–16).

3.3 Discussion
As shown in the next section, the above state manage-

ment primitives are a minimum set, which lets an SPS per-
form scale out and failure recovery in an integrated manner.
Other state management primitives, however, can be added
to cover a range of previously proposed functionality:

For example, to scale in operators when resources are
under-utilised, the state of two operators can be merged [15].
For operators with large state sizes, a spill operation can
temporarily store state on disk, freeing memory resources [19].
More generally, part of the operator state can be supported
by external storage through a persist operation, e.g. when
combining real-time data processing with historical data [3].

4. SCALE OUT AND FAULT TOLERANCE
Using the above state management primitives, we present

our integrated approach for stateful operator scale out and
recovery. We discuss our scaling strategy and fault tolerance,
before describing our fault-tolerant scale out algorithm.

4.1 Scale Out
To scale out queries at runtime, the SPS partitions opera-

tors on-demand in response to bottleneck operators. Bottle-
neck operators prevent the system from increasing process-
ing throughput. We discuss heuristics for identifying the
bottleneck in a query in §5.1. After scaling out a bottleneck
operator, its processing load is shared among a set of new
partitioned operators, thus increasing available resources to
the SPS. Our scale out mechanism partitions operator state
and streams without violating query semantics.

We give an example of operator scale out in Fig. 3, which
shows four versions of an execution graph during scale out.
When first deployed (Fig. 3a), the execution graph has one
operator for each (logical) operator in the query graph. An
operator o is connected through stream s to an upstream
operator u. We assume that operator o is the bottleneck
operator. Fig. 3b shows how the upstream operator u can
partition its output streams into two streams. The two par-
titioned operators, o1 and o2, share the processing load and
alleviate the bottleneck condition. In the same way, addi-
tional operators can be added to the execution graph for
further scale out (Fig. 3c). When the upstream operator u
becomes the new bottleneck (Fig. 3d), it is also partitioned
and its output streams are replicated.

Algorithm 3: Integrated fault-tolerant scale out

function scale-out-operator(o, π)
1 partition-processing-state(o, π)
2 ρ← retrieve-routing-state(o)
3 for i← 1 to π do
4 oi ← get-new-VM-with-operator()

5 (θi, τi, βi)← retrieve-backup(backup(o), oi)

6 restore-state(oi, θi, τi, βi, ρ)

7 for d in down(o) do replay-buffer-state(oi, d)

8 stop-operator-and-release-VM(o)
9 for u in up(o) do

10 stop-operator(u)
11 partition-routing-state(u, o, π)
12 partition-buffer-state(u)

13 for i← 1 to π do replay-buffer-state(u, oi)
14 start-operator(u)

4.2 Fault Tolerance
Even in the absence of bottlenecks, if a VM hosting a

stateful operator fails, the SPS must replace it with an op-
erator on a new VM. In our approach, overload and failure
are handled in the same fashion. Operator recovery becomes
a special case of scale out, in which a failed operator is scaled
out to a parallelisation level of 1. This means that the SPS
does not require a sophisticated failure detector to distin-
guish between the two cases but instead scales out an oper-
ator when it has become unresponsive.

Operator recovery puts a strain on processing through-
put because the SPS must restore operator state and replay
tuples missing from the recovered state. In our approach,
we can reduce recovery times by restoring a failed operator
using several new partitioned operators, i.e. performing par-
allel recovery. Parallel recovery improves the recovery speed
because it effectively adds extra resources to the SPS for
failure recovery.

4.3 Fault-Tolerant Scale Out Algorithm
The SPS maintains two versions of operator o’s state,

which could be partitioned for scale out: the current state,
maintained by o, and a recent state checkpoint stored by op-
erator backup(o). In our approach, the SPS partitions the
most recent state checkpoint, which has multiple benefits:
(i) it means that the scale out mechanism can be used to
recover operator o after failure; (ii) it avoids adding further
load to operator o, which is already overloaded, by request-
ing it to checkpoint or partition its own state; and (iii) it
makes the scale out process itself fault-tolerant: if it fails or
is aborted, operator o can continue processing unaffected.

