

Edinburgh Research Explorer

Determining the relative accuracy of attributes

Citation for published version:
Cao, Y, Fan, W & Yu, W 2013, Determining the relative accuracy of attributes. in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-
27, 2013. ACM, pp. 565-576. https://doi.org/10.1145/2463676.2465309

Digital Object Identifier (DOI):
10.1145/2463676.2465309

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1145/2463676.2465309
https://doi.org/10.1145/2463676.2465309
https://www.research.ed.ac.uk/en/publications/77903c5a-dde3-4794-a093-c4aaf7c33401

Determining the Relative Accuracy of Attributes

Yang Cao1,2 Wenfei Fan1,2 Wenyuan Yu1

1School of Informatics, University of Edinburgh
2Big Data Research Center and SKLSDE Lab, Beihang University

{yang.cao@, wenfei@inf., wenyuan.yu@}ed.ac.uk

ABSTRACT

The relative accuracy problem is to determine, given tuples
t1 and t2 that refer to the same entity e, whether t1[A] is
more accurate than t2[A], i.e., t1[A] is closer to the true
value of the A attribute of e than t2[A]. This has been a
longstanding issue for data quality, and is challenging when
the true values of e are unknown. This paper proposes a
model for determining relative accuracy. (1) We introduce a
class of accuracy rules and an inference system with a chase
procedure, to deduce relative accuracy. (2) We identify and
study several fundamental problems for relative accuracy.
Given a set Ie of tuples pertaining to the same entity e and
a set of accuracy rules, these problems are to decide whether
the chase process terminates, is Church-Rosser, and leads to
a unique target tuple te composed of the most accurate values
from Ie for all the attributes of e. (3) We propose a frame-
work for inferring accurate values with user interaction. (4)
We provide algorithms underlying the framework, to find
the unique target tuple te whenever possible; when there is
no enough information to decide a complete te, we compute
top-k candidate targets based on a preference model. (5)
Using real-life and synthetic data, we experimentally verify
the effectiveness and efficiency of our method.

Categories and Subject Descriptors

H.2 [Database Management]: General—integrity

Keywords

data accuracy, data cleaning

1. INTRODUCTION
One of the central issues of data quality is data accuracy.

Given a set Ie of tuples pertaining to the same entity e, it
aims to find the most accurate values for e. More specifically,
it is to compute a tuple te, referred to the target tuple for
e from Ie, such that for each attribute A of e, te[A] is a
value in Ie that is closest to the true A-value of e. The need
for studying this is evident in e.g., decision making [20],
information systems [10] and data quality management [18].

Although important, data accuracy has not been well
studied. Prior work on data quality has mostly focused on
other issues such as data consistency [2, 12]. Consistency
refers to the validity and integrity of the data. While there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978­1­4503­2037­5/13/06 ...$15.00.

is an intimate connection between data accuracy and consis-
tency, the two are quite different. Indeed, a database D may
be consistent, but the values in D may still be inaccurate.

Example 1: Consider relation stat given in Table 1, which
collects performance statistics of Michael Jordan (Fig. 1) in
the season of 1994-95, when Michael played for a baseball
team Birmingham Barons in the Southern League (SL) in
1994, followed by his return to NBA, playing 27 games for
Chicago Bulls in 1995. Each tuple in stat specifies the name
(FN, MN, LN), performance (total points totalPts after rnds
rounds played), jersey number J#, league, team and arena.

We want to find the target tuple for Michael from stat,
consisting of the most accurate values for all the attributes
at the end of 1994-95 NBA season. However, there are mul-
tiple values in stat for some attributes. For instance, we do
not know whether 45 is more accurate than 23 for his J#.

The stat data is consistent. Indeed, constraints specifying
its consistency include (a) functional dependency (FD [1]):
[FN,MN, LN, league, rnds → totalPts], i.e., player, rnds and
league uniquely determine totalPts, and (b) conditional func-
tional dependency (CFD [13]): [team = “Chicago Bulls” →
arena = “United Center”], asserting that if team is Chicago
Bulls, then arena must be United Center. While all tuples in
stat satisfy these constraints and are hence consistent, most
of the data values in stat are, however, not accurate. ✷

Not all is lost. An enterprise typically maintains master
data [25], a single repository of high-quality data that pro-
vides various applications with a synchronized, consistent
view of its core business entities. Leveraging master data,
one is able to identify accurate values for some attributes.
For example, a master relation nba is given in Table 2, in
which a tuple specifies the FN, LN, league, season, and team

of an NBA player. Then tuple s1 in Table 2 tells us that
in the 1994-95 season, Michael played for Chicago Bulls in
NBA. Thus t1 is more accurate than t4 in attribute league

(resp. team), denoted by t6≺league t1 (resp. t4≺team t1).

It is more challenging, however, to determine the relative
accuracy of those attributes in the absence of complete mas-
ter data. That is, given tuples t1, t2 and an attribute A, we
want to know whether t1 ≺A t2 when A is not covered by
master data, such as J# in relation stat of Table 1. This is
hard, but not hopeless. From the semantics of the data, one
can derive accuracy rules (ARs), which tell us whether one
tuple is more accurate than another in certain attributes.

Example 2: An analysis of the semantics of the stat data
yields the ARs given in Table 1. Based on these rules, we
can deduce relative accuracy as follows.

(1) We know that in a season, the number of rounds (rnds)
monotonically increases (up to an bound). Hence for tuples
t and t′ referring to the same league, if t[rnds] < t′[rnds], then
t ≺rnds t

′, i.e., t′[rnds] is more current (and thus more accu-

565

FN MN LN rnds totalPts J# league team arena
t1: MJ null null 16 424 45 NBA Chicago Chicago Stadium
t2: Michael null Jordan 27 772 23 NBA Chicago Bulls United Center
t3: Michael null Jordan 1 19 45 NBA Chicago Bulls United Center
t4: Michael Jeffrey Jordan 127 51 45 SL Birmingham Barons Regions Park

Table 1: Entity instance stat for Michael Jordon in the 1994-95 season

Figure 1: MJ’s return

FN LN league season team
s1: Michael Jordan NBA 1994-95 Chicago Bulls
s2: Michael Jordan NBA 2001-02 Washington Wizards

Table 2: Master data nba

ϕ1: ∀t1, t2 ∈ stat (t1[league] = t2[league] ∧ t1[rnds] < t2[rnds] → t1 �rnds t2)
ϕ2 : ∀t1, t2 ∈ stat (t1 ≺rnds t2 → t1 �J# t2)
ϕ3: ∀t1, t2 ∈ stat (t1 ≺rnds t2 → t1 �totalPts t2)
ϕ4 : ∀t1, t2 ∈ stat (t1 ≺league t2 → t1 �rnds t2)
ϕ5 : ∀t1, t2 ∈ stat (t1 ≺MN t2 → t1 �FN t2)
ϕ6 : ∀tm ∈ nba(tm[FN,LN] = te[FN,LN] ∧ tm[season] = “1994-95” → te[league, team] = tm[league, team])

Table 3: Accuracy rules (ARs)

rate) than t[rnds]. This is expressed as rule ϕ1 in Table 1.
From ϕ1 we can deduce that ti ≺rnds t2 for i ∈ [1, 3].

(2) For tuples t and t′, if t′ is more accurate than t in rnds,
then t �J# t′, denoting either t[J#] = t′[J#] or t ≺J# t′;
similarly for totalPts. That is, if t′ is more accurate (current)
than t in attribute rnds, then so are its correlated attributes
t′[J#] and t′[totalPts]. These are expressed as rules ϕ2 and
ϕ3 in Table 1, respectively. From these ARs and (1) we find
that t2[totalPts] = 772 and t2[J#] = 23 are more accurate
than ti[totalPts] and ti[J#], respectively, for i ∈ [1, 3].

(3) We know that Michael ended up in NBA in the 1994-
95 season. Moreover, if t′ is more accurate than t in league,
then so is t′ in attributes rnds, totalPts, J# and arena. These
can also be expressed as ARs, e.g., ϕ4. These tell us that ti
is more accurate than t4 in these attributes, for i ∈ [1, 3].

(4) For tuples t and t′, if t[A] is null but t′[A] is not, then
t′ is more accurate than t in attribute A. This can also be
expressed as an AR (not shown in Table 1). Moreover, if t′

is more accurate than t in MN, then so is t′ in the correlated
attribute FN, as t′[MN] and t′[FN] typically come together.
This is expressed as ϕ5 in Table 1. These tell us that
t4[MN]=“Jeffrey” is most accurate in MN and t1 ≺FN t4.

(5) As remarked earlier, we can use master data to find the
most accurate values for certain attributes. This is shown
as AR ϕ6 in Table 1. It asserts that if there exists a mas-
ter tuple tm ∈ nba such that tm[FN, LN] = te[FN, LN] and
tm[season] = “1994-95”, then te[league, team] should take the
value of tm[league, team]. Here te is the target tuple in which
attributes te[FN, LN] already find their most accurate values.

Putting these together, we can deduce the relative accu-
racy of attributes and better still, a large part of the target
tuple te. Indeed, the values of te in FN, MN, LN, rnds,
totalPts, league, team are found to be Michael, Jeffrey, Jor-
dan, 27, 772, 23, NBA, and Chicago Bulls, respectively. ✷

This example tells us that in the absence of true values of
an entity, one can still determine a large part of the target
tuple, by taking together ARs and available master data.
This, however, requires an inference system and efficient al-
gorithms for deducing the relative accuracy of attributes.

Contributions. We make a first attempt to give a formal
treatment of relative accuracy, from theory to practice.

(1) We propose a model for determining relative accuracy
(Section 2). We introduce (a) accuracy rules (ARs) defined
in terms of partial orders; and (b) a chase-like procedure [1]
that, given a set Ie of tuples pertaining to the same entity

e, a set Σ of ARs on Ie and (partial) master data Im, infers
relative accuracy and a target tuple by applying the ARs.

(2) We identify fundamental problems for relative accuracy
(Section 3). Given Ie, Σ and Im, these problems are to
decide (a) whether the chase process on Ie terminates by
applying Σ and Im? (b) Whether do all the chase sequences
lead to a unique target tuple te for e from Ie, i.e., Church-
Rosser [1], no matter in what orders the rules are applied?
(c) If te is incomplete, i.e., some of its attributes have the
null value, can we make te complete while observing the ARs
in Σ? We show that the chase process always terminates,
the Church-Rosser property can be decided in O((|Ie|

2 +
|Im|)|Σ|) time, whereas the last problem is NP-complete.

