
Exploiting Data Parallelism in the yConvex Hypergraph

Algorithm for Image Representation using GPGPUs
Saurabh Jha

VIT University, Chennai, India

saurabh.jha2010@vit.ac.in

Tejaswi Agarwal
VIT University, Chennai, India

tejaswi.agarwal2010@vit.ac.in

B. Rajesh Kanna
VIT University, Chennai, India

rajeshkanna.b@vit.ac.in

ABSTRACT

To define and identify a region-of-interest (ROI) in a digital

image, the shape descriptor of the ROI has to be described in

terms of its boundary characteristics. To address the generic issues

of contour tracking, the yConvex Hypergraph (yCHG) model was

proposed by Kanna et al [1]. In this work, we propose a parallel

approach to implement the yCHG model by exploiting massively

parallel cores of NVIDIA's Compute Unified Device Architecture

(CUDA). We perform our experiments on the MODIS satellite

image database by NASA, and based on our analysis we observe

that the performance of the serial implementation is better on

smaller images, but once the threshold is achieved in terms of

image resolution, the parallel implementation outperforms its

sequential counterpart by 2 to 10 times (2x-10x). We also

conclude that an increase in the number of hyperedges in the ROI

of a given size does not impact the performance of the overall

algorithm.

Categories and Subject Descriptors

I.3 [Computer Graphics]: Hardware Architecture –Graphics

Processor, Parallel Processing

Keywords

Parallel Processing, GPGPU, Image Analysis

1. INTRODUCTION
 Contour tracking in digital images faces generic issues which

are illustrated in [1, 2, 3]. It becomes essential to solve contour

tracking challenges in multiply-connected regions and regions

bounded by non-Jordan curves. To overcome these challenges,

Kanna et al. [1] proposed the yCHG model which is used to track

the contour deterministically. Our results with the sequential

implementation of the yCHG show that:

a. The runtime of the yCHG algorithm increases linearly for

images up to a resolution of 2000x2000 but a significant change

in runtime is observed for images with a higher resolution.

b. The runtime remains constant for images with varying number

of hyperedges.

2. PROPOSED METHOD
 To remove the data dependencies in the existing algorithm, we

divide the algorithm into two steps. The first function computes

the number of cut-vertices of an image in parallel by dividing the

image into a number of column vectors and each column is

scheduled on a separate thread on the GPU. Each thread computes

the number of cut-vertices and stores the result in an array. In the

second step of the algorithm, each CUDA thread checks the

number of cut-vertices in the preceding column vector of the input

image. If a change is observed in the number of cut-vertices, it

indicates there has been a change in the number of yConvex

hyperedges for that particular column vector.

Copyright is held by the author/owner(s).

ICS’13, June 10–14, 2013, Eugene, Oregon, USA.

ACM 978-1-4503-2130-3/13/06

3. RESULTS
 In order to keep constant hyperedges, we take an image of a

resolution of 21000x21000 and vary the resolution. Our results

are graphically plotted in Figure 1. It shows performance of the

proposed parallel algorithm as compared to the existing serial

implementation. Our CPU implementation consists of a 2-core

Intel i5 480M having a clock speed of 2660 MHz. The GPU we

used is a 16 core NVIDIA GeForce 310M having a clock speed of

1468 MHz. We understand that while newer hardware (such as

cards based on the recent FERMI architecture) would

undoubtedly be faster, we want to show what is possible with only

limited hardware investment.

Figure 1. Results with varying resolution and hyperedges

To vary the number of hyperedges, we consider different images

keeping the same resolution. We observe that the time taken is

constant, with the number of hyperedges varying from 147 to

4124319. This was expected as our algorithm is dependent

directly on the resolution of the input image irrespective of other

factors. Our implementation results show that with an increase in

the image resolution the parallel implementation improves the

performance by 2X-10X, opening up a host of potential new

applications that require real time image processing.

4. REFERENCES
[1] B. Rajesh Kanna, C. Aravindan, and K. Kannan, Development of

yConvex hypergraph model for contour-based image analysis, in

Proceedings of the 2nd IEEE International Conference Computer

Communication and Informatics (ICCCI-2012), 2, 1-5, 2012

[2] B. Rajesh Kanna, C. Aravindan, and K. Kannan, A contour-based

scheme for representing arbitrary shapes in digital images, in

Proceedings of ACM International Conference and Workshop on

Emerging Trends in Computer applications, 1, 535-540, 2011

[3] B. Rajesh Kanna, C. Aravindan, and K. Kannan, Image-based area

estimation of any connected region using y-convex region

decomposition, AEU -International Journal of Electronics and

communications, 66 (2):172- 183, 2012

[4] Hall, Dorothy K., George A. Riggs, and Vincent V. Salomonson.

2006, updated daily. MODIS/Terra Snow Cover Daily L3 Global

500m Grid V005 [November 2000-October 2001]