Algorithm 3 shows the steps for scaling out operator o
to a parallelisation level π. First, the SPS executes the
function partition-processing-state to partitions o’s processing
state located on backup(o), backing it up again to survive
failure (line 1). It also retrieves o’s routing state from the
query manager (line 2). It then creates π new partitioned
operators oi to replace o (line 4). After o’s processing and
buffer state were retrieved from backup(o) (line 5), they are
restored to the new partitioned operators oi (line 6). Tuples
yet unprocessed by the downstream operators are replayed
from oi’s buffer state (line 7). After that, o is stopped and
its VM is released (line 8).

The next step is to update the execution graph. The SPS
first stops o’s upstream operators (line 10), updates their
routing state by partitioning it (line 11) and then reparti-
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tions their buffer states (line 12). After that, the SPS re-
plays tuples that are not reflected in the state checkpoint
from the output buffers (line 13). The final step is to restart
the upstream operator (line 14).

The same algorithm is used to recover from the failure of a
stateful operator o by executing scale-out-operator(o, 1) be-
cause it restarts processing from o’s last checkpoint, without
o being operational. To reduce recovery time using parallel
recovery, the SPS can also partition the failed operator by
executing scale-out-operator(o, 2). In this case, each restored
operator only has to process half of the replayed tuples in
replay-buffer-state, thus reducing recovery time (see §6.2).

Discussion. The above algorithm assumes that a state check-
point is available at operator backup(o). As a consequence,
the SPS cannot scale out if backup(o) fails before the state
checkpoint is partitioned and restored across the new par-
titioned operators successfully (i.e. lines 1-6). In that case,
the scale out is aborted and retried after backup(o) has re-
covered and o has again backed up its operator state. There-
fore the VM hosting o is only released after restore-state has
completed on all partitioned operators (line 8).

If any upstream operator u—other than backup(o)—fails,
aborting the scale out process is unnecessary. After opera-
tor u has recovered, its output buffer is replayed to the par-
titioned operators according to the updated routing state
retrieved from the query manager (line 2), as stored by the
non-failed backup(o) (line 12 in Algorithm 2). If one of the
partitioned operators oi fails, it can be recovered from the
checkpoint stored at backup(oi) (line 8 in Algorithm 2).

5. STREAM PROCESSING IN A CLOUD
In this section, we describe how our integrated approach

for stateful operator scale out and recovery can be realised in
a cloud-hosted SPS. This entails several challenges: the SPS
must (i) have heuristics for identifying bottleneck operators;
(ii) have a policy as to when to scale out operators; and
(iii) handle the delay when new VMs are provisioned.

We add our fault-tolerant scale out approach to an ex-
perimental distributed SPS developed in our group. Fig. 4
shows the architecture of the system after integration. A
query graph is submitted to a query manager, which per-
forms a mapping of query operators to VMs, to obtain an
execution graph. The execution graph is used by a deploy-
ment manager to initialise VMs, deploy operators, set up
stream communication and start processing.

To support dynamic scale out, we add a bottleneck detec-
tor that, based on system statistics, identifies the bottle-
neck operators in the query, as explained in the next sec-
tion. According to a scaling policy, it invokes the scale out
coordinator, which implements scale out decisions. For fault
recovery, a failure detector notifies the recovery coordinator
to recover a failed operator. The deployment manager is

extended so that it can request new VM instances from a
VM pool. The VM pool masks the delay of cloud platforms
when provisioning new VM instances, as described in §5.2.

5.1 Bottleneck Detection and Scaling Policy
When detecting operator bottlenecks, we focus on com-

pute bottlenecks because they are the most common type
observed in practice. In particular, they limit the scalability
of the Linear Road Benchmark used in §6.1.

We adopt a simple yet effective scaling policy based on
measured CPU utilisation of operators. Every r seconds,
VMs hosting operators submit CPU utilisation reports to
the bottleneck detector, which record the user and system
CPU time that each operator executed. This accounts for
“stolen” CPU time when other VMs on the same physical
node were scheduled. When k consecutive reports from an
operator are above a user-defined threshold δ, the bottleneck
detector notifies the scale out coordinator to parallelise the
operator. Empirically, we determined that collecting CPU
utilisation reports every r=5 s and scaling out after k=2
consecutive measurements are above δ=70% utilisation of
the CPU time slice leads to appropriate scaling (see §6.1).