(3) We present a framework for deducing target tuples (Sec-
tion 4). Given Ie, Σ and Im, the framework checks whether
the chase on Ie with Σ and Im is Church-Rosser. If so, it
automatically deduces as many accurate attribute values for
te as possible. If te is incomplete, it computes top-k candi-
date targets based on a preference model. The users may
check the candidate tuples, revise te, Ie and Σ, and invoke
the process again until a satisfactory target tuple is found.

(4) We provide effective algorithms underlying the frame-
work (Sections 5 and 6). We give an algorithm for deciding
whether the chase is Church-Rosser given Ie, Σ and Im,
and deducing accurate attributes for target tuples. We also
develop three algorithms for finding top-k candidate target
tuples, with the early termination property without inspect-
ing all possible tuples. In particular, one of the algorithms
does not require ranked lists as input, and is instance opti-
mal w.r.t. the number of visits to the data [11].

(5) We experimentally verify the effectiveness and efficiency
of our method, using real-life and synthetic data (Section 7).
We find that our approach is effective: for the real-life data,
accurate values are automatically deduced for at least 73%
of the attributes without user interaction, in 10 milliseconds
(ms); moreover, at most 3-4 rounds of user interaction are
needed to find complete target tuples. Our algorithms scale
well with the sizes of entity instances, master data and ARs.
We also evaluate our method for truth discovery, vs. prior
approaches [8, 14]. We show that our model can accommo-
date trust in data sources [8] as well as data currency and
consistency [14]. Even for truth discovery, our method per-
forms as well as [8,14] in their settings, or even better.

The analysis of relative accuracy helps us deduce the true
value of an entity e. Even when we do not have enough

566

information to decide the true values of all the attributes of
e, partial true values deduced may still enhance our trust in
values critical to decision making. In addition, relative ac-
curacy helps us reduce search space and improve accuracy in
data repairing, which is computationally costly [12]. Indeed,
if t1 ≺A t2 is deduced, we know that t1[A] is a better candi-
date than t2[A] for the A-attribute of these tuples. As will
be seen shortly, relative accuracy is deduced via logical in-
ference from data semantics. The inference can be combined
with probabilistic analysis techniques (see below), to facili-
tate truth discovery, data repairing and decision making.

We contend that ARs, master data and inference algo-
rithms yield a promising approach to determining relative
accuracy. As shown in Example 2, while master data is
helpful, it is not a must for the analysis of relative accuracy.
In the absence of complete master data, we can still deduce
true values for critical attributes based on accuracy rules
and inference, as will be verified by our experimental study.

Related works. There has been a host of work on data
quality issues such as data consistency, data currency, in-
formation completeness and entity resolution (see [2,12] for
recent surveys). While data accuracy has long been advo-
cated [2,16,23], the prior work has mostly focused on metrics
for accuracy measurement; we are not aware of any formal
treatment of relative accuracy in the absence of true values.

Rules and master data have been used in repairing data
(data consistency) [3,15] and specifying relative information
completeness [12]. This work differs from the prior work in
the following. (1) ARs are quite different from the depen-
dencies used for specifying consistency and completeness.
As a result, the termination problem for rules of [15], for
instance, is PSPACE-complete, while our inference (chase)
process always terminates. (2) Data repairing and infor-
mation completeness consider problems different from those
studied here. (3) We give an operational semantics for ARs
in terms of chase [1]. In contrast, chase was not considered
in the prior work except [3]. While [3] adapted chase for data
repairing [3] based on matching dependencies, it studied nei-
ther how to deduce relative accuracy, nor the complexity of
determining whether a chase process is Church-Rosser.

Also related is prior work on truth discovery from data
sources [4, 8, 14, 19, 27–30]. Those approaches include (i)
dependencies on sources to detect copy relationships and
identify reliable sources [8]; (ii) employing lineage and prob-
abilistic [27]; (iii) vote counting and probabilistic analysis
based on the trustworthiness of data sources [4, 19, 28–30].
In contrast, we deduce relative accuracy following a logical
approach based on ARs and master data, without assuming
knowledge about data sources. Our method is complemen-
tary to the prior approaches for truth discovery, and can be
combined with them by deducing trust in attributes with
ARs in truth discovery (see Sections 3 and 7 for details).

Closer to this work is [14], on conflict resolution by rea-
soning about data consistency and currency. It used partial
orders, currency constraints and constant CFDs [13]. This
work differs from [14] in the following. (1) We study rela-
tive data accuracy rather than conflict resolution. This said,
currency orders and constant CFDs can be expressed as ARs
and hence, our techniques can also be used in data fusion [5].
(2) We use ARs for actions in a chase process, as opposed
to static dependencies of [14]. (3) Our approach is quite dif-
ferent from [14]. We infer accuracy via chase, use available

master data to improve accuracy, and provide algorithms to
compute top-k target tuples. These were not studied in [14].

Our algorithms for computing top-k target tuples are re-
lated to top-k query answering, which aims to retrieve top-
k tuples from query result, ranked by a monotone scoring
function [11,22]. One of our top-k algorithms extends algo-
rithms for top-k rank join queries [21,26] by embedding score
computation in top-k selection, rather than assuming that
the scores are already given, and by additionally checking
whether selected tuples observe ARs. We also provide a new
algorithm that does not require the input to be ranked; it
is instance optimal w.r.t. the number of visits to the data,
and can be used to compute rank joins on unranked lists.

2. A MODEL FOR RELATIVE ACCURACY
We next present a model for determining relative accu-

racy. We first define ARs (Section 2.1), and then introduce a
chase procedure for deducing relative accuracy (Section 2.2),

2.1 Rules for Specifying Relative Accuracy

Relative accuracy. Consider a relation schema R =
(A1, . . . , An), where the domain of attribute Ai is dom(Ai).
We consider an entity instance Ie of R, which is a set of
tuples pertaining to the same real-world entity e. Such an
Ie is identified by entity resolution techniques [9,24], and is
typically much smaller than a database instance in practice.

The problem of relative accuracy is to determine, given an
attribute Ai of R and tuples t1, t2 ∈ Ie, whether t2 is more
accurate than t1 in attribute Ai, denoted by t1≺Ai t2.

More specifically, for each attribute Ai of Ie, ≺Ai is a strict
partial order defined on the Ai attribute values in Ie. That
is, ≺Ai is a binary relation that is irreflexive and transitive,
and thus asymmetric. Initially, ≺Ai is empty for all i ∈ [1, n],
and we want to populate ≺Ai by deducing relative accuracy
with accuracy rules. We also use t1 �Ai t2 to denote either
t1[Ai]= t2[Ai] or t1≺Ai t2. Note that �Ai is a partial order,
referred to as the accuracy order on attribute Ai.

Ultimately we want to find a tuple te for Ie, referred to
as the target tuple for e from Ie such that for each attribute
Ai of R and all tuples t ∈ Ie, t �Ai te. Intuitively, te is a
new tuple composed of the most accurate value of attribute
Ai for all i ∈ [1, n]. It is easy to verify that if te exists, then
it is unique. Note that Ie may not have enough information
for us to deduce a complete te. If so, te[Ai] = null for some
Ai, and we refer to te as an incomplete target tuple of Ie.

Accuracy rules (ARs). There are two forms of ARs. The
first one is defined on tuples t1, t2 ∈ Ie to deduce whether
t1�Ai t2, i.e., their relative accuracy in an attribute Ai:

ϕ = ∀t1, t2 (R(t1) ∧R(t2) ∧ ω → t1 �Ai t2) (1)

where ω is a conjunction of predicates of the form: (a)
t1[Al] op t2[Al], where op is one of the comparison oper-
ators =, 6=,>,<,≤,≥; or (b) ti[Al] op c for i ∈ [1, 2], where
c is a constant or te[Al]; or (c) t1 ≺Al

t2 or t1 �Al
t2. We

refer to ω as LHS(ϕ) and t1�Ai t2 as RHS(ϕ).
We denote by (t1, t2) |= ω if t1 and t2 satisfy the predicates

in ω following the standard semantics of first-order logic.
Intuitively, if (t1, t2) |= ω, then t1≺Ai t2 or t1�Ai t2.

The second form of ARs is defined on (te, Im), where te is
the target tuple template, and Im is an available master rela-
tion of schema Rm [25]. Note that Rm may not cover all the
attributes of R. This form of ARs extends te by extracting
accurate values from master relation Im, as follows:

567

ϕ
′ = ∀tm (Rm(tm) ∧ ω → te[Ai] = tm[B]) (2)

Here ω is a conjunction of predicates of the form te[Al] = c or
te[Al] = tm[B′], where c is a constant and B′ is an attribute
of Rm. Intuitively, if te matches a master tuple tm in Im
as specified by ω, then te[Ai] is instantiated by taking the
value of tm[B]. We refer to ω as LHS(ϕ′) and te[Ai] = tm[B]
as RHS(ϕ). We write (te, tm) |= ω if te and tm satisfy ω.

Example 3: Recall the entity instance stat of Table 1, and
master relation nba of Table 2. Then their ARs include ϕ1–
ϕ6 given in Table 1. These ARs demonstrate how we can
derive relative accuracy, in terms of (a) constants, built-in
predicates and the semantics of the data such as ϕ1, (b) data
currency, e.g., ϕ2 and ϕ3, (c) co-existence of attributes and
known accuracy orders, such as ϕ4 and ϕ5, and (d) available
master data such as ϕ6. Additional ARs for stat include:
ϕ7: ∀t1, t2 ∈ stat

(

t1[A] = null ∧ t2[A] 6= null → t1 �A t2
)

ϕ8: ∀t1, t2 ∈ stat
(

t2[A] = te[A] ∧ te[A] 6= null → t1 �A t2
)

ϕ9: ∀t1, t2 ∈ stat
(

t1[A]= t2[A] → t1�A t2
)

ϕ10: ∀t1, t2 ∈ stat
(

t1 ≺MN t2 → t1 �LN t2
)

ϕ11: ∀t1, t2 ∈ stat
(

t1 ≺team t2 → t1 �arena t2
)

Here ϕ7–ϕ9 are defined on all the attributes A of stat. Rule
ϕ7 says that the null value has the lowest accuracy; ϕ8 as-
serts that if the target attribute te[A] is defined, then it has
the highest accuracy among all A-attribute values in Ie; and
ϕ9 says that for all t1 and t2, if t1[A] = t2[A], then t1 �A t2.
Rules ϕ7–ϕ9 are “axioms” that are included in any set of
ARs. ARs ϕ10 and ϕ11 deduce accuracy from correlated at-
tributes (e.g., ϕ10, if a tuple has a more accurate MN, then
so does LN since the two attributes often come together).

