Scaling Data Race Detection for Partitioned Global
Address Space Programs

Chang-Seo Park, Koushik Sen
EECS Department
University of California, Berkeley
{parkcs,ksen}@cs.berkeley.edu

ABSTRACT

Contemporary and future programming languages for HPC
promote hybrid parallelism and shared memory abstractions
using a global address space. In this programming style, data
races occur easily and are notoriously hard to find. Existing
state-of-the-art data race detectors exhibit 10 x —100x per-
formance degradation and do not handle hybrid parallelism.
In this paper we present the first complete implementation of
data race detection at scale for UPC programs. Our imple-
mentation tracks local and global memory references in the
program and it uses two techniques to reduce the overhead:
1) hierarchical function and instruction level sampling; and
2) exploiting the runtime persistence of aliasing and local-
ity specific to Partitioned Global Address Space applications.
The results indicate that both techniques are required in prac-
tice: well optimized instruction sampling introduces over-
heads as high as 6500% (65x slowdown), while each tech-
nique in separation is able to reduce it only to 1000% (10x
slowdown). When applying the optimizations in conjunction
our tool finds all previously known data races in our bench-
mark programs with at most 50% overhead when running
on 2048 cores. Furthermore, while previous results illustrate
the benefits of function level sampling, our experiences show
that this technique does not work for scientific programs: in-
struction sampling or a hybrid approach is required.

Categories and Subject Descriptors

D.2.5 [Software]: Software Engineering— Testing and De-
bugging

Keywords

Data Race, Tracing, Sampling, Instrumentation Overhead

1. INTRODUCTION

Attaining good performance and efficacy on contemporary
and future large scale High Performance Computing systems
requires using hybrid programming models: OpenMP+MPI,
UPC+MPI, Intel TBB + MPI or OpenMP+UPC. With
multiple levels, intra-node parallelism is usually exploited

Copyright 2013 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

ICS’13, June 10-14, 2013, Eugene, Oregon, USA.

Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$10.00.

Costin lancu
Computational Research Division
Lawrence Berkeley National Laboratory
cciancu@lbl.gov

using shared memory programming models, while inter-node
parallelism is exploited using message passing or shared mem-
ory abstractions.

Bugs due to non-deterministic execution and conflicting
memory accesses are fairly common and notoriously hard
to detect in a parallelism rich environment. Previous work
demonstrates the ability of dynamic program analyses to
find concurrency bugs (data race [33], atomicity violations [22],
deadlock [7]) in shared memory programs. Dynamic pro-
gram analyses have been also used to find heisenbugs in dis-
tributed memory programs: DAMPI [39] for MPI wildcard
receives and UPC-Thrille [29] for data races in Unified Par-
allel C [10].

Data race detectors for shared memory programming [31,
33] trace individual memory references (load/store instruc-
tions) and reason about program semantics using a central-
ized analysis. The implementations are optimized to reduce
the instrumentation overhead and reportedly slow down the
execution by less than 10x at small concurrency. Bug find-
ing for distributed memory programming models is made
scalable by using a distributed analysis, but the current ap-
proaches illustrated by DAMPI and UPC-Thrille [29, 39]
track only calls into communication libraries. Tools that can
handle hybrid programming have not been demonstrated
yet. Furthermore, while acceptable when testing programs
on workstations, the current overhead of dynamic program
analyses is hard to stomach at the contemporary HPC con-
currencies of tens of thousands of cores. Large scale analyses
face the additional challenge to provide the lowest achievable
overhead while still providing good coverage.

In this paper we present the first complete dynamic anal-
ysis for distributed memory programs able to track both
memory references and communication calls. Our main de-
sign goal is attaining very low overhead at scale. We extend
the UPC-Thrille data race detection tool with tracking of
individual memory references and validate it using imple-
mentations of the NAS Parallel Benchmarks [6], as well as
other fine-grained dynamic programming and tree search ap-
plications. UPC-Thrille, detailed in Section 2, implements a
dynamic program analysis where the program is executed
with additional instrumentation and data about memory
accesses, communication and synchronization operations is
gathered and analyzed.

Performance degradation caused by instrumentation is a
well recognized challenge for dynamic program analyses. The
most widely used technique to reduce overhead is sampling [3,
4,23, 17, 39, 29] of the program execution. Tools for shared
memory use instruction level sampling while the distributed

memory tools [39, 29] implement its equivalent by sampling
the communication operations. For shared memory, Marino
et al [23] recently introduced LiteRace which coarsens the
granularity of the sampling at function boundaries. LiteR-
ace showed better scalability and coverage than instruction
level sampling when applied on several Microsoft programs,
as well as Apache and Firefox.

We have experimented with both instruction level sam-
pling and function level sampling. Contrary to LiteRace,
the results presented in Section 3 indicate that instruction
level sampling performs better than function level sampling
for scientific programs. Instruction level sampling adds run-
time overhead as high as 65x while many runs using function
level sampling did not terminate, even when instrumenting
only the first execution of a function.

The scalability and efficacy of our tool is determined solely
by the instrumentation overhead. We have performed exper-
iments to determine a “default” sampling frequency that pro-
vides both coverage and low performance degradation. Our
results indicate that manipulating the sampling frequency is
not enough to attain acceptable slowdown on the workload
under consideration.

We propose a combination of techniques to minimize the
tool overhead. In Section 4.1 we describe how to use pro-
gram semantic information such as aliasing to prune the
number of events traced. In Section 4.2 we propose a hier-
archical sampling approach where the instrumentation gran-
ularity is dynamically controlled both at the function level
and at the instruction level. Applying each technique in iso-
lation is able to reduce the maximum tool overhead from
65x with instruction sampling to roughly 10x. When com-
bining aliasing based pruning with hierarchical sampling, we
were able to reduce the maximum overhead from 10x (i.e.
1000%) to only 50% while finding the same races using 2048
cores. We believe that our findings are widely applicable
to any tool for data race detection in Partitioned Global
Address Space languages: Chapel, Titanium, Co-Array For-
tran. This paper makes the following contributions:

e We develop the first complete dynamic analysis for dis-
tributed memory programs which is able to track both
memory references and communication calls with sig-
nificantly low overhead.

e We show that state-of-the-art sampling techniques for
data race detection do not scale for scientific programs.

e We propose a hierarchical sampling technique which is
able to reduce instrumentation overhead from 65x to
10x.

e We propose a novel aliasing based pruning heuristics,
which when combined with hierarchical sampling, fur-
ther reduces overhead from 10x to 0.5x .