5.2 Virtual Machine Pool
The time taken to deploy a new operator is a critical issue.

When scaling out, VMs must be allocated quickly in order
to reduce the duration of an overload condition. When re-
covering a failed VM, fast recovery minimises the disruption
caused by the failure. Current IaaS cloud platforms, how-
ever, require on the order of minutes to provision new VM
instances, as confirmed by our own empirical experience.
This makes it impractical to request new VM instances on-
demand when they are required by an SPS.

Our solution is to decouple the request for a new VM from
the provisioning of the VM. We pre-allocate a small pool of
VM instances of size p ahead of time. New VM instances
for operators are requested from this VM pool, which can
happen in seconds. Asynchronously the pool is refilled to
size p by requesting VM instances from the cloud provider.

A challenge is to decide on the optimal VM pool size. A
VM pool that is too small may get exhausted when mul-
tiple VMs are requested in short succession. A large VM
pool incurs an unnecessarily high financial cost because pre-
allocated VMs are billed by the cloud provider.

We make two observations regarding the VM pool size p:
(i) with real-world failures, preallocating 1–2 VMs is suffi-
cient, which means that p is primarily determined by the
scale out requirement; (ii) p can be adjusted to the scale
out behaviour over time. For example, p may be kept larger
while the SPS scales out aggressively to adapt to an open
loop workload. After the rate of new VM requests decreases,
the VM pool can shrink to support steady-state operation.
For simplicity, we use a constant VM pool size in §6.1.

6. EVALUATION
Next we evaluate our integrated approach for dynamic

scale out and fault tolerance in an SPS. The goals of our
experimental evaluation are to investigate:

(i) the effectiveness of our stateful operator scale out
approach for a closed loop workload, i.e. when the SPS has to
sustain the input rate without tuple loss, using the Linear
Road Benchmark (§6.1); and, for an open loop workload,
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i.e. when tuples can be discarded during overload, using a
streaming map/reduce-style query over Wikipedia data. We
show that our approach scales effectively with the input rate
while maintaining low processing latency;

(ii) the recovery time of the stateful recovery mech-
anism for a windowed word frequency query (§6.2). We
show that our approach recovers operator state faster than
source replay [29] and upstream backup [8] of tuples. We
also demonstrate how recovery times can be reduced through
parallel recovery; and

(iii) the impact of our state management approach on
tuple processing latency (§6.3). We study how input rate,
state size and the checkpointing interval affect the overhead.

The experiments are conducted using an experimental
stream processing system implemented in Java. We deploy
it on Amazon EC2 using small VM instances for the query
operators, which have 1.7 Gb of RAM, moderate IO perfor-
mance and 1 EC2 compute unit (equivalent to a 1.0–1.2 GHz
2007 Xeon CPU). While these VMs have low processing ca-
pabilities, they are representative of public cloud VMs. We
use high-memory double extra large VM instances (34 Gb
of RAM; high IO performance; and 4 virtual cores with
3.25 compute units) to emit the source data streams and
to gather output results.

6.1 Dynamic Scale Out

Closed loop workload. We first evaluate the effectiveness
of our scale out approach when adapting to an increasing
closed loop workload, i.e. when the SPS has to scale out to
match an increasing input stream rate without tuple loss.

Linear Road Benchmark (LRB). Similar to previous
work [32, 18], we use the LRB [5]. It models a road toll
network, in which tolls depend on the time of day and level
of congestion. It specifies the following queries: (i) provide
toll notifications to vehicles within 5 s; (ii) detect accidents
within 5 s; and (iii) answer balance account queries about
paid toll amounts. The goal is to support the highest num-
ber of express-ways L while satisfying the above latency con-
straint. Over the course the benchmark, the input rate for a
single express-way (L=1) begins at 15 tuples/s and increases
to 1700 tuples/s. An SPS without dynamic scale out sup-
port would have to be provisioned to sustain the peak rate.
To generate a sufficiently high input stream rate, we pre-
compute the input stream for L=1 in memory and replicate
it for multiple express-ways [10].