Note that t1 ≺A t2 iff t1 �A t2 and t1[A] 6= t2[A]. Hence
when �A is computed, we can derive ≺A from �A. ✷

Remark. Constant CFDs [13] developed for detecting data
inconsistencies can be expressed as ARs. As an example,
consider the CFD ψ given in Example 1: [team = “Chicago
Bulls” → arena = “United Center”]. We can create a master
relation of schemaRm with a tuple (team= “Chicago Bulls”,
arena = “United Center”), and express ψ as an AR

∀tm ∈ Rm (tm[team] = te[team] → te[arena] = tm[arena]),
which asserts that if the team of the target tuple te is
Chicago Bulls, then its arena must be United Center. As
we only need to assure the consistency of the target tuple
te, general CFDs defined on two tuples are not needed here.

2.2 Inferring Relative Accuracy

We next present an inference system for relative accuracy,
in terms of a chase-like procedure with ARs. The chase
process gives an operational semantics for ARs.

We start with some notations. Consider an entity instance
Ie, a master relation Im, and a set Σ of ARs defined on Ie
and Im. (1) We use D to denote (Ie,�A1

, . . . ,�An), i.e., Ie
equipped with partial orders �Ai ; we use �D

Ai
to denote the

partial order �Ai in D [3]. (2) We call (D0, t
D0
e) the initial

instance of e, where �D0

Ai
is empty, and tD0

e is the target

template with tD0
e [Ai] = null for all i ∈ [1, n]. (3) We refer

to S = (D0, Σ, Im, tD0
e) as a specification of entity e. (4) We

call (D, tDe) an accuracy instance of S, where tDe is the target
tuple template associated with D, which is instantiated in the
chase process, and may have null in some of its attributes.

In a nutshell, the chase starts with the initial instance
(D0, t

D0
e). It deduces relative accuracy by populating partial

orders and instantiating the target tuple template, yielding
a sequence (D0, t

D0
e), (D1, t

D1
e), . . ., (Dm, t

Dm
e) of accuracy

. . . �MN �MN �MN . . .

ϕ9

⇒

t1�t2
t2�t1
t1�t3
t3�t1
t2�t3
t3�t2

ϕ7

⇒

t1�t2
t2�t1
t1�t3
t3�t1
t2�t3
t3�t2

t1�t4
t2�t4
t3�t4

D0 D1 D2

t
D0
e [MN] t

D1
e [MN] t

D2
e [MN]

null null “Jeffrey”

Figure 2: Single chase steps

instances. Each chase step applies an AR ϕ ∈ Σ and Im to an

accuracy instance (Dj , t
Dj
e), and generates another instance

(Dj+1, t
Dj+1
e). In other words, (Dj+1, t

Dj+1
e) is an updated

version of (Dj , t
Dj
e), such that for some attribute Ai, either

the partial order �
Dj+1

Ai
extends �

Dj

Ai
with a new pair, or

t
Dj
e [Ai] = null is instantiated by letting t

Dj+1
e [Ai] take a

value from a master tuple in Im or a value that is already
determined most accurate for Ai. The process proceeds until
no changes can be made to partial orders or the target tuple
template. More specifically, these are stated as follows.

(1) A single chase step. We say that (Dj+1, t
Dj+1
e) is an

immediate result of enforcing an AR ϕ ∈ Σ on (Dj , t
Dj
e) with

Im, denoted by (Dj , t
Dj
e) 7→ϕ (Dj+1, t

Dj+1
e), if (Dj , t

Dj
e) 6=

(Dj+1, t
Dj+1
e) and one of the following conditions holds:

(a) When ϕ = ∀t1, t2(R(t1) ∧R(t2) ∧ ω → t1 �Ai t2). Then
there exist tuples t1, t2 ∈ Ie such that

◦ (t1, t2) |= ω;

◦ Dj+1=(Ie,�
Dj

A1
,· · · ,�

Dj

Ai
∪{(t1, t2)}, · · · ,�

Dj

An
); and

◦ t
Dj+1
e =(t

Dj
e [A1], · · · , λ(t

Dj
e [Ai], �

Dj+1

Ai
) · · · , t

Dj
e [An]).

Here λ(t
Dj
e [Ai],�

Dj

Ai
)= t[Ai] if there exists t ∈ Ie such that

for all t′ ∈ Ie, t
′ �

Dj+1

Ai
t; and it is t

Dj
e [Ai] otherwise.

Intuitively,�
Dj+1

Ai
extends�

Dj

Ai
by including t1�Ai t2, and

t
Dj+1
e [Ai] takes the Ai value with the highest accuracy w.r.t.

�
Dj+1

Ai
if it exists. Note that Dj+1 and Dj agree on every

attribute and partial order other than t
Dj
e [Ai] and �

Dj

Ai
.

(b) When ϕ = ∀tm (Rm(tm) ∧ ω → te[Ai] = tm[Ai]). Then
there exist tuples t ∈ Ie and tm ∈ Im such that

◦ (te, tm) |= ω, Dj+1 = Dj , and

◦ t
Dj+1
e = (t

Dj
e [A1], · · · , tm[Ai], · · · , t

Dj
e [An]).

Here t
Dj+1
e differs from t

Dj
e [Ai] only in attributeAi by taking

master data tm[Ai], whileDj+1 remains unchanged fromDj .

We say that (Dj , t
Dj
e) 7→ϕ (Dj+1, t

Dj+1
e) is valid if (a)

there exist no t1 and t2 such that both t1 ≺
Dj+1

Ai
t2 and

t2 ≺
Dj+1

Ai
t1 (i.e., t1 �

Dj+1

Ai
t2, t2 �

Dj+1

Ai
t1 but t1[Ai] 6=

t2[Ai]), and (b) t
Dj
e [Ai] is not changed if t

Dj
e [Ai] 6= null. In

the chase process we consider valid chase steps only.

Observe the following: (a) the entity instance Ie and the
master data Im remain unchanged when ARs are enforced;

(b) �
Dj

Ai
and �

Di+1

Ai
are partial orders for all attributes Ai,

such that for all t1, t2 ∈ Ie, if t1 �
Dj

Ai
t2 and t2 �

Dj

Ai
t1 then

t1[Ai] = t2[Ai]; and (c) if t
Dj
e [Ai] 6= null, then t

Dj+1
e [Ai] =

t
Dj
e [Ai], i.e., all non-null values of t

Dj
e remain unchanged.

Example 4: Consider Ie = stat (Table 1), Im = nba (Ta-
ble 2), and Σ consisting of the ARs given in Example 3. Let
D0 be Ie with empty partial orders, and tD0

e be the initial

568

target template with tD0
e [A] = null for all attributes A. Af-

ter enforcing ϕ9 on (D0, t
D0
e), it yields (D1, t

D1
e) as the first

step in Fig. 2, in which �MN is extended on (t1, t2), (t2, t3)
and (t3, t1). Similarly, after enforcing ϕ7 on (D1, t

D1
e), it

yields (D2, t
D2
e) as the second step in Fig. 2, which extends

�MN on (t1, t4) and instantiates tD2
e [MN] = “Jeffrey”. ✷

(2) Chase. A chasing sequence of D0 by Σ and Im is
a sequence of accuracy instances (D0, t

D0
e), (D1, t

D1
e), . . . ,

(Dl, t
Dl
e), . . . , where for each j ≥ 1, there exists some AR

ϕ ∈ Σ such that (Dj , t
Dj
e) 7→ϕ (Dj+1, t

Dj+1
e) is valid.

A chasing sequence (D0, t
D0
e), . . . , (Dk, t

Dk
e) is said to

be terminal if it is finite and moreover, no more valid step
can be enforced on (Dk, t

Dk
e). We refer to tDk

e as a deduced

target tuple of specification S, and (Dk, t
Dk
e) as the terminal

instance of the chasing sequence.
Intuitively, the chase repeatedly applies ARs to deduce

relative accuracy and instantiate the target tuple template,
until it reaches an instance that cannot be further changed.

Example 5: Consider D0, t
D0
e ,Σ and Im given in Exam-

ple 4. By enforcing ARs ϕ9, ϕ7, ϕ5, ϕ10, ϕ6, ϕ1, ϕ4, ϕ2,
ϕ3 and ϕ11 on (D0, t

D0
e) in this order with Im, one can get

a deduced target tuple te[FN, MN, LN, rnds, totalPts, J#,
league, team, arena] = (Michael, Jeffrey, Jordan, 27, 772,
23, NBA, Chicago Bulls, United Center). Note that te is a
complete target tuple from stat, which draws values from
different tuples, e.g., t2 and t4 of stat and s1 of nba. ✷

3. FUNDAMENTAL PROBLEMS
Given a specification S = (D0, Σ, Im, tD0

e) of an entity
e, we want to know whether chasing on D0 by Σ and Im
terminates? Whether will all chasing sequences of D0 lead
to the same deduced target tuple te? When the target tuple
te is incomplete, can we make it complete while observing
the ARs in Σ? Can we find top-k candidate targets for users
to chose? This section studies these issues (due to the lack
of space we defer all the proofs to the full version). As will
be seen in Section 4, our framework for deducing relative
accuracy and target tuples are based on these results.

(1) Termination of chase. Is every chasing sequence of
D0 by Σ and Im an initial subsequence of a terminal chasing
sequence? The answer to this question is affirmative.

Proposition 1: Every chasing sequence of D0 by Σ and Im
is finite and leads to a terminal instance in O(|Ie|

2) steps,
where |Ie| is the size of the entity instance Ie in D0. ✷

(2) The Church-Rosser property. Another question
asks whether different terminal chasing sequences of D0 by
Σ and Im lead to the same unique terminal instance, no
matter what rules in Σ are used and in what order they
are applied. This is known as the Church-Rosser property
(see, e.g., [1]). If a specification S has the Church-Rosser
property, we say that S is Church-Rosser. Obviously if S is
Church-Rosser, then the uniquely deduced target tuple is de-
terministic, yielding a unique target that can be “trusted”.

