

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794631

Lukas M. Maas, Thomas Kissinger, Dirk Habich, Wolfgang Lehner

BUZZARD: A NUMA-Aware In-Memory Indexing System

Erstveröffentlichung in / First published in:

SIGMOD/PODS'13: International Conference on Management of Data, New York 22.-
27.06.2013. ACM Digital Library, S. 1285–1286.

DOI: https://doi.org/10.1145/2463676.2465342

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794631
https://doi.org/10.1145/2463676.2465342

BUZZARD: A NUMA-Aware In-Memory Indexing System

Lukas M. Maas, Thomas Kissinger, Dirk Habich, Wolfgang Lehner
Database Technology Group

Technische Universität Dresden
01062 Dresden, Germany

Lukas_Michael.Maas@tu-dresden.de, {firstname.lastname}@tu-dresden.de

ABSTRACT
With the availability of large main memory capacities, in-
memory index structures have become an important com-
ponent of modern data management platforms. Current
research even suggests index-based query processing [2] as
an alternative or supplement for traditional tuple-at-a-time
processing models. However, while simple sequential scan
operations can fully exploit the high bandwidth provided by
main memory, indexes are mainly latency bound and spend
most of their time waiting for memory accesses.

Considering current hardware trends, the problem of high
memory latency is further exacerbated as modern shared-
memory multiprocessors with non-uniform memory access
(NUMA) become increasingly common. On those NUMA
platforms, the execution time of index operations is domi-
nated by memory access latency that increases dramatically
when accessing memory on remote sockets. Therefore, good
index performance can only be achieved through careful op-
timization of the index structure to the given topology.

BUZZARD is a NUMA-aware in-memory indexing sys-
tem. Using adaptive data partitioning techniques, BUZ-
ZARD distributes a prefix-tree-based [1] index across the
NUMA system and hands off incoming requests to worker
threads located on each partition’s respective NUMA node.
This approach reduces the number of remote memory ac-
cesses to a minimum and improves cache utilization. In
addition, all indexes inside BUZZARD are only accessed
by their respective owner, eliminating the need for synchro-
nization primitives like compare-and-swap.

Figure 1 shows how BUZZARD distributes requests across
NUMA nodes: (1) For each incoming request, BUZZARD
uses an adaptive partition table to determine the partition
the requested data belongs to. (2) Once the respective parti-
tion has been identified, the request is inserted into a thread-
local intermediate request buffer. (3) Periodically, these in-
termediate buffers are atomically flushed to the partitions’
main request buffers, reducing contention in the main re-
quest buffers through batch inserts and hence achieving a
higher buffer throughput. (4) Worker threads (one per parti-
tion) located on the different NUMA nodes extract requests
from the buffer of their respective partition and handle these
requests by using a private index held in local main-memory.
BUZZARD processes multiple requests as a batch, effec-
tively hiding memory latency by interleaving multiple index

©2013 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in SIGMOD’13, June 22–27, 2013, New York, New York, USA.
ACM 978-1-4503-2037-5/13/06.
DOI: https://doi.org/10.1145/2463676.2465342

INTERMEDIATE)
BUFFER)

INTERMEDIATE)
BUFFER)

INTERMEDIATE)
BUFFER)

INTERMEDIATE)
BUFFER)

REQUEST'BUFFER'

…'

REQUEST'1'

REQUEST'2'

REQUEST'3'

REQUEST'4'

RAM'RAM'RAM'

PARTITION)1)

INDEX'1'

REQUEST'BUFFER'

…'

REQUEST'1'

REQUEST'2'

REQUEST'3'

REQUEST'4'

RAM'RAM'RAM'
INDEX'3'

REQUEST'BUFFER'

…'

REQUEST'1'

REQUEST'2'

REQUEST'3'

REQUEST'4'

REQUEST'BUFFER'

…'

REQUEST'1'

REQUEST'2'

REQUEST'3'

REQUEST'4'

RAM'RAM'RAM'
INDEX'2'

RAM'RAM'RAM'
INDEX'4'

PARTITION)2)

PARTITION)3) PARTITION)4)

Process)batch)

))))))Flush)local)buffer)

PARTITION)TABLE)

)))))Find)parDDon)

Write)request)
to)local)buffer)

4)

1)

2)

3)

Figure 1: Request processing in BUZZARD

lookups. If the workload changes, BUZZARD autonomously
rebalances partitions to achieve an even load distribution.

First benchmarking results show that NUMA-aware in-
dex partitioning has a huge impact on the throughput of
in-memory indexing systems running on NUMA hardware.
Especially on machines with complex topologies and remote
memory accesses that require multiple hops, resulting in fur-
ther increased memory latency, BUZZARD speeds up index
performance up to 220% compared to a single index.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

Keywords
NUMA; in-memory indexing; prefix trees

Acknowledgments
This work is supported by the German Research Foundation
(DFG) in the Collaborative Research Center 912 “Highly
Adaptive Energy-Efficient Computing”.

REFERENCES
[1] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,

D. Habich, and W. Lehner. Efficient In-Memory
Indexing with Generalized Prefix Trees. In BTW, 2011.

[2] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner.
QPPT: Query Processing on Prefix Trees. CIDR, 2013.

Final edited form was published in "
SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", S. 1285–1286, ISBN 978-1-4503-2037-5

https://doi.org/10.1145/2463676.2465342

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

