Search Methodologies in Real-world Software Engineering

Gabriela Ochoa
Computing Science and Mathematics
University of Stirling
Stirling, Scotland,UK
gabriela.ochoa@cs.stir.ac.uk

ABSTRACT

One of the aims of software engineering is to reduce overall
software costs. Optimisation is, therefore, relevant to the
process of software development. This article describes re-
cent case studies on the application of modern search method-
ologies to challenging real-world problems in software engi-
neering. It also describes a recent research initiative: Dy-
namic Adaptive Automated Software Engineering (DAASE),
whose goal is to embed optimisation into deployed software
to create self-optimising adaptive systems. The article ac-
companies an invited talk for the Workshop on Bridging the
Gap between Industry and Academia in Optimisation to be
held as part of GECCO 2013.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; 1.2.8 [Artificial

Intelligence|: Problem Solving, Control Methods, and Search—

Heuristic methods

General Terms

Algorithms, Design, Performance, Experimentation, Verifi-
cation

Keywords

search based software engineering; evolutionary algorithms;
hyper-heuristics; metaheuristics; adaptive systems

1. INTRODUCTION

Software engineering is a discipline within computer sci-
ence aiming to produce quality software, delivered on time,
within budget and that covers the users’s needs. This is
a difficult task as software systems are large and complex,
built by teams, exist in many versions, last several years
and undergo changes. The process of software development
is commonly called the software life-cycle and it involves
the following phases, according to the well-known water-fall

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCQO' 13 Companion, July 6-10, 2013, Amsterdam, The Netherlands.

Copyright 2013 ACM 978-1-4503-1964-5/13/07 ...$15.00.

model: (i) requirements analysis and specification, (ii) de-
sign and specification, (ii) code and module testing, (iii)
integration and system testing, and (iv) delivery and main-
tenance. It is useful to consider these stages as distinct for
management purposes, but in practice they overlap and feed
information to each other.

Software engineering is not just about producing software
systems, but aims at producing them in the most effective
way. The challenge is to produce high-quality software with
a finite amount of resources. There is, therefore, a wide
scope for applying optimisation techniques in all stages of
the software life-cycle. Consider, for example, the follow-
ing illustrative questions from [9]: “(1) What is the smallest
set of test cases that covers all the branches in this pro-
gram?, (2) What is the best way to structure the archi-
tecture of this system to enhance its maintainability?, (3)
What is the set of requirements that balances software de-
velopment cost and customer satisfaction?”. These an other
problems in software engineering can be formulated as op-
timisation problems and solutions are found using modern
search methodologies such as evolutionary algorithms and
other metaheuristics.

The term Search-based Software Engineering (SBSE) was
coined in 2001 by Harman and Jones [10]. Since then there
has been an explosion of activity in this area with an increas-
ing number of publications appearing in prestigious journals
and conferences [9].

This short article describes 3 case studies applying search
methodologies to challenging problems in software engineer-
ing. It also describes a recent research initiative: Dynamic
Adaptive Automated Software Engineering (DAASE), whose
goal is to embed optimisation into deployed software to cre-
ate self-optimising adaptive systems [7].

2. CASE STUDIES

2.1 Requirements Optimisation

The requirements of a software system are simply a de-
tailed statement of the things that the system must be able
to do. The users’ needs or conditions should be clearly spec-
ified for either new or altered software systems. When doing
so, the possibility of conflicting requirements of the various
stakeholders should be considered. One important goal is
to select near-optima subsets of all possible requirements to
satisfy the customer demands, while securing that sufficient
resources are available to undertake the selected tasks [19].
Requirements decisions can be formulated as optimisation
problems. For example, in the development and mainte-

nance of large, complex software systems sold to a range of
diverse customers, a problem faced is that of determining
what should be in the next release of the software. In the
Next Release Problem, the goal is to find the ideal set of re-
quirements that balance customer requests within resource
constraints. This problem is formulated by Bagnall et al. [2]
as a constrained single objective optimisation problem and
successfully solved using metaheuristics. A multi-objective
formulation is presented by Zhang et al. [20] where evo-
lutionary methods are used to find approximations of the
Pareto-optimal set. This allows the decision maker to select
the preferred solution from this set according to their prior-
ities. The Pareto set also provides valuable insights into the
outcome of the selected set of requirements to the software
development company, as it captures the trade-offs between
competing objectives.