2. UNIFIED PARALLEL C

UPC is a parallel extension of the ISO C program-
ming language for high performance computing. UPC uses
the Single-Program-Multiple-Data (SPMD) programming
model and provides a Partitioned Global Address Space:
each task has access to a private address space and to a
global shared address space. The language extends the C
type system with the qualifier of pointer-to-shared to de-
note accesses to the global address space. Pointers-to-

shared can be casted to proper C pointers, but not vice-
versa. This is widely used in practice for performance rea-
sons and for calling into native libraries such as Intel MKL.
In addition, the language provides synchronization prim-
itives (lock, barrier), bulk memory transfers (memput,
memget), as well as a memory consistency [41, 21] model.

Together with Chapel, X10, Co-Array Fortran and Tita-
nium, UPC belongs to the family of Partitioned Global Ad-
dress Space languages. These PGAS languages distinguish
between local and global references and provide support for
logical data layouts, such as block-cyclic array distribution.
As a result, they implement complicated memory manage-
ment and a reference to a global object is orders of magni-
tude slower [18] than a load/store instruction due to complex
addressing rules.

2.1 Finding Data Races with UPC-Thrille

A data race occurs in parallel programs when two threads
access the same memory location with no ordering con-
straints between them, and at least one of the accesses is
a write [1, 27].

In our previous work, we developed a data race detector
for UPC called UPC-Thrille. UPC-Thrille was able to find
only data races between accesses performed using variables
with the pointer-to-shared data type (e.g. shared int
*) and communication calls (e.g. memget). It instruments
communication calls and implements an active testing [19]
methodology which works in two phases:

e A predictive analysis phase which uses a distributed
lock-set-based algorithm [33, 29] to identify data races.
The data races reported by the predictive analysis
could be real or infeasible. The results reported show
that UPC-Thrille is able to predict potential data races
with good scalability and overhead lower than 15%.

e A confirmation phase, where the program is re-
executed under a controlled schedule that attempts to
make the potential races manifest, i.e. create a state
by manipulating the schedule where two threads are
about to access the same memory location and at least
one of the accesses is a write. Races that are not re-
produced are unlikely to be false positives.

Well optimized UPC programs usually cast pointers-to-
shared (e.g. shared int *) to C proper pointers (e.g. intx*)
and the released UPC-Thrille cannot detect data races in-
troduced by memory aliases. Furthermore, the presence on
non-blocking communication operations [8] introduces an-
other class of data races. As non-blocking communication
is a “background” asynchronous activity that can be over-
lapped with computation, memory accesses within a task
can race with the communication operations initiated by the
same task. A complete data race detection solution needs
to track all the memory references, including those using C
pointers, as well as communication calls. Therefore, our re-
leased UPC-Thrille was prone to false-negatives, i.e. it could
miss to report real data races during an execution.

In the rest of this paper we discuss the implementation
and optimizations required for the complete UPC-Thrille
data race detector. The tool is publicly available under a
BSD license.

3. THE OVERHEAD OF DATA RACE DE-
TECTION

Instrumentation overhead is recognized as a problem that
dynamic race detectors have to address. Commercial tools
for C programs such as the Intel Thread Checker or the Sun
Thread Analyzer, usually instrument all load/store instruc-
tions at the expense of 600x execution slowdown [36] on
scientific OpenMP programs with small memory footprints.
Average overheads on other scientific programs for the Intel
Thread Checker have been reported [32] around 200x and
as high as 485x.

Sampling techniques have been introduced by Arnold and
Ryder [3] and later adopted in other bug finding tools [4, 23]
for parallel programs. The efficacy of these techniques is de-
termined by the granularity of the instrumented code region
and the sampling strategy. Tools [4] for finding bugs in pro-
grams running on managed runtimes (e.g. Java) tend to use
instruction level sampling; the additional instrumentation
overhead is not perceived as unacceptable since the runtime
already manages object metadata and access. These systems
usually observe up to 3X x slowdowns for non-scientific ap-
plications and data is not available for HPC applications.
Distributed memory tools such as DAMPI [39] sample only
communication calls.

Recently, Marino et al [23] proposed a technique to
coarsen the sampling control from instruction level to func-
tion level. They use a compiler to generate instrumented and
un-instrumented versions of functions and select the appro-
priate copy at runtime. The instrumented version of a func-
tion monitors every memory reference during its execution.
Their LiteRace tool introduces up to 3x overhead while pro-
viding good coverage on non-scientific programs; it has not
been evaluated on scientific programs. In the rest of this
paper we refer to this technique as function sampling. One
reason that function sampling outperforms instruction sam-
pling is that it amortizes better the cost of tracking memory
references: function sampling executes one branch/decision
per application level function call while instruction sampling
executes one branch/decision per instruction traced.

Several sampling strategies have been proposed and eval-
uated for non-scientific programs. Random sampling has
been shown to provide poor coverage. SWAT [17] detects
memory leaks and uses an approach where the execution of
code segments is sampled at a rate inversely proportional to
their execution frequency. LiteRace uses a bursty sampler,
where the execution of a function is sampled initially at a
100% rate and the sample rate is progressively reduced until
it reaches a lower bound. Both approaches try to give pri-
ority to regions of code rarely executed and give priority to
the first execution of any code region.

The implementation of UPC-Thrille described in [29] in-
struments memget/memput communication operations with a
bursty sampling similar to LiteRace.

In order to provide a complete data race detection solu-
tion we have modified UPC-Thrille and the Berkeley UPC
compiler to track all memory references, including all ref-
erences through C proper pointers. We provide a well op-
timized implementation of instruction sampling that makes
extensive use of C macro-definitions to eliminate function
call overheads for the instrumentation code. Every mem-
ory reference is examined using a bursty sampling strategy.

We have also implemented function sampling with the same
bursty strategy.

For any sampled memory reference, the implementation
has to check whether the address resides within a thread’s
private address space or within the global address space.
This requires integration with the UPC runtime memory
management module and it is an expensive operation, com-
mon to PGAS languages. References to the private address
space are ignored as they cannot race. Global references are
inserted into the UPC-Thrille internal data structures and
further checked against other references.

We distinguish three types of overhead: 1) instrumenta-
tion overhead is introduced by the checks to prune the non-
interesting data accesses; 2) computation overhead is intro-
duced by the operations on internal data structures to man-
age the interesting accesses; and 3) communication overhead
introduced by the exchange of conflicting accesses between
tasks. Thus, private references contribute only to instru-
mentation overhead while global references also contribute
to the computation and communication overhead.

3.1 Benchmarks

We evaluate UPC benchmarks using fine-grained and bulk
communication. Table 1 presents statistics about the bench-
mark characteristics. For implementations using bulk com-
munication primitives we use the NAS Parallel Benchmarks
(NPB) [25, 26, 6], releases 2.4 and 3.3. We have performed
experiments with the problem classes A, B and C and D;
overall, the memory footprint of the workload varies from
tens of MBs to tens of GBs. Asanovi¢ et al [5] examined six
different promising domains for commercial parallel applica-
tions and report that a surprisingly large fraction of them
use methods encountered in the scientific domain. In partic-
ular, all methods used in the NAS benchmarks (multigrid,
sparse-matrix operations, sorting, Fast Fourier Transforma-
tion, dense linear algebra) appear in at least one commercial
domain. Thus, beside their HPC relevance, these bench-
marks are of interest to other communities.