Our LRB query implementation consists of 7 operators, as
shown in Fig. 5. A data feeder acts as the source and gen-
erates the input data stream. A forwarder operator routes
tuples downstream according to their type. The stateful toll
calculator maintains tolls and detects accidents. The state-
ful toll assessment operator computes account balances and
responds to balance queries in tuples. The stateless collector
operator gathers notifications. The stateful balance account
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Figure 7: Processing latency for LRB workload

operator receives the balance account notifications and ag-
gregates the results. The sink operator collects all results.

We deploy the LRB query on Amazon EC2 and set the scale
out threshold to 70% utilisation, as discovered below. Our
deployment achieves a maximum L-rating of L=350 with
50 VMs. After that, the source and sink become the bottle-
neck, handling a maximum of 600,000 tuples/s due to seri-
alisation overheads. The partitioned execution graph of the
LRB is as shown in Fig. 5. The main computational bottle-
neck in the query, the toll calculator, is partitioned the most
by the system, followed by the forwarder.

This result is about 70% of L=512, which is currently the
highest reported L-rating in the literature by Zeitler and
Risch [32]. Their result was obtained on a private cluster
with 560 dedicated cores with 2.27 Ghz—substantially more
resources than what we used. Since our approach only scales
out bottleneck operators at a fine granularity, it can be more
resource efficient than the replication of the whole query
graph used by Zeitler and Risch.

Fig. 6 shows the number of allocated VMs along with the
input rate and achieved result throughput over time. For
L=350, the input rate is initially approx. 12,000 tuples/s
and increases to 600,000 tuples/s. We observe that the SPS
maintains the required result throughput for the input rate,
requesting additional VMs as needed. At times t=475 and
t=1016, multiple operators are scaled out in close succession
because bottlenecks appear in two operators simultaneously.

In Fig. 7, we show the processing latencies of output tu-
ples, as a representative metric for the performance expe-
rienced by the query. The 99th and 95th percentiles of the
latency are 1459 ms and 700 ms, respectively; the median
is 153 ms, which are all below the LRB target of 5 s. This
confirms that our maximum L-rating is indeed due to the
limited source and sink capacities. Dynamic scale out, how-
ever, affects tuple latency—there are latency peaks of up to
4 s after scale out events due to stream buffering and replay.
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Towards the end of the experiment, the median latency in-
creases when the system becomes overloaded.

Open loop workload. In addition, we explore an open loop
workload, in which the SPS is initially under-provisioned.

Map/reduce-style top-k query. We implement a map/re-
duce-style top-k query that outputs every 30 seconds the
ranking of the most visited Wikipedia language versions
based on Wikipedia data traces. Initially, we set the in-
put stream rate to be well over the performance capacity of
the SPS, incurring tuple loss. The goal is to let the SPS
scale out the query in order to sustain the incoming rate.

We use 18 data sources to inject tuples to a stateless map
operator, which removes unnecessary fields from tuples, and
a stateful reduce operator, which maintains a top-K dictio-
nary of the frequency of visited Wikipedia language versions.
When the reducer scales out, we use the sink to aggregate
the partial results and output the final answer.

We present the dynamic scale out behaviour in Fig. 8. As ex-
pected, the SPS scales out until it can sustain the incoming
rate of 550,000 tuples/s. The scale out process leads to peaks
in the tuple throughput. After scaling out an operator, the
input buffers of the new partitioned operators consume tu-
ple faster than they can be processed. Only after the input
queues have filled, performance stabilises again.

Another observation is that the rate of scale out is higher
in the first part of the experiment (until t=100). The reason
is that initially more map operators are scaled out than re-
duce operators: the stateless map operators scale out faster
than the stateful reduce operators.