Unfortunately, not all specifications are Church-Rosser.

Example 6: Consider the specification S described in Ex-
ample 5. One can verify that S is Church-Rosser. However,
let us extend S to S′ by adding an extra rule ϕ12: ∀t1, t2 ∈
stat

(

t1[league] = NBA ∧ t2[league] = SL → t1 �league t2
)

.
Then S′ is not Church-Rosser. Indeed, there are two chas-
ing sequences that deduce different target tuples: one is the

sequence given in Example 5 with te[league] = NBA, and the
other is by enforcing ARs ϕ7, ϕ5, ϕ10 and ϕ12 in this order,
yielding a target tuple t′e with t′e[league] = SL. ✷

This tells us that if S is not Church-Rosser, it may lead to
multiple conflicting targets (e.g., te and t′e on league), which
cannot be accurate at the same time. Thus specifications
that are not Church-Rosser should be identified and revised.

To do this, we provide a necessary and sufficient condi-
tion for deciding whether a specification S is Church-Rosser.
We say that a terminal chasing sequence (D0, t

D0
e), . . . ,

(Dk, t
Dk
e) is stable if for all invalid chase steps that enforce

an AR ϕ on (Dk, t
Dk
e), ϕ cannot be enforced on (Dj , t

Dj
e)

as a valid step for all j ∈ [0, k − 1]. That is, suppose that

(Dk, t
Dk
e) can be further changed by ϕ by letting t

Dk
e [Ai]

change from a non-null value to another, or by allowing both
t1 �Dk

Ai
t2 and t2 �Dk

Ai
t1 while t1[Ai] 6= t2[Ai]. Then the

change cannot be inflicted to any (Dj , t
Dj
e) as a valid move.

Intuitively, if ϕ could be enforced as a valid step, it would
lead to a terminal sequence different from (Dk, t

Dk
e).

A stable chasing sequence prevents any conflicts in the
chase such as those in Example 6, and allows us to efficiently
determine whether S is Church-Rosser. In light of this, in
the sequel we focus on Church-Rosser specifications only.

Theorem 2: Given a specification S = (D0,Σ, Im, t
D0
e),

(a) S is Church-Rosser if and only if there exists a terminal
chasing sequence of S that is stable; and (b) it is in O((|Ie|

2+
|Im|)|Σ|) time to decide whether S is Church-Rosser. ✷

(3) Deducing candidate targets. When S is Church-
Rosser, its deduced target tuple te may still be incomplete,
i.e., some attributes remain null. For example, if we drop AR

ϕ11 of Example 3 from the specification of Example 5, the
reduced specification is still Church-Rosser, but its deduced
target is incomplete since the most accurate value of arena
can no longer be determined, as indicated in Example 2.

This gives rise to the following question: can we find can-
didate targets and suggest them for the users to consider?
More specifically, a complete tuple t′e is called a candidate
target of a specification S = (D0, Σ, Im, tD0

e) if
◦ for each attribute Ai, t

′
e[Ai] = te[Ai] if te[Ai] 6= null,

and t′e[Ai] is a value in dom(Ai) otherwise, where te is
the unique deduced target tuple of S;

◦ S′ = (D0,Σ, Im, t
′
e) is Church-Rosser and moreover, t′e

is the deduced target tuple of S′.
That is, a candidate target t′e keeps the non-null values of te
unchanged but instantiates those null attributes of te. More-
over, when we treat t′e as the initial target template, the
chase verifies that t′e “satisfies” the constraints imposed by
the ARs of Σ, and is deduced as the target tuple of S′.

The candidate target problem is to determine, given a spec-
ification S of an entity that is Church-Rosser, whether there
exists a candidate target t′e of S. It is, however, nontrivial.

Theorem 3: The candidate target problem is NP-complete.
It remains NP-hard for specifications S = (D0, Σ, Im, tD0

e)
in which Σ consists of ARs of form (1) only, and when can-
didate targets te of S take values from Ie and Im only. ✷

The number of candidates t′e for a Church-Rosser S could
be quite large, exponential or even infinite.

Example 7: Consider R = (A1, . . . , An), an entity instance
Ie of R with tuples t1 = (0, . . . , 0) and t2 = (1, . . . , 1), and
empty Σ and Im. Then there are 2n candidate targets with

569

Figure 3: Framework overview

values from {0, 1}, i.e., each tuple t ∈ {0, 1}n is a candidate
target. Worse still, if some Ai of R has an infinite domain,
there are possibly infinitely many candidate targets. ✷

(4) Finding top-k candidate targets. It is infeasible to
enumerate all candidate targets. This suggests that we find
top-k candidate targets for S based on a preference model.

We specify the preference model as a pair (k, p(·)), where k
is a natural number, and p(·) is a monotone scoring function
such that given a set Te of candidate targets, p(Te) is a real
number. To simplify the discussion we assume that a real
number wAi(v) is associated with each value v in domain
dom (Ai) (if dom (Ai) is infinite, wAi(v) is the same for all v
outside of Ie and Im), referred to as the score of v. The score
could be placed by the users as the confidence in v [12], found
as probabilities by truth discovery algorithms [4, 19, 28–30]
(see Section 7), or automatically derived by counting the
occurrences of v in the Ai column and from co-existence of
attributes and available scores. We define the score

p(Te) =
∑

t′e∈Te

∑

Ai∈attr(R)

wAi
(t′e[Ai]).

Such preference is often too “soft” to be modeled as ARs
or partial orders, and candidates derived from it may not
be as “deterministic” (“certain”) as deduced targets by the
chase. Nonetheless, users often find such candidates helpful,
as commonly practiced in data repairing heuristics [12].

For a Church-Rosser S, a preference model (k, p(·)) and a
number C, the top-k candidate problem is to decide whether
there exists a set Te of k candidate targets with p(Te) ≥ C.

Theorem 4: The top-k candidate problem is NP-complete,
and NP-hard under the same restriction of Theorem 3. ✷

4. A FRAMEWORK
We now present a framework for deducing complete target

tuples for entities. As depicted in Fig. 3, given a specifica-
tion S = (D0, Σ, Im, tD0

e) of an entity e, it populates partial
orders for relative accuracy and instantiates the target tuple
template, based on the chase given in Section 2. It automat-
ically deduces as many accurate values for e as possible, and
interacts with the users to revise candidate targets, until a
complete target tuple is found. It works as follows.

(1) Church-Rosser checking. It first inspects whether S is
Church-Rosser via automated reasoning. The Church-Rosser
property warrants a unique target tuple, in which the accu-
rate values can be trusted (Section 3). If S is not Church-
Rosser, the users are invited to revise S (see step (4) below),
by following the “No” branch. The revised S is then checked.

(2) Computing target tuple te. When S is confirmed Church-
Rosser, the framework computes the unique deduced target
tuple te by means of the chase. It returns te if it is complete.
Otherwise it computes a top-k set of candidate targets.

(3) Computing top-k candidate targets. As remarked in Sec-
tion 3, te may be incomplete, and it is hard to identify (all)
candidate targets (Theorem 3 and Example 7). To this end,
the framework computes a top-k set Te of candidate targets.
It comes up with a preference model (k, p(·)) following the
practice of data repairing heuristics, which the users may
opt to adjust. Based on (k, p(·)), it computes Te with k
tuples such that (a) for each t′e ∈ Te, te is a candidate tar-
get of S, and (b) for all sets T ′

e with k candidate targets,
p(Te) ≥ p(T ′

e), i.e., tuples in Te have the highest scores.
When there exist at least k candidate targets of S, Te con-
sists of k distinct tuples; otherwise Te includes all candidate
targets of S. The set Te is then suggested to the users.

(4) User feedback. The users are invited to inspect Te. They
may opt to choose some t′e ∈ Te as the target tuple (recall
that for each candidate target t′e, t

′
e[A] = te[A] if te[A] 6=

null); or revise S by instantiating te[B] with either the value
of some t′e[B] or a value v ∈ dom(B), for some te[B] = null.
The users are also allowed to revise S by editing ARs in Σ
and tuples in Ie (D0). The revised S with the designated
initial values is then checked by step (1).

The process proceeds until a complete te is found.
In the rest of the paper we will provide algorithms under-

lying the framework: an algorithm for checking the Church-
Rosser property of S and deducing te in Section 5, and algo-
rithms for computing top-k candidate targets in Section 6.

Remark. (1) To find ARs as input of the framework, we
need algorithms for discovering ARs from (possibly dirty)
data. ARs of type (2) can be discovered along the same lines
as matching dependencies (see, e.g., [12] for a survey). ARs
of type (1) could be found by mining first-order logic rules
(e.g., [17]). Given a relation r of schema R, one may also
group pairs of its tuples (ti, tj) into classes based on their at-
tribute values (ti[A], tj [A]) (ti, tj ∈ r, A ∈ attr(R)) to denote
accuracy orders, and discover ARs by analyzing the contain-
ment of those classes via a level-wise approach (e.g., [7]). We
defer a full treatment of AR discovery to future work.

(2) The framework can handle possibly dirty entity instances.
Indeed, constant CFDs [13] for detecting data inconsisten-
cies can be expressed as ARs (Section 2). Thus in the same
framework the consistency of target tuples can be assured.
The framework can also incorporate data repairing algo-
rithms, which have been well studied (see, e.g., [12]).

5. CHECK CHURCH­ROSSER PROPERTY
We next present an algorithm that, given a specification

S = (D0,Σ, Im, t
D0
e), checks whether S is Church-Rosser. If

so, it computes the unique terminal instance (D, te), and re-
turns nil otherwise. The algorithm is in O((|Ie|

2+ |Im|)|Σ|)
time, and thus gives a constructive proof for Theorem 2(2).