The fine-grained benchmarks reflect the type of communi-
cation/synchronization that is present in larger applications
during data structure initializations, dynamic load balanc-
ing, or remote event signaling. The guppie benchmark per-
forms random read/modify/write accesses to a large dis-
tributed array, a common operation in parallel hash ta-
ble construction, graph algorithms and data mining. The
amount of work is static and evenly distributed among tasks
at execution time. The psearch benchmark performs parallel
unbalanced tree search [28]. The benchmark is designed to
be evaluation tool for dynamic load balancing strategies.

The selected programs provide a good sample of different
programming and software engineering styles, dynamic ap-
plication behavior and scalability characteristics. The NAS
benchmarks contain many function calls and have a struc-
ture common to any large application. The fine-grained
benchmarks contain few or no user defined function calls, a
structure common to many scientific libraries and their unit
testing. In the NAS benchmarks, the ratio of local mem-
ory accesses to communication calls performed at runtime
is large (O(10°) or above) , while in the fine grained bench-
marks they are roughly equal. The NAS benchmarks imple-
ment iterative methods, while the code in the fine-grained
benchmarks represents a “direct” solve executed only once.

Due to the randomness of the access pattern and the fre-

Overhead
Bench | LoC | Runtime(s) #Races NL HA.5 TA FAO I
guppic | 271 | 19.070 2(2) + 0(0) || 54.9% | 54.2% | 53.7% | DNF | 74.9%
psearch | 803 0.697 3(1) +2(2) || 2.48% | 10.8% | 666% | 8.01% | 6490%
BT 3.3 | 9698 | 180.48 7(0) + 3(1) || 0.574% | 1.16% | 77.6% | DNF | -
CG 24 | 1654 | 39.573 0(0) + 1(1) || 1.09% | 27.6% | 57.6% | DNF | 2579%
EP 24 | 678 | 54.453 0(0) + 0(0) |l -0.618% | 0.805% | 2.09% | 4.74% | 111%
FT 24 | 2289 | 62.663 2(2) + 0(0) || 0.601% | 30.1% | 121% | DNF | 2744%
IS24 |1426| 5.130 0(0) + 0(0) || 0.376% | 119% | 159% | DNF | 1201%
LU33 | 6348 | 155.997 || 0(0) + 44(2) || -0.425% | - | 75.7% | DNF | -
MG 2.4 | 2220 | 18.687 2(2) + 4(0) || 0.336% | 176% | 632% | DNF | 2020%
SP 3.3 | 5740 247.937 10(0) + 3(1) 0.160% | 0.861% | 29.1% | DNF -

Table 1: Statistics for the NAS Parallel Benchmarks class C, guppie and psearch running on 16 cores. We report the races
found as A(B) + C(D), where A represents the number of races detected by the original UPC-Thrille tool with B of them
confirmed, and C represents the additional number of races detected with our extensions with D of them confirmed through
phase II. Some execution overheads are omitted (-), due to configuration errors.

quency of execution, these benchmarks require the tool to
provide good program coverage. NAS FT exhibits a race
between the initialization code and the subsequent compu-
tation: initialization is executed only once. guppie performs
random updates to a global table and it exhibits two races:
read-write and write-write. psearch implements a work steal-
ing strategy that exhibits random data races.

3.2 Comparison of Function and Instruction
Sampling

The experimental results are obtained on a Cray XE6 sys-
tem composed of nodes containing two twelve-core AMD
MagnyCours 2.1 GHz processors. The system has two nodes
attached to a Gemini network interface card, forming an
overall 3-D torus network with 6,384 nodes. The network
is providing a bandwidth of 9.375 GBytes/sec per direction
in 10 directions. The maximum injection bandwidth per
node is 20GB/s. Our implementation extends UPC-Thrille
as contained in the Berkeley UPC release 2.14.2.

Table 2 describes the experiment labeling scheme and
summary of results is shown in Table 1. Instruction sam-
pling is denoted by I and we use the setting of 0.9 instruction
back-off factor as our baseline, as indicated in [29]. Func-
tion sampling is denoted by F. For a given setting of the
sampling frequency for I, we are interested in determining a
sampling frequency for F that provides similar coverage.

We will use the behavior of the CG benchmark to illustrate
the differences between the different configurations. These
CG trends are representative for the whole suite of bench-
marks we examined. Figure 1 presents the tool performance
when applied to CG classes A and D running on 16 and 2048
cores respectively. The benchmark implements an iterative
method and Class A solves a problem with a small mem-
ory footprint (MBs) in few iterations, while class D solves
a large (GBs) problem. For reference, the original UPC-
Thrille tool adds 8% runtime overhead when instrumenting
only communication calls (labeled as NL in the graphs for
No-Local). Our implementation finds one new race in the
implementation of this benchmark when compared to the
original UPC-Thrille.

Instruction level sampling I of all memory references adds
a 3600% overhead to the CG class A benchmark execution.
Function level sampling F.5 introduces a 2900% overhead,
lower than the 3600% overhead of I. For problem larger than
class A, function level sampling exhibits very large overheads
or the execution does not finish (DNF): some runs exhaust

the available memory while some were manually terminated
after observing 1000x slowdown.

A comparison of the overhead breakdown for F and I illus-
trates the fundamental differences between the two methods.
I introduces almost all overhead (3600%) in instrumenta-
tion, with less than 3% for computation and communication
overhead combined, while F.5 adds only 112% instrumenta-
tion overhead. This large difference validates the common
intuition that function level sampling amortizes better the
cost of deciding what references to track. On the other hand,
F.5 exhibits a large 2800% computation overhead to record
and reason about the memory references that are actually
tracked. The computation overhead for I is very small at
less than 2%. This behavior is explained by the temporal
distribution of tracked memory accesses during the program
execution. UPC-Thrille uses a combination of lock-set based
and happens-before analysis that requires tracking all mem-
ory references between two barrier statements. Function
level sampling exhibits a clustered behavior, where many
memory references are tracked for a short period of time.
Instruction sampling spreads the tracking of memory refer-
ences more evenly over the program execution. Thus, the
behavior of function sampling is determined by the scalabil-
ity of the tool internal data structures, while the behavior of
instruction sampling is determined the speed of “classifying”
a Imemory access.

3.3 Instrumentation and Computation Over-
heads

Previous work on data race detection focuses on word-
level memory accesses and require only keeping track of con-
flicting addresses. These tools usually use hash table data
structures internally. For scientific programs with bulk com-
munication operations (PGAS or MPI), data races on full
memory ranges can occur during execution. UPC-Thrille
uses an efficient Interval Skiplist [16] data structure to rep-
resent memory ranges that demonstrated good performance
when sampling only communication operations.