Impact of scale out threshold. Next we evaluate the im-
pact of the scale out policy. We study how different scale
out thresholds δ affect the number of allocated VMs and
the tuple processing latency (see §5.1). The goal is to find
the best trade-off between resource allocation efficiency and
processing performance. To explore the efficiency of VM
allocation, we compare our dynamic scale out approach to
manual scale out by a human expert.

We investigate different thresholds δ using the LRB with
L=64. We initially deploy the query with one VM per op-
erator and observe the number of VMs at the end of the
experiment and the processing latency. Fig. 9 shows that,
as δ increases from 10% to 90%, fewer VMs are allocated.
The median latency curve is concave, increasing not only for
high thresholds, when VMs are close to overload, but also
for low ones. This behaviour can be understood better by
considering the 95th percentile of tuple latencies. When δ is
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small, the system performs many scale out operations, which
impacts processing latency, especially at higher percentiles.

Based on these results, a threshold δ of 50%–70% provides
the best trade-off. It follows the best practice in data centre
management to maintain a headroom of unused resources in
anticipation of workload bursts and transient peaks [13].

Efficiency of resource allocation. We evaluate the effi-
ciency of the dynamic scale out policy against a human
expert who manually parallelises operators. In this exper-
iment, we use the LRB query with L=115. The human
expert is given a fixed number of VMs and uses them as
effectively as possible to support this workload. The human
expert, based on their understanding of the relative costs of
operators, tracks the bottleneck across multiple scaled out
versions of the LRB query. The dynamic scale out policy
allocates 25 VMs at the end of the experiment.

Fig. 10 shows the processing latency as a function of the
number of VMs for the manual scale out decisions. In ad-
dition, the median (101 ms) and 95th percentile (714 ms) of
latencies for the dynamic scale out policy are indicated in
the figure. The results show that the most efficient manual
allocation for this workload is 20 VMs—with fewer VMs, the
95th latency percentile starts to increase due to the high VM
utilisation. In comparison, automatic scale out achieves low
latency with only 25% more resources than the optimum.

6.2 Failure Recovery
To evaluate failure recovery, we first compare recovery

time against other fault tolerance approaches that can han-
dle stateful operators. We also measure the impact of the
checkpointing interval on recovery time. We finish with an
exploration of the benefit of parallel recovery.

We compare our approach for recovery using state man-
agement (R+SM) with upstream backup (UB) and source re-
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Figure 12: Recovery time for different R+SM check-
pointing intervals

play (SR). UB buffers tuples in each operator and re-processes
them to recover operator state. SR is a variant of UB, in
which tuples are only buffered and replayed by the source [29].

SR and UB are only suitable for stateful operators whose
state can be restored after re-processing few tuples. As a
result, we cannot use the LRB query for comparison because
its operators require the whole history of tuples. Instead, we
use a simple windowed word count query.

Windowed word frequency query. This query counts
word frequencies over a 30 s window. It executes over a
stream of sentence fragments, each 140 bytes in size. It has
two operators: a word splitter tokenises the input stream
into words; and a word counter maintains frequency counters
for each word. The state of the word counter is a dictionary
of words and their counters.

Recovery time. We observe the recovery times for the three
approaches. For R+SM, we set the checkpointing interval c
to 5 s. During the experiment, we fail the VM hosting the
word counter operator and measure the time to recover (i.e.
until the complete operator state was restored).

Fig. 11 shows results averaged over 10 runs for different
input rates. SR achieves slightly faster recovery than UB be-
cause of the short length of the operator pipeline and the fact
that it stops the generation of new tuples during the recov-
ery phase. R+SM achieves lower recovery times than both
UB and SR. Due to the state checkpoints, it re-processes
fewer tuples to recover the stateful operator. In the worst
case, it must replay 5 s worth of tuples instead of the entire
window of 30 s. Especially at higher input stream rates, the
overhead of re-processing tuples dominates recovery time.

Impact of checkpointing interval. In Fig. 12, we show the
change in recovery time as a function of the checkpointing
interval for different input rates. Recovery time increases
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Figure 13: Recovery time for serial and parallel re-
covery using state management

with longer checkpointing intervals because more tuples are
replayed. Tuple buffering is the main factor determining re-
covery time, which is why recovery time increases consider-
ably with higher rates. While frequent checkpointing incurs
overhead, it reduces recovery time, even for high rates.