The algorithm is denoted by IsCR and shown in Fig. 4.
Following Theorem 2(1), IsCR checks whether S has a stable
terminal chasing sequence, by simulating the chase. At
each step of the chase, it collects all valid steps in a set Q,
and when the chase process proceeds, it checks whether any
valid step in Q becomes invalid. If so, it concludes that S is
not Church-Rosser. Indeed, an invalid step for an instance
remains invalid in the rest of the chasing sequence. Hence
if a valid step becomes invalid later, it will not lead to any
stable terminal chasing sequence. If IsCR inspects all valid
steps and if none of them becomes invalid, it actually iden-

570

tifies a stable terminal sequence, and thus concludes that S
is Church-Rosser. In the process (D, te) is also constructed.

Algorithm IsCR makes use of (1) a procedure, denoted by
Instantiation, as a preprocessing step to identify all single
chase steps, and (2) an indexing structure H for efficiently
locating applicable chase steps, described as follows.

Computing single chase steps. Procedure Instantiation

pre-computes possible single chase steps, collected in a set
Γ, by partially evaluating each AR ϕ ∈ Σ on tuples in the
entity instance Ie of D0 and master relation Im, as follows.

(1) When ϕ is of form (1) ∀t1, t2(ω → t1 �Ak
t2), for each

pair (ti, tj) of tuples in Ie, it computes φ = (ω′ → ti �Ak
tj),

where ω′ is obtained by evaluating ω(ti, tj), which substi-
tutes (ti, tj) for (t1, t2) in ω. More specifically, for each
predicate in ω, (a) if it is of the form t1[Al] op t2[Al] or
ts[As] op c (s ∈ [1, 2]), where op is one of =, 6=, >,<,≤,≥,
then the predicate on (ti, tj) evaluates to true or false. If it is
true, the predicate is not included in ω′. If it is false, ω′ also
becomes false. (b) If it is t1≺Al

t2 (resp. t1�Al
t2), the predi-

cate is replaced by ti≺Al
tj (resp. ti�Al

tj) in ω
′. We include

φ in Γ if ω′ is not false. Intuitively, φ indicates a single chase
step: if ω′ is satisfied, then ti �Ak

tj could be deduced.

(2) When ϕ = ∀tm (Rm(tm) ∧ ω → te[Ai] = tm[B]), i.e., of
form (2), for each t′ ∈ Im, it computes φ = (ω′ → te[Ai] =
c), where te is the target template, c is the constant t′[B],
and ω′ is obtained from ω(tm) by substituting constant t′[B′]
for each tm[B′] in ω. We include φ in Γ, which indicates that
if ω′ is satisfied, then te[Ai] can be instantiated with c.

Note that no φ in Γ carries the ∀ quantifier. Moreover,
each chase step can be carried out by enforcing some φ in Γ
rather than ARs in Σ. We use LHS(φ) to denote ω′.

Example 8: The following single chase steps can be de-
rived: (a) true → 16≺rnds 27 from t1, t2 of Table 1 and ϕ1

(form (1)) of Table 3; (b) 16≺rnds 27→ 45≺J# 23 from t1, t2
and ϕ2 (form (1)); and (c) te[FN, LN] = (Michael, Jordan)→
te[league, team] = (NBA, Chicago Bulls) from master tuple
s1 of Table 2 and ϕ6 (form (2)) of Table 3. ✷

Building Indices. Algorithm IsCR uses an indexing struc-
ture H to speed up the process of finding next applicable
chase steps. The structure H is defined as follows.

(1) For each φ ∈ Γ, H contains a counter nφ to keep track of
the number of predicates in LHS(φ) that are not yet satisfied.

(2) For each predicate δ of the form of either ti �Ak
tj or

te[Ak] = c, H maintains a set Φδ = {φ | φ ∈ Γ∧δ ∈ LHS(φ)},
i.e., the set of φ’s in Γ that contain δ in LHS(φ).

(3) A set Q is maintained by H, which consists of all ap-
plicable single chase steps that were once valid. Initially,
Q = {φ | φ ∈ Γ∧nφ = 0∧ φ was a valid step for (D0, t

D0
e)}.

Algorithm. We now present the main driver of IsCR. Given
S, it first identifies all possible single steps and builds the
index H, by invoking procedures Instantiation and InitIndex

(not shown), respectively (lines 1-2). It then initializes the
accuracy instance template (D, te) with (D0, t

D0
e) (line 3).

After these, IsCR simulates the chasing of S (lines 3-13).
When the set Q in H of valid steps is nonempty, it picks an
applicable step φ from Q using a procedure NextStep (line 5,
not shown), which removes φ from Q. It then enforces φ as
follows. If φ is derived from an AR of form (1) (lines 6-8),
IsCR adds the derived partial order to D (line 7), and de-
duces te[Ak] whenever possible (line 8). If φ is derived from

Input: A specification S = (D0, Σ, Im, tD0
e).

Output: The unique terminal instance (D, te) if S is Church-Rosser,
and nil otherwise.

1. Γ := Instantiation(D0,Σ, Im);

2. H := InitIndex(Γ, D0, t
D0
e); /*Q in H maintains single steps*/

3. D := D0; te := t
D0
e ;

4. repeat
5. φ := NextStep(H);
6. if φ = (ω → ti �Ak

tj) (i.e., form (1)) then

7. D := the transitive closure of D ∪ {ti �Ak
tj};

8. Update te[Ak];
9. if φ = (ω → te[Ai] = c) (i.e., form (2)) then

10. te[Ai] := c;
11. if not IsValid(φ,D, te) then return nil;
12. Update H;
13. until Q in H becomes empty ∅;
14. return (D, te)

Figure 4: Algorithm IsCR

an AR of form (2) (lines 9-10), IsCR sets te[Ak] := c (line
10). If φ is invalid for (D, te), we can conclude that S is not
Church-Rosser since there will be no stable terminal chasing
sequences, as argued above, and IsCR returns nil (line 11).
Otherwise IsCR updates H to reflect the changes to D and
te (line 12): for each ti �Ak

tj derived, nφ′ is decreased by
1 for each φ′ ∈ Φti�Ak

tj ; and for each te[Ak] = c derived, it

decreases nφ′ by 1 for each φ′ ∈ Φte[Ak]=c. For any φ′ with
nφ′ = 0, φ′ is added to Q, i.e., it now becomes a valid chase
step, to be considered later. The process proceeds until no
more steps in Q need to checked (line 13), and it returns
(D, te) as the terminal instance (line 14).

Correctness & complexity. The correctness of IsCR fol-
lows from Theorem 2(1) and the argument above, since it
checks all possible chase steps that are valid at some point
of chasing. For the complexity, observe the following. (1)
Instantiation is in O(|Σ|(|Ie|

2+ |Im|)) time, which is also the
bound on |Γ|. After Instantiation, IsCR no longer needs to
visit Ie. (2) With the indices, NextStep takes O(1) time,
and each φ is checked only once. (3) Each step derives new
partial orders �Ak

and/or instantiates te[Ak]. Thus, the
total number of steps processed (lines 5-12) is bounded by
O(|Ie|

2). Therefore, IsCR is in O(|Σ|(|Ie|
2 + |Im|)) time. As

remarked earlier, Ie is much smaller than a database in-
stance. As will be seen in Section 7, IsCR takes about 10ms.

6. FIND TOP­k CANDIDATE TARGETS
We next provide algorithms that, given a Church-Rosser

specification S = (D0,Σ, Im, t
D0
e) and a preference model

(k, p(·)), compute a set Te of top-k candidate targets. Here
Te consists of k distinct candidate targets of S with the
maximum score p(Te) if there exist at least k such tuples of
S; and otherwise Te includes all candidate targets of S.

Theorem 4 tells us that the top-k candidate problem is
NP-complete. Worse still, there exists no PTIME algorithm
for it with a bounded approximation-ratio unless P = NP.
Recall that NPO is the class of all NP optimization problems.
An NPO-complete problem is NP-hard to optimize, and is
among the hardest optimization problems.

Theorem 5: The top-k candidate targets problem (opti-
mization version) is NPO-complete. ✷

Despite the hardness, we provide three algorithms to find
top-k candidate targets, all with the early termination prop-
erty, i.e., they stop as soon as top-k candidate targets are
found. The first two are exact algorithms. (1) The first one,

571

RankJoinCT, extends prior algorithms [21, 26] for comput-
ing top-k joins of ranked lists (Section 6.1). (2) The second
one, TopKCT, is developed for a more general setting when
the ranked lists are not given (Section 6.2). We show that
TopKCT incurs lower cost than RankJoinCT, and is instance
optimal w.r.t. the number of visits to the data needed. (3)
The third one, TopKCTh, is a PTIME heuristic version of
TopKCT (Section 6.3). We also identify special cases when
the top-k candidate targets problem is in PTIME.

6.1 RankJoinCT: An Algorithm based on Rank Join

Given a set of ranked lists and a monotone scoring func-
tion, the top-k rank join problem is to compute the top k
join results of the lists with the highest scores. Our prob-
lem can be modeled as an extension of the top-k rank join
problem as follows. Consider a Church-Rosser specification
S, of which te is the unique deduced target tuple. Let Z
be the set of attributes A such that te[Ai] = null. Assume
w.l.o.g. that Z consists of m attributes A1, · · · , Am. Then
a set Te of top-k candidate targets is a set of top-k join re-
sults of values in each domain of Z such that it satisfies an
additional condition: for each t ∈ Te, the revised specifica-
tion S′ = (D0,Σ, Im, t

′
e) must also be Church-Rosser, where

t′e[Z] = t[Z] and t′e[B] = te[B] for all B ∈ R \ Z.

In light of this, we develop algorithm RankJoinCT by ex-
tending top-k rank join algorithms [21, 26]. The algorithm
assumes that the domain values of Z attributes are ranked
based on their scores (see wAi(·) in Section 3). It takes as
input S, (k, p(·)), te and moreover, m lists L1, · · · , Lm, such
that Li is the ranked list of values in the active domain of
Ai for all i ∈ [1,m]. It returns a top-k list Te of candidate
targets as required. Note that Li is finite: the active domain
of Ai is dom(Ai) if it is finite; otherwise it includes all Ai

values from Ie or Im and at most one more distinct value
from dom(Ai), which suffices to denote values outside of Ie
or Im and is referred to as a default value (see Section 3).
We omit the details of RankJoinCT for the lack of space, but
give an example below to illustrate how it works.