2.2 Search-Based Test Data Generation

Software testing is a critical element of software quality
assurance. Once source code has been generated, software
must be tested to uncover as many errors as possible. This
is accomplished by designing a series of test cases that have
a high likelihood of finding errors. Designing a good test
set is challenging, and many techniques and strategies have
been proposed. Search-based approaches have been applied
to several testing goals and issues [9]. An interesting topic
is the automated generation of test cases through search
[13]. An example can be found within the so called statisti-
cal testing, where test data is generated by sampling from a
probability distribution defined over the software’s input do-
main. The distribution needs to be carefully chosen so that
it satisfies the testing objectives expressed in terms of func-
tional or structural properties of the software. Traditionally,
the distributions are manually chosen. In order to automate
this process, Poulding et al. [17] use search in the space of
probability distributions (which are represented as Bayesian
Networks) for statistical testing. The results show that the
approach is viable and practical, producing superior fault-
detection ability than other forms of testing in the cases
studied. The method is, however, limited to a fixed num-
ber of numeric values as the software inputs. To overcome
this limitation, a more flexible representation of probability
distributions based on stochastic grammars is presented in
[16]. With this new representation the algorithm can be ap-
plied to a wider range of software, in particular software with
structurally-complex inputs. For three real-world examples
studied, the algorithm took only a few minutes to derive
suitable input profiles using computing resources equivalent
of a desktop PC.

2.3 Automatic Program Repair and I mprove-
ment

An exciting recent application of search methodologies is
that of automatically repairing and improving programs di-
rectly using the source code, a test suite, and without relying
on formal specifications. The idea of using genetic program-
ming to repair software bugs was initially proposed in [1].
More substantial experimental results on real programs and
real bugs have been carried out in [12], where off-the-shelf
programs are repaired with a combination of program anal-
ysis methods with evolutionary computation.

Search techniques have also been used to automatically
improve the behaviour of a software system with respect

to some desired criteria, usually related to non-functional
properties such as execution time, program size, through-
put, power consumption and bandwidth [8, 11, 15, 18]. The
functional properties of the system should be maintained as
faithfully as possible. This is achieved by evaluating the
modified programs with a fitness function based on a set
of test cases from the original system. Thus, the original
system acts as an oracle of the modified, improved versions.
This automated approach has many potential applications,
such as porting existing programs from one platform to an-
other and producing programs with faster execution time
or less power consumption, while still performing the core
required functionality of the original system.

3. THE DAASE PROJECT

The case studies mentioned in this short article are a
small sample of the research focus of the DAASE (Dynamic
Adaptive Automated Software Engineering) project [7]. The
project aims to enhance current successful applications of
search and optimisation in software engineering by strength-
ening aspects of adaptivity, automation, robustness and cop-
ing with dynamic environments. Instrumental to the project
is the application of hyper-heuristics [4, 5, 14] and other
forms of autonomous search [3, 6]. DAASE is a major
research initiative running from June 2012 to May 2018,
funded by £6.8m from the Engineering and Physical Sci-
ences Research Council (EPSRC, grant number EP/J017515),
with matching support from 4 institutions in the UK: Uni-
versity College London, and the Universities of Birmingham,
Stirling and York. It also has a growing number of indus-
trial partners including AirFrance/KLM, Berner & Mattner,
British Telecom, DSTL, Ericsson, GCHQ, Honda, IBM, Park
Air Systems, Microsoft and Visa Europe. The DAASE project
fosters collaborations with leading researchers and research
groups, having a program to support both visiting schol-
ars at all levels and staff interchanges with other organi-
sations. For further information, please visit the project
website http://daase.cs.ucl.ac.uk/.