As the performance of function sampling is clearly ham-
pered by the internal data structure overhead, we evaluate
the scalability using micro-benchmarks for the insertion and
search operations. The time complexity of these algorithms
is dependent on the number of elements in the data structure
and the distribution of the intervals. We evaluate perfor-
mance across a range of list sizes and interval distributions:
sequential, reverse sequential, strided and uniform random.

Format S[A][F]
Sampling H: hierarchical, I: instruction-level, F: function-level
NL: no instrumentation on local accesses
Alias Indicates the use of the persistence alias heuristic
Factor Back-off factor for sampling at function level
Example | HA.5: Hierarchical sampling with alias heuristic and back-off factor of 0.5

Table 2: Key for the experiment naming scheme.

Overhead for CG class A 16 cores

40
35

30 z o
25 / instrument
20 é Bcomm
15 é Bcomp
% Bprogram

/
7

10 %

5

Ogggf
FO

NL HAO HAS5 IA HO 5 F5 |

Overhead for CG class D 2K cores

3.5 it
Ketetetes
3
i
25 instrument
P ; Bcomm
o
15 BAcomp
B program

0

EEREE

Figure 1: Breakdown of data race detection overhead for the CG class A benchmark running on 16 cores and class D running
on 2048 cores. The F and FA configurations did not finish for the class D experiment. At the mid-point HA.5 the probability
of sampling a function invocation decays from 1 to 0, by 0.5 each time a function invocation is instrumented.

Sequential streams are often encountered in code that per-
forms data structure initialization, and are present in all
of our benchmarks. They are also the holy-grail of cache
optimizations. Strided accesses occur in the Fast Fourier
Transform code NAS FT, while random accesses of the form
a[b[i]] appear in sparse methods of NAS CG and sorting
in NAS IS, as well as guppie. For a real-world perspective,
we also measure the average number of memory intervals
that are recorded in our benchmarks.

Figures 2 and 3 present the measured performance on one
core of the Cray XE6 system. For a uniform random dis-
tribution of 20,000 ranges, the average insert time is 12 us
and the average search time is 1.3 us. For a more regular
distribution of ranges such as a sequential one (e.g. [0, 10),
[10, 20), [20, 30), ...), the insertion and search times were
higher at 114 us and 2.4 us, respectively. This is a weakness
of the Interval Skiplist which relies on randomness of data
for balancing link levels. In practice, the effect can be easily
offset by adding some irregularity, such as the implementa-
tion inserting random benign addresses with low frequency.
In the application benchmark, the memory access stream
does have irregularity, and as illustrated by the results for
MG inserts are on average 45 pus and searches 0.54 pus.

When using instruction sampling for the application
benchmarks, the Interval Skip-lists never grew too large.
They remained at under 1000 unique ranges, thus the insert
and search times of the Interval Skiplist do not contribute
largely to the overhead. On the other hand, when using
function sampling the data structures grew above 10° en-
tries, at which point we stopped the execution due to the
very large overheads already accumulated.

Instruction sampling pays a higher cost for classifying a
memory reference but it naturally throttles the number of
references recorded at any time. Function sampling per-
forms a fast classification while having to record a large
number of references. Reference classification has a constant

overhead independent of the number of references already
recorded, while recording overhead scales with the number
of references. This difference explains why function sam-
pling scales worse than instruction sampling for scientific
programs. For reference, when running on the Cray XE6,
the average instrumentation overhead per reference is 1lns,
the average memory classification is 45ns, the average com-
putation overhead per reference is 500ns while the average
communication overhead per reference is 60us.

3.4 Sampling for Scientific Applications

Our results indicate that for the workload considered func-
tion sampling is not a feasible strategy. Function sampling
is indeed faster than instruction sampling for problems using
small datasets, such as class A of the NAS Parallel Bench-
marks. When increasing the data set size to B, C and D,
function sampling in any flavor does not terminate, while
the highest slowdown introduced by instruction sampling is
65%. From all benchmarks considered, the only exception
happens for psearch and EP where F is roughly twice as fast
than I. psearch is a tree search benchmark which performs
a constant and small amount of work per function, indepen-
dent of the problem size: this is a common characteristic to
many commercial applications. EP is an “Embarrassingly
Parallel” benchmark with no global memory accesses.

Our results contradict the intuition that function sampling
scales better than instruction sampling. The performance
reversal is caused by having only coarse grained control over
instrumentation: as loops within scientific applications exe-
cute billions of references, function sampling tracks billions
of references. In the PGAS case, this is compounded by the
fact that classifying the locality of a reference is expensive.

As we have evaluated codes widely used in the scientific
domain using small and large datasets running at small and
large concurrency, we believe that our finding is widely ap-
plicable. In contrast, previous shared memory data race

Inserts
140
§ 120 —<o—Uniform
= 100
%"_ 30 = ——Sequential
g 60 Reverse Sequential
§ - /\ S =% Strided

20 //
o M
5000 10000 15000 20000

Number of ranges

—%#—2 Seq. streams

mg

Figure 2: Awverage time for the insert operation in Interval

Skiplist.

detectors [33, 23, 31, 14] have been scaled at most up to 16
cores and on applications using small data sets. LiteRace is
validated on a four core system, while the tool presented by
Raman et al [31] has been scaled up to 16 cores.

4. TECHNIQUES TO REDUCE OVER-
HEAD

As the slowdown of data race detection is caused by in-
strumentation, additional techniques are required when low
overhead is mandatory. This can be achieved by: 1) reducing
the number of events traced with better filtering techniques;
and 2) better control over the instrumentation granularity.

The most obvious approach is lowering the sampling fre-
quency. We have performed a search over this space, de-
tailed results omitted for brevity. Our results indicate that
acceptable behavior at scale cannot be attained solely by
tuning the sampling frequency and additional optimizations
to reduce the number of references tracked are required for
scientific applications. We propose two such techniques that
improve scalability without sacrificing analysis precision.

The first optimization filters events by exploiting program
semantic information such as aliasing. We improve the anal-
ysis performance by exploiting the insight that aliases are
persistent in PGAS programs: once one is created it will
point in the same region (private or global) for a long pe-
riod of time. Using this we can eliminate the overhead in-
troduced by looking up the physical memory layout inside
the language runtime.

The second optimization reduces overhead by providing
more control over the instrumentation granularity. We use
a hierarchical sampling approach that combines function
and instruction sampling to amortize the instrumentation
cost while retaining fine grained control over the number of
events sampled.

4.1 Exploiting the Persistence of Locality

PGAS languages, such as UPC, Titanium, CAF, Chapel
and X10, provide the abstraction of a shared memory ad-
dress space. Data residing in this space is accessible through
references to variables that have a particular type, e.g.
“pointer-to-shared” type in UPC or “global” in Titanium®.