Example 9: Consider the specification S of Example 5 and
a preference model (k = 2, p(·)), where p(·) counts value
occurrences. Suppose that we drop team from ϕ6 of Table 3.
Then the deduced target te is incomplete since te[team] and
te[arena] become null. To find top 2 candidate targets for
S, RankJoinCT takes as input the modified S, (2, p(·)) and
two ranked list Lteam and Larena with ⊥team and ⊥arena as
default values for team and arena, respectively. It maintains
upper bounds uteam and uarena, asserting that for all tuples
with values in Lteam (resp. Larena), their scores are no higher
than uteam (resp. uarena). RankJoinCT iteratively retrieves
candidate targets from the two lists. Initially, it picks top
values for team and arena, and forms a candidate target
t1 with t1[team, arena] = (Chicago Bulls, United Center)
(p(t1) = 4). It then updates both uteam and uarea to 3. After
that, it picks the next top unseen value v from Larena and
chooses a candidate target from the join results of {v} with
other fixed values in t1, which is t2 with t2[team, arena] =
(Chicago Bulls, Chicago Stadium (or Regions Park)) (p(t2)
= 3). Now p(t1) and p(t2) are no less than uFN and uarena.

Further, for each t ∈ {t1, t2}, RankJoinCT has to check the
condition additional to [21,26], i.e., whether t is a candidate
target. This is done by procedure check, which is essentially
IsCR of Fig. 4 by taking t as the initial target. As t1 and t2
pass check, they are returned as top-2 candidates. ✷

Input: S, (k, p(·)) and te as for RankJoinCT, and heaps H1,. . . ,Hm.
Output: A list Te of top-k candidate targets of S.

1. Te := nil;
2. for each i ∈ [1,m] do Bi := [Hi.pop()];
3. o.t[Z] := (B1[0], · · · , Bm[0]); o.t[R \ Z] := te[R \ Z];
4. for each i ∈ [1,m] do o.pi := 0 ;
5. o.w := p({o.t});
6. T := {o.t}; Q := BrodalQueue({o});

7. while ‖Te‖ < k and ‖Q‖ > 0 do

8. o := Q.pop();
9. if check(o.t, S) then Te.append(o.t); /* add o.t to Te*/
10. for each i ∈ [1,m] do
11. if len(Bi) ≤ o.pi + 1 then Bi.append(Hi.pop());
12. o′ := o;
13. o′.pi := o′.pi + 1; o′.t[Ai] := Bi[o′.pi];
14. o′.w := o.w −wAi

(o.t[Ai]) +wAi
(o′.t[Ai]);

15. if o′.t 6∈ T then Q.push(o′); T := T ∪ {o′.t};
16. return Te;

Figure 5: Algorithm TopKCT

Following [21], one can readily verify:

Proposition 6: RankJoinCT finds top-k candidate targets
with the early termination property, i.e., it does not need to
check all tuples in the product of ranked lists. ✷

However, RankJoinCT is not ideal. (1) In practice, domain
values are often not given in ranked lists, and sorting the do-
mains is costly. (2) RankJoinCT invokes procedure check for
each tuple in the join result (Example 9); this yields expo-
nentially many calls, each taking O(|Σ|(|Ie|

2 + |Im|)) time.

6.2 TopKCT: A Brodal Queue Based Algorithm

To remedy the problems of RankJoinCT, we next present
TopKCT. In contrast to RankJoinCT, TopKCT does not re-
quire ranked lists as input, and invokes check much less.

TopKCT maintains several structures: (1) a heap Hi for
each Ai ∈ Z, to store the values in the active domain of
Ai; it is able to pop up the top value in Hi in O(log |Hi|)
time, and can be pre-constructed in linear time; (2) a Brodal
queue Q, to keep track of tuples to be checked; Q is a worst-
case efficient priority queue [6]; it takes O(1) time to insert
a tuple and O(log |Q|) time to pop up the top tuple; and (3)
a hash set T to record tuples that were once pushed to Q.

TopKCT is shown in Fig. 5. Its input includes S, (k, p(·)),
te as for RankJoinCT; but instead of ranked lists, it takes m
heaps H1, · · · ,Hm as input. It computes a top-k list Te like
RankJoinCT. The key idea behind TopKCT is that when Te

is nonempty, if t is the next best tuple, then there must exist
a tuple t′ ∈ Te such that t and t′ differ in only one attribute.
Hence it capitalizes on the heaps to pop up a tuple that is
guaranteed to be the next best, one at time, rather than to
compute costly ranked joins. The tuple is then validated by
check, and is added to Te if it is a candidate target. The
process proceeds until either Te is found or the search space
is exhausted, with the early termination property.

More specifically, TopKCT first lets Te be empty (line 1).
It then pops the top values out of the m heaps H1, · · · ,Hm

to m vectors B1, · · · , Bm, respectively (line 2), where Bi

is a buffer of the values from Hi for i ∈ [1, m]. Note that
tZ = (B1[0], · · · , Bm[0]) is the tuple with the highest score.
An object o is then formed (lines 3-5), with 2+m members:
(1) o.t is a tuple t0, where t0[Z] = tZ and t0[R\Z] = te[R\Z];
(2) for i ∈ [1, m], o.pi is an integer, initially 0; it is an index
of Bi, indicating that o.t[Ai] takes value from Bi[o.pi]; and
(3) o.w is a real number, which is the score of o.t. The
Brodal queue Q is initialized with {o} only, and it lets the

572

hash set T := {o.t} (line 6). Note that when Q has multiple
objects, it always pops up o′ with the highest o′.w.

After these, TopKCT populates Te by iterating the follow-
ing until Te has k tuples or Q becomes empty (lines 7-15,
where ‖ · ‖ denotes cardinality). In each iteration, an object
o is popped out from Q (line 8). If o.t is verified a candidate
target via check, o.t is added to Te (line 9). TopKCT then
expands Q with tuples that differ from previous ones in only
one attribute (lines 10-15). To do so, it first expands Bi by
adding the top value from Hi to the end of Bi if o.pi already
points to the last value of vector Bi, i.e., all the values in Bi

have been inspected (line 11). It then generates a new o′ by
letting o.t[Ai] := Bi[o.pi+1], i.e., the value with the highest
score next to o (lines 12-14; to simplify the discussion, we as-
sume a weight wAi for each value when computing o′.w, as in
Section 3; but this can be lifted). If o′ has not been pushed
to Q before, i.e., o′ 6∈ T , o′ is added to Q and T (line 15).

Example 10: Consider the same S and (2, p(·)) as in Ex-
ample 9. Instead of ranked lists, TopKCT takes as input two
heaps Hteam and Harena with the same values as the ranked
lists for team and arena, respectively. It first pops the top
values Chicago Bulls from Hteam and United Center from
Harena, to form t0 with p(t0) = 2+2 = 4. It puts t0 in a
Brodal Queue Q. In the first iteration, TopKCT pops the
top tuple out of Q (i.e., t0), and adds it to Te since t0
is a valid candidate target. It then pushes t1 and t2 to
Q, where t1[team, arena] = (Chicago, United Center) and
t2[team, arena] = (Chicago Bulls, Chicago Stadium). Then,
t1 (or t2) is added to Te as it is valid and is among the first
popped from Q. Finally TopKCT returns Te = [t0, t1]. ✷

Analysis. Algorithm TopKCT generates the next best can-
didate tuple by changing one attribute of some tuple already
in Te. As argued earlier, this strategy suffices to find top-k
tuples. Better still, TopKCT has the following properties.

Proposition 7: TopKCT has the early termination prop-
erty, i.e., it stops as soon as Te is found. In addition, it
is instance optimal w.r.t. the number of visits of each heap
(pop’s) among all exact algorithms that use heaps to find
top-k candidate targets, with optimality ratio 1. ✷

An algorithm A is said to be instance optimal if there exist
constants c1 and c2 such that cost(A, I) ≤ c1 ·cost(A

′, I)+c2
for all instances I and all algorithms A′ in the same setting
as A, where cost(A, I) is a cost metric of A on I [11]. The
constant c1 is called the optimality ratio. Here cost(A, I) is
the number of pop’s performed on each heap by A on I .

Complexity. TopKCT incurs less cost than RankJoinCT.
To see this, let n be the maximum size of Hi for i ∈ [1, m],
and the kth tuple in Te correspond to the Kth tuple in the
product of domain values. Then (1) pop of a heap takes
at most O(log n) time, and there are at most K +m such
operations; (2) there are at most K pop operations on the
queue Q, and each takes O(log Km) time; (3) there are
at most Km push operations on Q, and each takes O(1)
time; and (4) check is invoked K times. Denote the cost of
invoking check by c. Putting these together, TopKCT is in
O((K + m)log n + K(m + log K + log m + c)) time, in
contrast to exponential in K by RankJoinCT.

In light of the inherent intractability, however, K may be
an exponential of n in the worst case, e.g., when S does
not have k candidate targets; in this case, TopKCT would

inevitably exhaust the entire search space. Nevertheless, one
can easily verify the following tractable special cases.

Proposition 8: TopKCT is in PTIME when (1) ARs are of
form (2) only, or (2) the schema R of Ie is fixed. ✷

For instance, in case (1) one can easily see that K = k;
hence from the analysis above it follows that RJCT is in
PTIME, whereas TopKCT still takes exponential time.

As will be experimentally verified shortly, TopKCT actu-
ally scales well with real-life data. In addition, by modifying
the check step for checking Church-Rosser, TopKCT can also
be used to compute top-k rank joins of unranked lists.

6.3 TopKCTh: A Heuristic Algorithm

Finally we outline TopKCTh, a PTIME heuristic algorithm
when all the attributes of R have an infinite domain.

TopKCTh first finds a set of k tuples by simply invoking
TopKCT without the check step (i.e., line 9 in TopKCT). For
each t returned by TopKCT, it greedily revises t with values
from Ie and Im until the revised t is verified a candidate
target by check(t, S). It returns the revised tuples as Te.

TopKCTh is in O((k+m) log n+k(m+log k+logm)+kmc)
time, by the complexity of TopKCT (k = K here), since
revising k tuples takes O(kmc) time. It is heuristic in nature:
while tuples in Te are guaranteed to be candidate targets of
S, they do not necessarily have the highest scores, a tradeoff
between the cost and the quality of the solutions.

