skip to main content
10.1145/2464576.2482685acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Recent advances in problem understanding: changes in the landscape a year on

Published:06 July 2013Publication History

ABSTRACT

This paper provides an updated survey of new literature in, and related to, the field of problem understanding which has been published or made available since January 2012. The bibliographic information from the survey is available online at http://bit.ly/ZWoY3X. The survey covers work on the topics of: Benchmark Problems; Problem Decomposition & Multiobjectivisation; Landscape Analysis; Problem Difficulty; and Algorithm Selection & Performance Prediction. In addition, special attention is drawn to three recently published and excellent topic specific surveys. A side note is also made regarding the parallels between problem understanding, and specifically landscape analysis and the work of fitness landscape analysis in theoretical, conventional and evolutionary biology.

References

  1. Length scale for characterising continuous optimization problems. In C. A. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors, Parallel Problem Solving from Nature - PPSN XII, volume 7491 of Lecture Notes in Computer Science, pages 407--416. Springer Berlin Heidelberg, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. T. Abell, Y. Malitsky, and K. Tierney. Fitness landscape based features for exploiting black-box optimization problem structure. Technical report, Technical Report TR-2012-162, IT University of Copenhagen, 2012.Google ScholarGoogle Scholar
  3. A. Almakhlafi and J. Knowles. Benchmarks for maintenance scheduling problems in power generation. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1--8, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. Ashlock and S. McNicholas. Fitness landscapes of evolved apoptotic cellular automata. Evolutionary Computation, IEEE Transactions on, 17(2):198--212, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Auger, S. Finck, N. Hansen, R. Ros, et al. Bbob 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-388, INRIA, 2010.Google ScholarGoogle Scholar
  6. B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß. Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO '12, pages 313--320, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Burkard, S. Karisch, and F. Rendl. Qaplib - a quadratic assignment problem library. Journal of Global Optimization, 10(4):391--403, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Caamano, F. Bellas, J. Becerra, V. Diaz, and R. Duro. Experimental analysis of the relevance of fitness landscape topographical characterization. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1--8, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  9. F. Chicano and E. Alba. Exact computation of the fitness-distance correlation for pseudoboolean functions with one global optimum. In J.-K. Hao and M. Middendorf, editors, Evolutionary Computation in Combinatorial Optimization, volume 7245 of Lecture Notes in Computer Science, pages 111--123. Springer Berlin Heidelberg, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Chicano, F. Daolio, G. Ochoa, S. Vérel, M. Tomassini, and E. Alba. Local optima networks, landscape autocorrelation and heuristic search performance. In Parallel Problem Solving from Nature-PPSN XII, pages 337--347. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Chicano, G. Luque, and E. Alba. A methodology to find the elementary landscape decomposition of combinatorial optimization problems. Evolutionary Computation, 19(4):597--637, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. Chicano, G. Luque, and E. Alba. Autocorrelation measures for the quadratic assignment problem. Applied Mathematics Letters, 25(4):698--705, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. K. Crona, D. Greene, and M. Barlow. The peaks and geometry of fitness landscapes. Journal of Theoretical Biology, 317(0):1--10, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Franke and J. Krug. Evolutionary accessibility in tunably rugged fitness landscapes. Journal of Statistical Physics, 148(4):705--722, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. E. Galván-López, J. Mcdermott, M. O'Neill, and A. Brabazon. Defining locality as a problem difficulty measure in genetic programming. Genetic Programming and Evolvable Machines, 12(4):365--401, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization bench-marking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.Google ScholarGoogle Scholar
  17. H. Ishibuchi, M. Yamane, and Y. Nojima. Difficulty in evolutionary multiobjective optimization of discrete objective functions with different granularities. In R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, and J. Shaw, editors, Evolutionary Multi-Criterion Optimization, volume 7811 of Lecture Notes in Computer Science, pages 230--245. Springer Berlin Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1):3--12, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems through the search for novelty. 2008.Google ScholarGoogle Scholar
  20. J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation, 19(2):189--223, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Li and Q. Zhang. Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. Evolutionary Computation, IEEE Transactions on, 13(2):284--302, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China. Benchmark functions for the cec'2013 special session and competition on large-scale global optimization. Technical report, Evolutionary Computation and Machine Learning Group, RMIT University, 2013.Google ScholarGoogle Scholar