The memory management inside any PGAS language run-
time is complex due to the need to provide globally address-
able memory and to support data layouts, e.g. block cyclic

! Actually, in Titanium any reference is global by default and
the language provides local qualifiers.

Searches

——Strided

4.5
4
§35 > —o— Uniform
£ 3
o ——Sequential
g 2.5 — - |
g 2 x Reverse Sequential
o 1.5 7
(7]
L J’/
e

—#*—Uniform - Sequential
5000 10000 15000 20000 me

Number of ranges

Figure 3: Average time for the search operation in Interval
Skiplist.

layouts. Thus, references to global object and pointer arith-
metic operations translate into runtime operations orders
of magnitude [18] more expensive than operations on local
references, through a C pointer in the UPC case. Applica-
tion developers aggressively cast global references to local
for performance reasons, including the need to call external
libraries such as Intel MKL.

For every local memory reference, the data race detection
code needs to perform the inverse up-cast operation and
check whether the address is globally visible. This operation
is also orders of magnitude more expensive than a regular
memory load/store.

For portability reasons, we implement a runtime approach
that does not require compiler support. We limit the number
of runtime up-casts using the intuition that aliases/locality
are persistent. Once initialized, a local reference will access
only the private space or only the global space during the
program execution. This assumption allows the analysis to
dynamically determine the “locality” of any reference only
once and cache the result for the rest of the execution. In
our implementation, we add a shadow variable to cache the
locality of every memory reference expression.

The persistence of locality assumption is valid in all of
our test programs and it does not decrease the precision of
the analysis. Eight of the ten benchmarks (except EP and
guppie) have C pointers aliased to the global heap and the
tool finds the same races found by an analysis that “checks”
every local memory reference. These races are shown in
Table 1 in the column ’#Races as “+ C (D)” .

When the underlying assumption is not valid during the
execution, the heuristic as implemented may lead to false
negatives (miss real data races). However, as casts of global
references are complicated and are implemented as runtime
“calls”, the technique can be trivially generalized for pro-
grams with a more dynamic behavior. Any runtime casting
call can be extended to invalidate the cached locality infor-
mation. For casting of proper C pointers, the compiler can
easily generate the invalidation calls at the operation site.
The performance of this extension is determined by the ratio
of casts to memory references performed by the program at
runtime. The additional overhead for realistic programs is
likely to be negligible in practice

4.2 Hierarchical Sampling

For every memory reference there are two sources of run-
time overhead. Instrumentation overhead is introduced to
decide whether the reference should be recorded and compu-

tation overhead is introduced when recording the reference
in the tool internal data structures. By reducing the instruc-
tion sampling rate one can clearly reduce overhead, but at
the expense of program coverage. To provide both low over-
head and good coverage we propose a hierarchical sampling
approach which combines the fine grained control of instruc-
tion sampling with the overhead amortization provided by
function sampling. By using a good hierarchical sampling
strategy, we can reduce the instrumentation overhead while
retaining the ability to sample from a diverse context with
less redundancy. Using the concept of code regions, we for-
mally define instrumentation and hierarchical sampling.

DEFINITION 1 (CODE REGIONS). We inductively define
code regions. By definition, the smallest unit of a code region
is a memory reference (read or write). A code region is a
reference or a sequence of one or more code regions. The
entire program is the largest code region. Each code region
R has a label, denoted as #R.

Functions, loop bodies, basic blocks etc. are examples of
code regions. We assume structured code, i.e. that all code
regions are properly nested.

DEFINITION 2 (REGION STACK). During program exe-
cution, a region stack RS is maintained. Similar to a call
stack, when a region is entered, the label of the region #R is
pushed to RS. When exiting a region, the last label is popped
from the stack. At the beginning of a program execution, RS
is initially empty.

DEFINITION 3 (INSTRUMENTATION). Instrumentation
is a transformation of a code region R — R™5t,
If R is a memory reference (base case)

- if check-reference(#R :: RS) then
R = | log(#R)
R

Else, if R is a sequence of regions [R1, Ra, ..., Ry],

if check-region(#R :: RS) then
RS =#R: RS;
Rinst — [R?wt, R%"St, ey R;L;LnSt];
RS = tail(RS)
else
| [Ri,Ra,...,Ry]

By specializing the check-reference and check-region and
choosing the region granularity, we can implement multi-
ple sampling algorithms. For example, instruction sampling
with an exponential back-off (strategy I in the experiments
presented in Section 3.2), is implemented as the following
functions. The map p : label — R contains the (dynamic)
sampling probabilities of regions.

V#R € Statements. p(#R) = 1.0

check-reference(#R :: RS) =
if rand() < p(#R) then
p(#R) + = BACKOFF_FACTOR,;

return true
else
| return false

check-region(z) = true

Function sampling as introduced by the LiteRace [23] im-
plementation is defined as follows. The region is a whole

function and the sample-strategy function depends on the
strategy of sampling, such as a fixed probability, random or
an adaptive strategy.

check-reference(z) = true
check-region#R :: RS) = sample-strategy(#R)

Intuitively, the check-reference function decides what
events should be logged at runtime, while the check-region
function provides control over the granularity of these de-
cisions. We propose a hierarchical sampling strategy that
combines instruction sampling with function sampling. The
combination of hierarchical sampling with the aliasing run-
time heuristic is referred to as HA and described as:

V#R € Statements U Functions. p(#R) = 1.0

check-reference(#R :: RS) =
if p> 0A rand() < p(#R) then
if is-local-access(R) then
// locality persistence heuristic

p(#R) = 0;
return false;
else

p(#R) x = STMT_BACKOFF_FACTOR,;
return true;

else
| return false

check-region(#R :: RS) =
if p> 0 A rand() < p(#R) then
‘ p(#R) * = FUNC_BACKOFF_FACTOR;

return true
else
| return false

This implementation uses exponential back-off at both in-
dividual reference and function granularity.

4.3 Scalable Data Race Detection

In the following, the letter A in the configuration name
denotes composing the aliasing heuristic to that particular
sampling method. We denote the configuration using hi-
erarchical instruction sampling by H, where we control in-
strumentation at the function and the instruction level. In-
structions are sampled with the baseline 0.9 value for I, while
the numbers in the title denote the function back-off factor.
Thus, H1 is identical to I (always samples functions), while
with HO we sample only the first invocation of any function.
At the mid-point H.5 the probability of sampling a function
invocation decays from 1 by 0.5 each time the function is
sampled; for long running programs the sampling probabil-
ity converges to 0. Selected results are presented in Table 1
and Figures 1 and 4.

Composing the aliasing optimization with any of the tool
instrumentation methods greatly improves performance. As
illustrated in Figure 1, the overhead of instruction sampling
is reduced from 3600% to 105% with IA for CG class A.
Similar trends are observable when scaling the problem and
running class D on 2048 cores. For this particular config-
uration, the FA method does not terminate due to out of
memory errors or excessive slowdown. I exhibits a 259%
overhead, while IA exhibits less than 15% slowdown.