7. EXPERIMENTAL STUDY
Using both real-life data and synthetic data, we conducted

five sets of experiments to evaluate: (1) the effectiveness of
algorithm IsCR for deducing target tuples; (2) the effective-
ness of RankJoinCT, TopKCT and TopKCTh for computing
top-k candidate targets; (3) rounds of user interactions; (4)
the efficiency of RankJoinCT, TopKCT and TopKCTh; and
(5) the effectiveness of TopKCT when being used for truth
discovery, compared with the algorithms of [8,14].

Experimental setting. Three real-life datasets (Med, CFP
and Rest) and synthetic datasets (Syn) were used.

(1) Med was provided by a medicine distribution company

(name withheld). It contained sale records of medicines from
various stores, specified by a relation schema of 30 attributes
such as name, regNo, manufacturer, whose values were not
very accurate. Med consisted of 10K tuples for 2.7K entities,
where each entity instance ranged from 1 to 83 tuples (4
in average). A set of reference data of 2.4K tuples with 5
attributes was also provided by the company, and we treated
it as master data. We manually designed 105 ARs for Med,
in which 90 were of form (1) and 15 of form (2).

(2) CFP was extracted from call for papers/participation

found by Google (e.g., WikiCFP1, Dbworld2). Its attributes
included venue, program, and deadline, with values varied in
different versions of calls for the same conference. CFP con-
sisted of 100 conferences (entities), with 503 tuples and 22
attributes. The entity instances ranged from 1 to 15 tuples
(5 in average). We manually cleaned 55 entries from Wi-

kiCFP and treated them as master data, with 17 attributes.
We found 43 ARs, with 28 of form (1) and 15 of form (2).

(3) Rest data. Rest was the restaurant data used by [8] from
http://lunadong.com/fusionDataSets.htm. It consisted

1
http://www.wikicfp.com/cfp/

2
http://research.cs.wisc.edu/dbworld/browse.html

573

 0

 20

 40

 60

 80

 100

MED CFP

%
 o

f
e
n
ti

ti
e
s

MED

CFP

(a) IsCR:deduced complete te

 50

 60

 70

 80

 90

 100

5 10 15 20 25

%
 o

f
e
n
ti

ti
e
s

TopKCT ARs of form (1) only

TopKCT ARs of form (2) only

TopKCT ARs of form (1) and (2)

TopKCTh ARs of form (1) and (2)

(b) Med: varying k

 50

 60

 70

 80

 90

 100

0 600 1200 1800 2400

%
 o

f
e
n
ti

ti
e
s

TopKCT

TopKCT
h

(c) Med: varying ‖Im‖

 70

 75

 80

 85

 90

 95

 100

1 2 3

%
 o

f
e
n
ti

ti
e
s

TopKCT

(d) Med: varying h

 0

 20

 40

 60

 80

 100

MED CFP

%
 o

f
a
tt

ri
b
u
te

s

ARs of form (1) only

ARs of form (2) only

ARs of form (1) and (2)

(e) IsCR:deduced attributes

 50

 60

 70

 80

 90

 100

5 10 15 20 25

%
 o

f
e
n
ti

ti
e
s

TopKCT ARs of form (1) only

TopKCT ARs of form (2) only

TopKCT ARs of form (1) and (2)

TopKCTh ARs of form (1) and (2)

(f) CFP: varying k

 50

 60

 70

 80

 90

 100

0 14 28 42 56

%
 o

f
e
n
ti

ti
e
s

TopKCT

TopKCT
h

(g) CFP: varying ‖Im‖

 70

 75

 80

 85

 90

 95

 100

1 2 3 4

%
 o

f
e
n
ti

ti
e
s

TopKCT

(h) CFP: varying h

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

300 600 900 1200 1500

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(i) Syn: varying ‖Ie‖

 0

 100

 200

 300

 400

 500

20 40 60 80 100

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(j) Syn: varying ‖Σ‖

 0

 100

 200

 300

 400

 500

100 200 300 400 500

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(k) Syn: varying ‖Im‖

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20 25

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(l) Syn varying k

Figure 6: Experimental results

of 8 snapshots of 5149 restaurants in Manhattan, with 246K
tuples, crawled from 12 Web sources in one-week intervals.
Only the true value of a Boolean attribute closed? was to be
determined. We found 131 ARs for Rest, all of form (1).

(4) Syn data. We generated a master relation Im and entity

instances Ie of 20 attributes by extending relations stat (Ta-
ble 1) and nba (Table 2), respectively. The values in Ie and
Im were randomly drawn from the same domains. For its
preference model, we assigned random scores to the values
in the domains. We also randomly generated a set Σ of 100
ARs, in which 75% were of form (1) and 25% of form (2).

Remark. (1) The specifications for Med, CFP and Rest are
Church-Rosser. (2) For preference we counted value occur-
rences (Section 3). (3) We used k = 15 by default in Exper-
iments 1, 2 and 3, and k = 1 in Exp-5 (for truth discovery).
(4) The ARs for each of the datasets have similar structures
and often share the same LHS. For each attribute there are
typically 3-4 ARs, and the large number of ARs comes from
the number of attributes. One can also use profiling meth-
ods to automatically discover ARs [7,17] (see Section 4).

Implementation. We implemented the following, all in
Python: (1) our algorithms IsCR, RankJoinCT, TopKCT and
TopKCTh; (2) a naive algorithm voting based on the pref-
erence model that only counts value occurrences, without
using ARs; (3) the truth discovery algorithm DeduceOrder

of [14] using currency constraints and constant CFDs (see
Section 1); and (4) a probabilistic-based truth discovery al-
gorithm copyCEF that utilizes a Bayesian model based on
quality measures and copy relationships on data sources [8].

All experiments were conducted on a 64bit Linux Amazon
EC2 High-CPU Extra Large Instance with 7 GB of memory, 20
EC2 Compute Units, and 1690 GB of storage. Each experi-
ment was repeated 5 times, and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness of IsCR. Using real-life data Med

and CFP, we evaluated the quality of target tuples deduced
by IsCR: (a) the percentage of target tuples that were com-
plete; and (b) the percentage of non-null attribute values.

Complete target tuples. Figure 6(a) shows that for 66% of
the entities of Med and 72% of CFP, complete target tuples
were automatically deduced by IsCR. That is, by leverag-
ing ARs and master data, complete target tuples could be
deduced for over 2/3 of the entities without user interaction.

Non-null values. Figure 6(e) reports the average percentage
of the attributes in Med and CFP for which the most accu-
rate values were deduced. It shows that IsCR found the most
accurate values for 42%, 20%, and 73% (resp. 55%, 27%,
and 83%) of the attributes in Med (resp. CFP), when ARs of
form (1) only, (2) only, and both forms were used, respec-
tively. This tells us the following: (a) IsCR is able to deduce
accurate values for a large percentage of attributes, and (b)
ARs of forms (1) and (2) interact with each other; indeed,
when ARs of both forms were used, the number of accurate
values deduced was larger than the sum of its counterparts
when ARs of form (1) and (2) were used alone. Moreover,
when ARs of form (1) or (2) were used only, no complete
targets were deduced for Med and CFP (not shown).

Exp-2: Computing top-k candidates. We evaluated the
effectiveness of TopKCT (RankJoinCT) and TopKCTh using
Med and CFP. We manually identified the target tuple for
each entity, and tested the percentage of entity instances
for which the target tuple was among the top-k candidates
found by our algorithms. We report the impact of the choice
k, the forms of ARs and the size |Im| of master data on this.
Since RankJoinCT and TopKCT are both exact algorithms,
the two behaved the same in this set of experiments.

574

 0

 100

 200

 300

 400

 500

[1, 18] [19, 36] [37, 54] [55, 72] [73, 90]

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(a) Med: varying ‖Ie‖

 0

 100

 200

 300

 400

 500

0 600 1200 1800 2400

e
la

p
s
e
d
 t

im
e
 (

m
s
e
c
)

RankJoinCT

TopKCT

TopKCT
h

(b) Med: varying ‖Im‖

Figure 7: Experimental results

Impact of k. We report the results in Fig. 6(b) (resp. 6(f))
when k was varied from 5 to 25 for Med (resp. CFP). As
shown there, (a) The larger k is, the more target tuples are
covered by the top-k candidates. (b) To find the target tu-
ples, k does not have to be large. Indeed, when k = 25, 92%
(resp. 94%) were found by TopKCT and 91% (resp. 87%) by
TopKCTh for Med (resp. CFP). (c) TopKCT did slightly bet-
ter than TopKCTh in the quality of candidates found, while
TopKCTh is more efficient than TopKCT (see Exp-4).

Impact of ARs. Figures 6(b) and 6(f) also report the results
when Σ consisted of ARs of form (1) only, (2) only, or both.
When both forms were used, TopKCT did better than when
form (1) or (2) was used alone. In contrast to Exp-1, in the
latter cases TopKCT could still find many target tuples: for
both Med and CFP, it found the targets for 90% of entities
when ARs of form (1) or (2) were used only, when k = 25.

Impact of ‖Im‖. We evaluated the impact of the size of Im
by varying the number of tuples in Im from 0 to 2400 for
Med (resp. 0 to 40 for CFP). As shown in Fig. 6(c) for Med

(resp. Fig. 6(g) for CFP), (a) the larger ‖Im‖ is, the better
TopKCT and TopKCTh perform, i.e., master data helps im-
prove the quality of top-k candidate targets found by our
algorithms; and moreover, (b) even when master data is un-
available (i.e., |Im| = 0), TopKCT and TopKCTh still work.
Indeed, they were still able to find the target tuples for 63%
of Med entities and 64% for CFP, when k = 15.

We also tested voting in these settings, and found that
voting performed much worse than TopKCT and TopKCTh.
It found no more than 50% of target tuples in all the cases.

Exp-3: User interactions. Using Med and CFP, we simu-
lated user interactions as follows. When the deduced target
te was incomplete, a single attribute B with te[B] = null was
randomly picked and assigned its accurate value; IsCR and
TopKCT were then invoked on the revised te. The process
repeated until the top-k candidates returned by TopKCT in-
cluded the target tuple (manually identified, see Exp-2).

The results are reported in Figures 6(d) and 6(h) for Med

and CFP, respectively, in which the x-axis indicates the
number h of interaction rounds, and the y-axis shows the
percentage of the target tuples found. The results show that
few rounds of interactions are needed to deduce the targets
for all the entities: at most 3 for Med, and 4 for CFP.