Parallel recovery. To prevent the SPS from falling behind
during recovery, parallel recovery combines scale out with re-
covery (see §4). In this experiment, we compare serial to par-
allel R+SM with two partitioned operators. Fig. 13 shows
recovery times for different checkpointing intervals with an
input rate of 500 tuples/s. For short intervals, parallel re-
covery does not bring a benefit due to its higher overhead
with two partitioned operators. As the interval increases,
however, more tuples have to be replayed when restoring
operator state, and parallel recovery can process at a higher
rate with two partitioned operators.

6.3 State Management Overhead
Our state management approach based on periodic check-

pointing incurs an overhead. Since the overhead on process-
ing throughput is negligible and could not be observed, we
measure its effect on tuple processing latency for different
input rates, state sizes and checkpointing intervals.

Processing latency. We explore the processing latency of
the windowed word frequency query with different opera-
tor state sizes and input rates. We synthetically vary the
dictionary size between small (102 entries; ≈2 Kb), medium
(104 entries; ≈200 Kb) and large (105 entries; ≈2 Mb). We
use a checkpointing interval of 5 s and a window of 30 s. We
compare to a baseline without checkpointing, which gives
raw processing latency independent of state size.

Fig. 14 shows that the 95th percentile of tuple process-
ing latencies increases with state size. For large state sizes,
checkpointing takes longer and occupies more CPU time,
which is unavailable for tuple processing. Higher input rates
increase the load on the operator, resulting in less head-
room for the checkpointing process. For input rates of 100
and 500 tuples/s, the latency remains small but grows for
1000 tuples/s. Since the system becomes overloaded at this
rate, it does not have sufficient resources for checkpointing,
which could be addressed by scaling out the operator. Note
that measuring overhead as a high latency percentile results
in a worst case—the effect on the medium latency is less
pronounced and on the throughput is not observable.

Impact of checkpointing interval. We investigate the im-
pact of different checkpointing intervals by measuring the
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Figure 15: Trade-off between processing latency and
recovery time for different checkpointing intervals

processing latency for the windowed word frequency query
with 1000 tuples/s. Fig. 15 shows how the 95th percentile
of latency decreases with an increased checkpointing inter-
val. For comparison, the plot includes the expected recovery
time for that interval. There is a trade-off: the larger the
interval, the lower the impact on tuple processing, at the
expense of a longer recovery time after failure. The check-
pointing interval should therefore be chosen based on the
anticipated failure rate and the performance requirements
of a query.

7. RELATED WORK
State management in stream processing. There are
proposals for managing state in SPS with particular goals.
Gulisano et al. [15] describe how to partition the state of
specific operators such as join and aggregate for scale out.
State spilling was proposed to handle overload conditions
by temporarily storing parts of operator state on disk or a
remote node [19]. In addition, operator state is made explicit
when replicating operators across nodes. Feng et al. [11] use
counting bloom filters to improve the performance of state
transfers for replicated operators. In contrast, we expose
state through a set of generic set of management primitives
to integrate scale out and failure recovery.

Parallelism in stream processing. Much work has fo-
cused on exploiting parallelism in stream processing and,
more recently, performing scale out. Apache S4 [23] and
Twitter Storm [29] express queries as directed acyclic graphs
with parallel operators. S4 schedules parallel instances of
operators but does not manage their parallelism or state.
Storm allows users to specify a parallelisation level and sup-
ports stream partitioning based on key intervals but it ig-
nores operator state and cannot scale out at runtime.

IBM System S [4] supports intra-query parallelism through

a fine-grained subscription model, which specifies stream
connections, but management is manual. Hirzel [16] pro-
vides a MatchRegex operator for System S, which detects
tuple patterns in parallel. This approach does not con-
sider dynamic repartitioning, and the state is specific to
automata-based pattern detection. Schneider et al. [27] add
elastic operators to the SPADE language, which gradually
find the optimal number of threads for stateless processing
with maximum throughput. Our work is orthogonal in that
it focuses on parallelising stateful operators.