Composing aliasing with function and instruction sam-
pling does not change the overall trends. For problems using
small datasets, such as class A of the NAS Parallel Bench-

marks, F or FA is faster than I or IA, respectively. When
increasing the data set size to B, C and D, FA still does not
terminate. Overall, the maximum IA slowdown is 10x.

Hierarchical sampling H performs better than both in-
struction and function sampling. For CG, H.5 exhibits a
2550% slowdown, significantly better than both F and I.
Overall, with hierarchical sampling we still observe slow-
downs as high as 20x, which is still unacceptable when run-
ning at scale. With the hierarchical sampling approach, the
instrumentation overhead contributes the most to the pro-
gram slowdown.

Composing the aliasing heuristic with the hierarchical
sampling strategy provides best performance. For CG, the
overhead of hierarchical sampling is reduced from 2550%
with H.5 to 99% with HA.5 and from 294% with HO to
17% with HAOQ. In the case of the NAS Parallel Bench-
marks class C on 16 cores, the weighted average overhead
for all the benchmarks with HA.5 was 11.9%.

Figure 4 shows the performance when running strong scal-
ing experiments for the classes C and D of the NAS Parallel
Benchmarks. For all experiments, the lowest overhead is in-
troduced by the HA configuration and we are able to find all
the races with less than 50% runtime overhead when running
up to 2048 cores.

Overall, instrumentation overhead contributes the most
to the slowdown caused by data race detection. The com-
putation overhead in the scalable versions of IA and HA
is small. At large scale the communication overhead is also
small due to the techniques presented in [29].

5. BUGS FOUND

The column labeled '#Races’ in Table 1 shows the data
races found by our tool. The data is presented as A(B) +
C(D), where A(B) denotes races found by the original UPC-
Thrille and C(D) the additional C races found in phase I and
reproduced (D) in phase II by this new implementation. All
the additional races are uncovered due to the ability to track
global to local memory aliases.

We detect a previously unknown race in NAS CG where
memory is initialized using “local” pointers and distributed
without synchronization to other tasks using global point-
ers. The races reproduced in psearch, BT, SP and LU are
benign and are intended by the programmer. In psearch they
occur on a counter used for work-stealing, while the races
confirmed in BT, SP and LU occur when executing custom
synchronization code:

signal (v = 1); | wait (while(v == 0););.

The races reported as potential but not reproduced in BT,
SP and LU occur between memory accesses separated by the
custom synchronization code. Note that reporting infeasible
data races in the presence of custom synchronization code is
a common limitation of data race detection tools. Our 2nd
phase tries to remove this limitation—it never confirms the
feasibility of these data races. This is a possible indication
that these data races are false positives.

6. DISCUSSION

We believe that our techniques and findings are widely
applicable to other languages or programming models. The
alias heuristic is applicable to any PGAS language since they
provide a global address space and performance and software
engineering concerns require programmers to aggressively

identify references that are local to a given “task”. Hierar-
chical sampling is a generic technique orthogonal to the lan-
guage, programming model employed in the application, or
the data race detection algorithm. It is clearly required for
SPMD parallelism (UPC, CAF, MPI) or OpenMP parallel
loops, where work per function scales with the problem size.
When using structured parallelism as present in Habanero-C
or OpenMP tasking, some applications may perform a con-
stant amount of work per function and the overall behavior
approximates commercial applications or that of our psearch
benchmark. In this case, hierarchical sampling performs at
least as well as function sampling. The benefits of hierarchi-
cal sampling are also orthogonal to the choice of data race
detection algorithm: lock-set-based or happens-before.

In PGAS languages, global addresses have associated ob-
ject metadata and casting and address arithmetic operations
require calls into the language runtime. Thus, a runtime
only implementation of the aliasing heuristic works well.
Static analysis may be able to complement or supplant our
runtime analysis approach. Besides the obvious engineering
challenges to implement alias and escape analysis in a multi-
language, multi-programming model environment, there is
a practical expectation on performance improvements. The
implementation of our alias heuristic adds one extra branch
instruction per memory reference. Static analysis will elim-
inate some of these branches. Qualitatively, this is similar
to the effects of function sampling when compared to in-
struction sampling. In our experiments, function sampling
outperformed instruction sampling by at most 3x.

As our hierarchical approach considers only two granulari-
ties at function and instruction level, an interesting question
is whether further refinement improves performance. One
obvious solution is to consider loop nests as the unit of in-
strumentation. Our tool did not finish when instrumenting
only the first execution of any function, which indicates that
any strategy that instruments whole loops is likely to exhibit
high overhead. Thus, a strategy that peels off few instru-
mented loop iterations is required to limit slowdown. In our
opinion, any such strategy is likely to produce equivalent
behavior to the hierarchical sampling we implemented.

Performance can be further improved by reducing compu-
tation overhead with data structures with better scalability
characteristics than Interval Skiplist. The results provide lit-
tle incentive as for our workload instrumentation overhead
directly determines slowdown.

For our future work we plan to extend the data race de-
tection implementation to provide maximum coverage on
a time budget: our goal is to find the maximum number
of data races with no more than a guaranteed application
slowdown. Our preliminary experiences indicate that we are
likely to be able to guarantee no more than 2x slowdown.
Toward controlling time, the scalability analysis of the in-
ternal data structures has already yielded valuable insights
which allows us to derive space/state bounds. Toward im-
proving coverage, we plan to use the concept of region stacks
introduced in the formalism presented in Section 4.2. We
plan to experiment with several other strategies besides ex-
ponential back-off at reference and function level: i) propor-
tional sampling per unique region stack; ii) k-region context
sampling (similar to k-CFA [34] and k-object-sensitive [24]
analyses; and iii) proportional sampling at functions and
exponential back-off at statements.