4. REFERENCES

[1] A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In IEEE
Congress on Evolutionary Computation (CEC), pages
162-168, 2008.

[2] A. Bagnall, V. Rayward-Smith, and I. Whittley. The
next release problem. Information and Software
Technology, 43(14):883 — 890, 2001.

[3] R. Battiti, M. Brunato, and F. Mascia. Reactive
Search and Intelligent Optimization, volume 45 of
Operations Research/Computer Science Interfaces
Series. Springer, 2009.

[4] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging
direction in modern search technology. In F. Glover
and G. Kochenberger, editors, Handbook of
Metaheuristics, pages 457-474. Kluwer, 2003.

[5] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and J. Woodward. A classification of hyper-heuristic
approaches. In Handbook of Metaheuristics, pages
449-468. Springer, 2010.

[6] Y. Hamadi, E. Monfroy, and F. Saubion, editors.
Autonomous Search. Springer, 2012.

[7]

8]

[9]

(10]

(11]

(12]

M. Harman, E. Burke, J. A. Clark, and X. Yao.
Dynamic adaptive search based software engineering.
In Proceedings of the 6th International Symposium on
Empirical Software Engineering and Measurement
(ESEM ’12) (Keynote), Lund, Sweden, 19-20
September 2012. ACM.

M. Harman, W. Langdon, Y. Jia, D. White, A. Arcuri,
and J. Clark. The gismoe challenge: Constructing the
pareto program surface using genetic programming to
find better programs. In Proceedings of the 27th
IEEE/ACM International Conference on Automated
Software Engineering (ASE ’12) (Keynote), Essen,
Germany, 3-7 September 2012. ACM.

M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR),
45(1), November 2012.

M. Harman, U. Ph, and B. F. Jones. Search-based
software engineering. Information and Software
Technology, 43:833-839, 2001.

W. B. Langdon and M. Harman. Evolving a cuda
kernel from an nvidia template. In Proceedings of the
IEEE World Congress on Computational Intelligence,
CEC 2010, pages 2376-02383. IEEE Press, 2010.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: A generic method for automatic software
repair. IEEE Transactions on Software Engineering,
38(1):54-72, 2012.

P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14:105-156, 2004.

(14]

20]

G. Ochoa, J. Walker, M. Hyde, and T. Curtois.
Adaptive evolutionary algorithms and extensions to
the hyflex hyper-heuristic framework. In Parallel
Problem Solving from Nature - PPSN XII, volume
7492 of Lecture Notes in Computer Science, pages
418-427. Springer, 2012.

M. Orlov and M. Sipper. Flight of the FINCH through
the Java wilderness. IEEE Transactions on
Evolutionary Computation, 15(2):166-182, 2011.

S. Poulding, R. Alexander, J. Clark, and M. Hadley.
The optimisation of stochastic grammars to enable
cost-effective probabilistic structural testing. In
Proceedings of the International Conference on
Genetic and evolutionary computation conference,
GECCO 2013, page (to appear). ACM, 2013.

S. Poulding and J. Clark. Efficient software
verification: Statistical testing using automated
search. IEEE Transactions on Software Engineering,
36(6):763-777, 2010.

D. White, A. Arcuri, and J. Clark. Evolutionary
improvement of programs. IEEFE Trans. Evolutionary
Computation, 15(4):515-538, 2011.

Y. Zhang, A. Finkelstein, and M. Harman. Search
based requirements optimisation: Existing work and
challenges. In Proceedings of the 14th International
Working Conference, Requirements Engineering:
Foundation for Software Quality (RefsQ ’08), volume
5025, pages 88-94, Montpellier, France, 16-17 June
2008. Springer.

Y. Zhang, M. Harman, and S. Mansouri. The
multi-objective next release problem. In Proceedings of
the 9th annual conference on Genetic and evolutionary
computation, GECCO ’07, pages 1129-1137, New
York, NY, USA, 2007. ACM.