Exp-4: Efficiency. Using Syn and Med, we evaluated the
efficiency of IsCR, RankJoinCT, TopKCT and TopKCTh. To
test the impact of Ie, Σ, Im and k, we set (‖Ie‖, ‖Im‖, ‖Σ‖,
k) = (900, 300, 60, 15) for Syn, and varied one of the four:
‖Ie‖ from 300 to 1500, ‖Σ‖ from 20 to 100, ‖Im‖ from 100
to 500, and k from 5 to 25, while keeping the other three
parameters unchanged. For Med we varied ‖Ie‖ from [1, 18]
to [73, 90] and ‖Im‖ from 0 to 2400, while keeping k = 15
and ‖Σ‖ = 105. We found that IsCR took at most 10ms in
all these cases and hence, do not report it here.

As shown in Figures 6(i) and 7(a), on Med and Syn, (a)
all three top-k algorithms are efficient (in less than 2s); (b)
TopKCT and TopKCTh scale well with ‖Ie‖; and (c) TopKCT
outperforms RankJoinCT, and TopKCTh does better than
TopKCT. They behaved consistently when one of ‖Σ‖, ‖Im‖
and k was varied, as shown in Figures 6(j), 6(k) and 7(b),
and 6(l), respectively. For Syn with ‖Ie‖ = 1500, ‖Im‖ =
300 and ‖Σ‖ = 50, TopKCTh, TopKCT and RankJoinCT took
159ms, 271ms and 1983ms, respectively.

Exp-5: Truth Discovery. Besides determining relative
accuracy, we also evaluated the effectiveness of our algo-
rithm TopKCT in truth discovery, against algorithms voting,
DeduceOrder [14] and copyCEF [8] on Med, CFP and Rest.
Here we used k = 1, to find a single target tuple as the true
value, in favor of voting, DeduceOrder and copyCEF.

The algorithms were evaluated as follows. (1) We tested
voting onMed, CFP and Rest. The results on Med are similar
to those on CFP; thus only the results on CFP and Rest are
reported here. (2) DeduceOrder was tested on CFP and Rest.
For its rules, we extracted all ARs relevant to data currency
as currency constraints, and all constant CFDs (which can be
expressed as ARs, see Section 2), for each dataset. No such
rules were found for Med, and hence only results on CFP

and Rest are reported here. (3) We evaluated copyCEF on
Rest only, because its required information on data sources is
unavailable for Med and CFP. Indeed, Med was from a single
source, and CFP was crawled from blog posts or Web pages
for which the source accuracy could not be determined.

On CFP. On CFP, we tested how many true values (targets)
were correctly derived for its entities by the algorithms. We
found that voting, DeduceOrder and TopKCT deduced 37%,
0% and 70%, respectively. TopKCT performed almost twice
better than voting. While DeduceOrder was not able to find
the complete true values for any entity of CFP, it correctly
derived 31% of attribute values, which are, however, still
much lower than the 83% deduced by IsCR (Fig. 6(e)).

On Rest. On Rest, we evaluated the effectiveness of voting,
DeduceOrder, copyCEF and TopKCT. Rest has only one at-
tribute closed? to be determined. Hence we adopted the
recall (r), precision (p) and F-measure (F1) used in [8]: r =
|G∩R|
|G|

, p = |G∩R|
|R|

and F1 = 2pr
p+r

, where R is the set of restau-

rants that were concluded to be closed by an algorithm, and
G is the set of restaurants that were indeed closed.

As remarked earlier, our method is complementary to the
probabilistic-based truth discovery approaches. Moreover,
probabilities derived by these approaches can be incorpo-
rated into our model. Indeed, when the probabilities of at-
tribute values returned by copyCEF are set as weights in our
preference model, copyCEF can be treated as TopKCT with
an empty set of ARs. When the weights in the preference
model for TopKCT are set by value occurrences, voting is a
special case of TopKCT with an empty set of ARs.

As reported in Table 4, DeduceOrder achieved 100% pre-
cision, but was bad on recall (0.15) and F-measure (0.26).
While the F-measure of voting was reasonable (0.74), its
precision was not very good (0.62). Algorithm copyCEF

performed well with balanced precision (0.76) and recall
(0.85), and did better in F-measure (0.8) than voting and
DeduceOrder. Better still, ARs help here: with a small
number of ARs, TopKCT that took value occurrences (like
voting) as its preference outperformed copyCEF and voting

on F-measure (0.83), and TopKCT that took the possibilities

575

Method Prec Rec F-msr
DeduceOrder 1.0 0.15 0.26
voting 0.62 0.92 0.74
copyCEF 0.76 0.85 0.8
TopKCT (preference derived by voting) 0.73 0.95 0.82
TopKCT (preference derived by copyCEF) 0.81 0.88 0.85

Table 4: Truth Discovery on Rest

derived by copyCEF further improved copyCEF on precision
(0.81) and recall (0.88), even without user interaction.

Observe the following. (1) DeduceOrder did not do well be-
cause there was not much currency and consistency informa-
tion in CFP and Rest that could be utilized by DeduceOrder.
Further, the assumption of [14] that the data has to be once
correct was too strong for CFP and Rest. These further high-
light the need for the study of relative accuracy with ARs.
(2) Even without ARs, TopKCT can incorporate the source
accuracy (copyCEF) and preference (voting), and performs
well in truth discovery. (3) In contrast to Rest, many real-
life datasets have a number of attributes that are logically
correlated. TopKCT works better on such data than on Rest.

Summary. We find the following. (1) IsCR is effective: it is
able to correctly and automatically deduce complete target
tuples for at least 66% of the entities, and the most accurate
values for 73% of the attributes in the real-life data. (2) ARs
of form (1) and form (2) interact with each other and are
effective in determining relative accuracy. (3) Our top-k al-
gorithms RankJoinCT and TopKCT (resp. TopKCTh) are ca-
pable of finding the target tuples for 93% (resp. 88%) of enti-
ties without user interaction, even when k is small. (4) Few
rounds of user interactions are needed for our framework to
deduce complete target tuples (3 for Med and 4 for CFP). (5)
Our algorithms are efficient: IsCR takes less than 10ms, and
TopKCTh and TopKCT take 159ms and 271ms respectively,
on entity instances consisting of 1500 tuples, Im of 300 tuples
and Σ of 50 ARs. (6) Our method is complementary to truth
discovery algorithms, and can incorporate derived probabil-
ities into our preference model. With a small number of
ARs, TopKCT improves voting, DeduceOrder and copyCEF

in truth discovery, with or without user interactions.

8. CONCLUSION
We have proposed a model for determining relative accu-

racy for entities in the absence of their true values. We have
identified fundamental problems for accuracy, and estab-
lished their complexity. Based on these, we have introduced
a framework for deducing relative accuracy, and provided
its underlying algorithms. Our experimental results have
verified the effectiveness and efficiency of our techniques.

The study of data accuracy is still in its infancy. We
are currently experimenting with large datasets from other
domains to evaluate the techniques. We are also studying
how to improve the accuracy of data in a database, which
is often much larger than entity instances. Furthermore,
discovery of ARs deserves a full treatment.

Acknowledgments. Fan and Yu are supported in part by
EPSRC EP/J015377/1, the 973 Program 2012CB316200 and
NSFC 61133002 of China. Cao is supported in part by the
973 Program 2011CB302602 and NSFC 91118008 of China.

9. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 2006.

[3] L. Bertossi, S. Kolahi, and L. Lakshmanan. Data cleaning
and query answering with matching dependencies and
matching functions. In ICDT, 2011.

[4] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti.
Probabilistic models to reconcile complex data from
inaccurate data sources. In AISE, 2010.

[5] J. Bleiholder and F. Naumann. Data fusion. ACM Comput.
Surv., 41(1), 2008.

[6] G. S. Brodal. Worst-case efficient priority queues. In

É. Tardos, editor, SODA, pages 52–58. ACM/SIAM, 1996.
[7] F. Chiang and R. Miller. Discovering data quality rules. In

VLDB, 2008.
[8] X. Dong, L. Berti-Equille, and D. Srivastava. Truth

discovery and copying detection in a dynamic world. In
PVLDB, 2009.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1):1–16,
2007.

[10] M. Eppler. Managing information quality: Increasing the
value of information in knowledge-intensive products and
processes. Springer, 2006.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. JCSS, 66(4):614–656, 2003.

[12] W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool Publishers, 2012.

[13] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS, 33(1), 2008.

[14] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data
currency and consistency for conflict resolution. In ICDE,
2013.

[15] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In SIGMOD,
2011.

[16] C. Fisher, E. Lauria, and C. Matheus. An accuracy metric:
Percentages, randomness, and probabilities. JDIQ, 1(3),
2009.

[17] P. A. Flach and N. Lachiche. Confirmation-guided
discovery of first-order rules with Tertius. Machine
Learning, 44(3):61–95, 2001.

[18] C. Fox, A. Levitin, and T. Redman. The notion of data and
its quality dimensions. IPM, 30(1), 1994.

[19] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In
WSDM, 2010.

[20] I. Gelman. Setting priorities for data accuracy
improvements in satisficing decision-making scenarios: A
guiding theory. DSS, 48(4), 2010.

[21] I. Ilyas, W. Aref, and A. Elmagarmid. Supporting top-k
join queries in relational databases. VLDB. J, 13(3), 2004.

[22] I. Ilyas, G. Beskales, and M. Soliman. A survey of top-k
query processing techniques in relational database systems.
CSUR, 40(4), 2008.

[23] P. Narman, P. Johnson, M. Ekstedt, M. Chenine, and
J. Konig. Enterprise architecture analysis for data accuracy
assessments. In EDOC, 2009.

[24] F. Naumann and M. Herschel. An Introduction to
Duplicate Detection. Morgan & Claypool Publishers, 2010.

[25] J. Radcliffe and A. White. Key issues for master data
management. Technical report, Gartner, 2008.

[26] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. In PODS, 2008.

[27] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, 2005.

[28] M. Wu and A. Marian. A framework for corroborating
answers from multiple web sources. IS, 36(2), 2011.

[29] X. Yin, J. Han, and P. Yu. Truth discovery with multiple
conflicting information providers on the Web. TKDE,
20(6), 2008.

[30] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han. A
bayesian approach to discovering truth from conflicting
sources for data integration. PVLDB, 5(6):550–561, 2012.

576