Scalability of analysis on BT Scalability of analysis on CG
1.78 — 17
. \ < ——NLD
2 168 Z1s
% —NLD P HAO-D
8158 g
£ HAQ-D §15 \B\ = HA5-D
© 148 HA5-D 214 — HA1-D
o
a o
N 138 IA-D 313 \\ IA-D
g EC R
5128 —+—NL-C] —+—NL-C
€ <12 <
g 118 —0—HA0-C £ ! —0—HAO-C
£ €11 - _8
3 1.08 —HAS5-C g~ e —%—HAS5-C
« =) . 4 « //
- — +— % Y
0.98 — T T T) —4—|A-C 1 + ¥ T + T T 7 —@—HA1-C
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
—a—IAC
cores cores
Scalability of analysis on EP Scalability of analysis on FT
118 24
S 116 S 4+ NL-D
2 22
> 114 —+NLD > HAO-D
a a
E1n HAO-D 52 \ HA5-D
o 1.1 o
£ HA.5-D £1s HAL-D
& 108 IA-D 3 IA-D
£ 1.06 s g 16
5 8 é ——NL-C 5 ——NLC
€104 €14
£ 102 4%&7 g T £) TomHaoC
c c
e 1 L/ﬁ < —%—HA.5-C 2 12 —%—HA.5-C
0.98 ‘ ‘ w w w w ‘ —A—IAC 1 ¥ + * Y —E-HALC
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512
—A—IAC
cores cores
Scalability of analysis on IS class C Scalability of analysis on LU
3 1.98
c c
S N — .
> 2., p X
z 51.78 ¥
24 HAO-D
9 U
S 22 N ——NLC <
22 2158 HA5-D
S 5 ~0—HA0-C 3
2 2 1A-D
£ 18 HA.5-C g
§ e \u\ﬂ»\ £ 1.38 NLC
: —B—HA1-C <
£ 14 e g —0—HAO-C
EM— —4—1AC £ 118
& 12 —_——————— El ~*~HA.5-C
i JE—
1 + 0.98 + T + + + ¥) —A—|A-C
16 32 64 128 256 16 32 64 128 256 512 1024 2048
cores cores
Scalability of analysis on MG Scalability of analysis on SP
9 145
53 A 5 14 A
H L \ ~—+—NL-D Z1ss —+—NL-D
§ \ HAO-D £ 1 HAO-D
=° 6 's > ¥
£ HA5-D £ HA5-D
a5 2
E IA-D 3 12 1A-D
5° ——NLC 8§ 115 Y —NLC
Q
_§3 —o—HAo-C E —0—HA0-C
£ €
22 —%—HA5-C 2 105 3 —*—HA5-C
11— 3 - $ P e 1 1@. © —aIAC
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
cores cores

Figure 4: Scalability of the different sampling methods when running the tool on the NAS Parallel Benchmarks, classes C
and D. The overhead of instruction sampling I is very high compared to the others and it has been omitted for presentation
purposes.

7. OTHER RELATED WORK

Data race detection tools can be broadly classified as using
static or dynamic techniques. Static techniques [30, 9] are
scalable and complete, i.e. find all the races in the program.
On the other hand, they report a very large number of false
positives which need to be filtered by users and can handle
only limited types of synchronization primitives such as locks
or barriers.

Dynamic techniques for finding concurrency bugs can be
classified into two classes: predictive techniques and pre-
cise techniques Predictive dynamic techniques [33, 11] could
predict concurrency bugs that did not happen in a concur-
rent execution; however, such techniques still report false
warnings. UPC-Thrille implements a predictive dynamic
technique, followed by automatic filtering of false positives.
Precise dynamic techniques, such as happens-before race de-
tection [2, 12, 14] and atomicity monitoring [22, 15], are ca-
pable of detecting concurrency bugs that actually happen in
an execution. Therefore, these techniques are precise, but
they cannot give good coverage as predictive dynamic tech-
niques.

Dynamic techniques have to address the challenge of high
runtime overhead. Sampling approaches to reduce instru-
mentation overhead have been discussed throughout this pa-
per. Techniques to reduce the computation overhead have
been explored as well. Choi et al [11] discuss static analysis
techniques to reduce the overhead of data race detection for
Java programs. As alias and pointer analysis for C based
programs is notoriously conservative, these techniques need
to be supplemented by the runtime techniques presented in
Section 4.1. Recently, Raman et al [31] describe a scalable
implementation for data race detection in Habanero Java
programs implemented using fine-grained structured paral-
lelism. Their benchmarks are equivalent to our fine-grained
benchmarks, while our NAS benchmarks use coarse grained
interactions. They report analysis overheads as high as 10x
and provide valuable data about the scalability of other
state of the art race detectors for multi-threaded programs:
Eraser [33] and FastTrack [14]. They report slowdowns as
high as 100x for the latter.

So far there have been a lot of research effort to verify
and test concurrent and parallel programs written in Java
and C/pthreads for non-HPC platforms; the literature listed
above supports this fact. There have also been efforts to test
and verify HPC programs, mostly focused on C/MPI pro-
grams. ISP [37] is a push-button dynamic verifier capable
of detecting deadlocks, resource leaks, and assertion viola-
tions in C/MPI programs. DAMPI [39, 40] overcomes ISP’s
scalability limitations and scales to thousands of MPI pro-
cesses. Like ISP, DAMPI only tests for MPI Send/Recv
interleavings, but runs in a distributed way. In contrast to
our work, DAMPI instruments and reasons only about the
ordering of Send/Recv operations with respect to the MPI
ranks, and not about the memory accessed by these opera-
tions. Both ISP and DAMPI assume that program input is
fixed. TASS [35] removes this limitation by using symbolic
execution to reason about all possible inputs to a MPI pro-
gram, but it is work only at inception. MPI messages can
be intercepted and analyzed for bugs and anomalies. In-
tel MessageChecker [13] does a post-mortem analysis after
collecting message traces, while MARMOT [20] and Um-
pire [38] check at runtime.

8. CONCLUSION

To our knowledge, we discuss the first implementation of
a data race detector for distributed memory programs that
tracks both memory references and communication opera-
tions. The main design goal of our implementation is to
provide low overhead with good program coverage when run-
ning at scale.

Dynamic program analysis tools face the challenge of in-
strumentation overhead and sampling techniques have been
shown to be effective in reducing program slowdown. The
state-of-the-art technique to reduce overhead is considered
to be function sampling. We use a workload containing UPC
programs and experiment with function and instruction level
sampling. Our results indicate that function level sampling
is not feasible for scientific programs: increasing the input
set increases the amount of work per function invocation in
these applications and the analysis does not terminate. In-
struction sampling works better for scientific programs and
our implementation finds races with up to 65x slowdown.

In order to obtain acceptable program slowdown we ex-
periment with tuning the sampling frequency. For the work-
load considered, the performance degradation for settings
required to find all the “kmown” bugs is still high.

We propose two techniques to improve the scalability of
data race detection: 1) hierarchical function and instruction
level sampling; and 2) exploiting the runtime persistence of
aliasing and locality in UPC applications. The results in-
dicate that both techniques are required in practice: any
stand-alone technique is able to reduce overhead only to
1000% (10x slowdown). When applying the optimizations
in conjunction our tool finds races with at most 50% over-
head when running on 2048 cores of a CrayXE6 system.

Acknowledgements

Support for this work was provided through the X-Stack
program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research under col-
laborative agreement number DE-SC0008699 and through
a gift from Oracle. Additional support to LBNL was pro-
vided by the U.S. Department of Defense. This research also
supported in part by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIGO07-10227).

9{1] §E£E§1§§C£§rachorloo. Shared Memory

Consistency Models: A Tutorial. IEEE computing,
December 1996.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting Data Races on Weak Memory
Systems. In 18th International Symposium on
Computer architecture (ISCA), pages 234-243. ACM,
1991.

[3] M. Arnold and B. G. Ryder. A Framework for
Reducing the Cost of Instrumented Code. In
Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation,
PLDI 01, 2001.

[4] M. Arnold, M. T. Vechev, and E. Yahav. QVM: An
Efficient Runtime for Detecting Defects in Deployed
Systems. ACM Trans. Softw. Eng. Methodol., 21(1),
2011.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

[10]

[11]

[12]

[13]

[14]

[15]

[20]

[21]

The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

D. Bailey, T. Harris, W. Saphir, R. Van

Der Wijngaart, A. Woo, and M. Yarrow. The NAS
Parallel Benchmarks 2.0. Technical Report
NAS-95-010, NASA Ames Research Center, 1995.

S. Bensalem and K. Havelund. Dynamic Deadlock
Analysis of Multi-threaded Programs. In Haifa
Verification Conference, pages 208—223, 2005.

D. Bonachea. Proposal for Extending the UPC
Memory Copy Library Functions and Supporting
Extensions to GASNet. Technical Report
LBNL-56495, Lawrence Berkeley National Lab, 2004.
S. Burckhardt, R. Alur, and M. M. K. Martin.
CheckFence: Checking Consistency of Concurrent
Data Types on Relaxed Memory Models. In
Programming Language Design and Implementation
(PLDI), pages 12-21, 2007.

W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
and K. W. E. Brooks. Introduction to UPC and
Language Specification, 1999.

J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,

V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Programming language design and
implementation (PLDI), pages 258-269, New York,
NY, USA, 2002. ACM.

J.-D. Choi, B. P. Miller, and R. H. B. Netzer.
Techniques for Debugging Parallel Programs With
Flowback Analysis. ACM Trans. Program. Lang.
Syst., 13(4):491-530, 1991.

J. DeSouza, B. Kuhn, B. R. de Supinski,

V. Samofalov, S. Zheltov, and S. Bratanov.
Automated, scalable debugging of MPI programs with
Intel Message Checker. In Software engineering for
high performance computing system applications,
SE-HPCS ’05, pages 78-82, 2005.

C. Flanagan and S. N. Freund. FastTrack: efficient
and precise dynamic race detection. In Programming
language design and implementation (PLDI), 2009.
C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a
sound and complete dynamic atomicity checker for
multithreaded programs. In Programming language
design and implementation (PLDI), pages 293-303.
ACM, 2008.

E. N. Hanson and T. Johnson. The interval skip list:
A data structure for finding all intervals that overlap a
point. In Workshop on Algorithms and Data
Structures, pages 1563—-164. Springer, 1992.

M. Hauswirth and T. M. Chilimbi. Low-overhead
memory leak detection using adaptive statistical
profiling. In Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems, ASPLOS-XI, 2004.
P. Husbands, C. Iancu, and K. Yelick. A performance
analysis of the berkeley upc compiler. In Proceedings
of the 17th annual international conference on
Supercomputing, ICS 03, 2003.

P. Joshi, M. Naik, C.-S. Park, and K. Sen. An
extensible active testing framework for concurrent
programs. In Computer Aided Verification (CAV),
Lecture Notes in Computer Science. Springer, 2009.
B. Krammer, M. Miiller, and M. Resch. Runtime
checking of MPI applications with MARMOT. In
Mini-Symposium Tools Support for Parallel
Programming, ParCo 2005, Malaga, Spain.

W. Kuchera and C. Wallace. The UPC memory
model: Problems and prospects. In the 18th
International Parallel and Distributed Processing
Symposium (IPDPS), April 2004.

(22]

23]

(24]

[25]
[26]
27]

(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]
37]

(38]

39]

(40]

[41]

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting
atomicity violations via access interleaving invariants.
SIGARCH Comput. Archit. News, 34(5):37-48, 2006.
D. Marino, M. Musuvathi, and S. Narayanasamy.
LiteRace: Effective Sampling for Lightweight
Data-Race Detection. In PLDI, 2009.

A. Milanova. Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng.
Methodol, 14:2005, 2005.

The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

The UPC NAS Parallel Benchmarks. Available at
http://upc.gwu.edu/download.html.

R. H. B. Netzer and B. P. Miller. What are race
conditions? some issues and formalizations. LOPLAS,
1992.

S. Olivier and J. Prins. Scalable dynamic load
balancing using UPC. In International Conference on
Parallel Processing (ICPP), 2008.

C.-S. Park, K. Sen, P. Hargrove, and C. Iancu.
Efficient Data Race Detection for Distributed Memory
Parallel Programs. In Proceedings of the
Supercomputing Conference (SC11), 2011.

S. Qadeer and D. Wu. KISS: keep it simple and
sequential. In Programming language design and
implementation (PLDI), pages 14-24. ACM, 2004.

R. Raman, J. Zhao, V. Sarkar, M. Vechev, and

E. Yahav. Scalable and Precise Dynamic Datarace
Detection for Structured Parallelism. In Proceedings of
the 83rd ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 2012.
P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and

J. Torrellas. Accurate and efficient filtering for the
intel thread checker race detector. In Proceedings of
the 1st workshop on Architectural and system support
for improving software dependability, ASID 06, 2006.
S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391-411, 1997.

O. Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, 1991.

S. F. Siegel and T. K. Zirkel. Automatic formal
verification of MPI-based parallel programs. In
Principles and practice of parallel programming,
PPoPP ’11, 2011.

C. Terboven. Comparing intel thread checker and sun
thread analyzer. In PARCO’07, pages 669-676, 2007.
S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and
R. M. Kirby. ISP: a tool for model checking MPI
programs. In Principles and practice of parallel
programming, PPoPP ’08, 2008.

J. S. Vetter and B. R. de Supinski. Dynamic software
testing of MPI applications with Umpire. In
Supercomputing, SC 00, Washington, DC, USA, 2000.
IEEE Computer Society.

A. Vo, S. Aananthakrishnan, G. Gopalakrishnan,

B. R. d. Supinski, M. Schulz, and G. Bronevetsky. A
Scalable and Distributed Dynamic Formal Verifier for
MPI Programs. In Supercomputing (SC10), 2010.

A. Vo, G. Gopalakrishnan, R. M. Kirby, B. R.

de Supinski, M. Schulz, and G. Bronevetsky. Large
scale verification of mpi programs using lamport
clocks with lazy update. In Proceedings of the 2011
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’11, pages 330-339,
Washington, DC, USA, 2011. IEEE Computer Society.
K. Yelick, D. Bonachea, and C. Wallace. A Proposal
for a UPC Memory Consistency Model. Technical
Report LBNL-54983, Lawrence Berkeley National
Laboratory, May 2004.