StreamCloud [15] parallelises stateful queries at runtime
but does not support failure recovery. It uses a query com-
piler to synthesise high-level queries into a graph of rela-
tional algebra operators. It uses hash-based parallelisation,
which is geared towards the semantics of joins and aggre-
gates. Instead, we develop lower-level state management
primitives, applicable to a wider class of stateful operators.
As shown in §6.1, our approach can support custom opti-
mised operators for the LRB query, which can achieve higher
per-node performance than relational operators.

Some proposals for scalable SPSs [21] are inspired by the
map/reduce paradigm, adapting it for low-latency stream
processing, but are limited by its expressiveness. Martin et
al. [21] add stateful reducers to map/reduce and rely on
external fault tolerance mechanisms. In contrast, our state
management approach is integrated as part of the SPS.

Zeitler and Risch [32] propose the parasplit operator for
partitioning streams statically according to a cost model.
Instead, we make decisions about the parallelisation level
at runtime in response to performance metrics. Backman et
al. [6] partition operators across nodes in an SPS to minimise
processing latency by balancing load according to simulated
latency estimates. In contrast, we partition operators on-
demand to remove processing bottlenecks and show experi-
mentally that this maintains low latency.

Fault tolerance in stream processing. Active replica-
tion in SPSs suffers from a high resource overhead, doubling
the number of required processing nodes, which is not cost-
effective in large cloud-based deployments.

Martin et al. [20] propose to reduce the resource footprint
of active replication in cloud-hosted SPSs by using spare
resources due to over-provisioning. However, this requires
an average utilisation of less than 50%—active replication
is suspended when peak workloads demand all resources.
While we assume long-lived failures, Zhang et al. [33] focus
on transient failures. They combine active replication in
the face of failures for fast recovery with passive replication
during normal operation.

Passive replication is more resource efficient but incurs a
periodic overhead due to state synchronisation, and is prone
to higher recovery times, especially with large state sizes.

IBM System S [30] provides a reliability mechanism, in
which operator state is persisted using an object/relational
mapping to a DBMS. It ensures the consistency of check-
points with asynchronous operations pending at the time of
failure by saving them along with the state, similarly to our
buffer state. Our approach, however, does not depend on an
external DBMS, which may become a bottleneck.

To reduce recovery times in passive replication, Sebepou et
al. [28] partition the state into smaller chunks, updating op-
erator state incrementally. Their approach is only evaluated
for aggregate operators, and it remains unclear how it can
be applied to other types of stateful partitioned operators.



D-Stream [31] is a streaming version of the Spark parallel
processing framework. It processes datasets across different
nodes and periodically checkpoints results. Similar to our
parallel recovery, missing results are recovered in parallel
from multiple nodes. However, the use of Spark means that
processing latencies are high.

Upstream backup [8] requires nodes to buffer tuples until
they have been processed by downstream operators. On fail-
ure, lost tuples are replayed by upstream nodes. In general,
this suffers from long recovery times when a large number
of tuples have to be re-processed to restore stateful opera-
tors and cannot support state that depends on the complete
stream history. Sweeping checkpointing [14] reduces recov-
ery times by checkpointing state when all downstream op-
erators have completed processing and buffers are smallest.
This is orthogonal to our approach and could be used to
choose the best checkpointing time.

8. CONCLUSIONS
We presented an integrated approach for scale out and

failure recovery through explicit state management of state-
ful operators. Our approach treats operator state as an in-
dependent entity, which can be checkpointed, backed up,
restored and partitioned by the SPS. Based on these oper-
ations, the SPS can support dynamic scale out of operators
while being fault tolerant. Our results show that our ap-
proach can be used effectively to provision Amazon EC2
resources against increasing input rates in the Linear Road
Benchmark and also support open loop workloads. Despite
the state checkpointing, processing latency remains within
desired levels. As future work, we plan to extend our scale
out policy with support for scale in to enable truly elastic
deployments of cloud-based SPSs.
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