  23. D. Lochtefeld and F. Ciarallo. Multiobjectivization via helper-objectives with the tunable objectives problem. Evolutionary Computation, IEEE Transactions on, 16(3):373--390, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. M. Malan and A. P. Engelbrecht. A survey of techniques for characterising fitness landscapes and some possible ways forward. Information Sciences, 2013. To Appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. McClymont and E. Keedwell. 1st understanding problems workshop (gecco-up). In T. Soule, editor, GECCO Companion '12: Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, New York, NY, USA, 2012. ACM. 910122.Google ScholarGoogle Scholar
  26. K. McClymont, D. Walker, and M. Dupenois. The lay of the land: a brief survey of problem understanding. In Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion, GECCO Companion '12, pages 425--432, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. Exploratory landscape analysis. In Proceedings of the 13th annual conference on Genetic and evolutionary computation. GECCO '11, pages 829--836. ACM, New York, NY, USA, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Müller and I. F. Sbalzarini. Global characterization of the cec 2005 fitness landscapes using fitness-distance analysis. In Applications of Evolutionary Computation, volume 6624 of Lecture Notes in Computer Science, pages 294--303. Springer Berlin Heidelberg, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. A. Muñoz, M. Kirley, and S. K. Halgamuge. A meta-learning prediction model of algorithm performance for continuous optimization problems. In Parallel Problem Solving from Nature-PPSN XII, pages 226--235. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evolutionary robotics: A survey and analysis. Robot. Auton. Syst., 57(4):345--370, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. Pitzer and M. Affenzeller. A comprehensive survey on fitness landscape analysis. In Recent Advances in Intelligent Engineering Systems, volume 378 of Studies in Computational Intelligence, pages 161--191. Springer Berlin Heidelberg, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  32. E. Pitzer, M. Affenzeller, A. Beham, and S. Wagner. Comprehensive and automatic fitness landscape analysis using heuristiclab. In Computer Aided Systems Theory - EUROCAST 2011, volume 6927 of Lecture Notes in Computer Science, pages 424--431. Springer Berlin Heidelberg, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. Pitzer, A. Beham, and M. Affenzeller. Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis. In Evolutionary Computation in Combinatorial Optimization, volume 7832 of Lecture Notes in Computer Science, pages 109--120. Springer Berlin Heidelberg, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. E. Pitzer, S. Vonolfen, A. Beham, M. Affenzeller, V. Bolshakov, and G. Merkuryeva. Structural analysis of vehicle routing problems using general fitness landscape analysis and problem specific measures. In 14th International Asia Pacific Conference on Computer Aided System Theory, pages 36--38, 2012.Google ScholarGoogle Scholar
  35. P. Rohlfshagen and X. Yao. Dynamic combinatorial optimisation problems: an analysis of the subset sum problem. Soft Computing, 15(9):1723--1734, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. P. Rohlfshagen and X. Yao. Dynamic combinatorial optimization problems: A fitness landscape analysis. In Metaheuristics for Dynamic Optimization, volume 433 of Studies in Computational Intelligence, pages 79--97. Springer Berlin Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  37. D. Saxena, Q. Zhang, J. a. A. Duro, and A. Tiwari. Framework for many-objective test problems with both simple and complicated pareto-set shapes. In Evolutionary Multi-Criterion Optimization, volume 6576 of Lecture Notes in Computer Science, pages 197--211. Springer Berlin Heidelberg, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. K. Shukla, M. A. Braun, and H. Schmeck. Theory and algorithms for finding knees. In Evolutionary Multi-Criterion Optimization, volume 7811 of Lecture Notes in Computer Science, pages 156--170. Springer Berlin Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  39. K. Smith-Miles and L. Lopes. Measuring instance difficulty for combinatorial optimization problems. Computers & Operations Research, 39(5):875--889, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. I. G. Szendro, M. F. Schenk, J. Franke, J. Krug, and J. A. G. M. de Visser. Quantitative analyses of empirical fitness landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2013(01):P01005, 2013.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Recent advances in problem understanding: changes in the landscape a year on

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '13 Companion: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation
        July 2013
        1798 pages
        ISBN:9781450319645
        DOI:10.1145/2464576
        • Editor:
        • Christian Blum,
        • General Chair:
        • Enrique Alba

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 July 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • tutorial

        Acceptance Rates

        Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader