

Doctoral Work in Computing Education Research: Beyond Experimental Designs

Having recently participated in the Doctoral Consortium of the Australasian Computing Education Conference I was

struck by the core methodological challenges faced by students. Initial proposals seemed to be along the lines of,

“well I will need a control group and a comparison group to evaluate x or y condition or intervention.” The corollary

to this thinking then became “well how many students will be enough?” presumably so the findings could be

generalisable in some manner. Yet do methods drawn from the natural sciences really furnish the most appropriate

approaches for computing education research (CER), with its hybrid concerns of technology and people? If not,

then which methods would be more suitable and how can students be guided towards their adoption?

I suppose the typical preparation of computing students is a fairly technical one and the more obvious scientific

research methods to which they have been exposed will probably have been experiments or perhaps simulations of

some form. Yet the literature on CS research methods suggests that even these classic scientific approaches are

relatively uncommon (less than 6% for instance for both experiments and simulations in [1]), and the absence of

experimentation was actively criticised in [2]. Given that the “dominant research approach in both the CS and SE

fields is ‘formulate’ – that is, the author is creating some product (algorithm, process, guideline, etc.) presumably of

value to others in the field” [3], how that might translate to a research method in computing education is probably

unclear to students. Then further as observed in [3], “The primary research method of CS was ‘conceptual analysis’

based on a mathematical foundation. More interestingly, the primary research approach of SE was also conceptual

analysis, but without a mathematical flavor”, and as further noted “neither CS nor SE does much evaluative work”,

which tends to be more common in the IS discipline. So it could be said that the primary research methods in the

more technical computing disciplines tend to be rather inexplicit and opaque, or either about formulating or building

something or conceptually analyzing an artifact, process, model or phenomenon.

Therefore, it is little wonder that students undertaking doctoral projects in the sub discipline of computing education

research (CER) tend to flounder. For how could a computing education research study that conducted no evaluation

of its findings be termed rigorous? Merely building a new tool, or proposing a model would not suffice. Given the

limited prior exposure to methods with a strong element of evaluation it is no wonder then that an experiment of

some kind would be the method of refuge. This lack of explicit coverage of method has led the SIGCSE community

to support an ITiCSE working group report on how to teach research methods in computing at postgraduate level

[4]. For the sub discipline of computer science education research it spawned the excellent book by Sally Fincher

and Marian Petre [5] as a primer to doing research in the field. An analysis of the types of research being conducted

into computing education has been presented relatively recently at the ICER conference [6].

So there are some valuable resources which can give students and their supervisors insight into approaches they

might adopt. Or for that matter, CS educators conducting research into their teaching or the learning of their

students may benefit from greater methodological rigor in evaluating their work. Thereby they may move beyond

what Valentine [7] has termed “Marco Polo” presentations describing a personal journey such as; “how their

institution has tried a new curriculum, adopted a new language or put up a new course”. As Valentine critically

elaborates “The reasoning is defined, the component parts are explained, and then (and this is the giveaway for this

category) a conclusion is drawn like ‘Overall, I believe the [topic] has been a big success.’ or ‘Students seemed to

really enjoy the new [topic].”

As noted in [8] a number of elements and perspectives on reality and the construction of knowledge serve to frame a

computing education research design. One useful way of framing their study, which I like to discuss with doctoral

students, is the nature of theory that may be derived from their research. Shirley Gregor has proposed a thought

provoking framework on the nature of theory in the IS discipline [9]. She classifies theories in a taxonomy

incorporating five types: Type I a theory for analyzing; Type II a theory for explaining; Type III a theory for

predicting; Type IV a theory for both predicting and explaining and Type V a theory for Design and Action. These

are tabulated below with their distinguishing characteristics and mapped to illustrative examples of CER studies of

each type.

Gregor’s Taxonomy of Theory Types applied to CER Research

Theory Type Distinguishing Characteristics CER Example

1. Analysis Says what is

The theory does not extend beyond analysis and

description No causal relationships among phenomena

area specified and no predictions are made

Sheard et al.’s data derived

framework for assessing

examination complexity [10]

2. Explanation Says what is. how why, when and where

The theory provides explanations but does not aim to

predict with any precision. There are no testable

propositions.

Eckerdal & Thuné’s

phenomenographic study of

how students understand

class and object [11]

3. Prediction Says what is and will be

The theory provides predictions and has testable

propositions but does not have well developed

justificatory causal explanations.

Lopez et al.’s path analysis

of the relationship between

code reading and writing by

novice programmers [12]

4. Explanation

and

prediction

Says what is. how why, when, where and what will be

Provides predictions and has both testable propositions

and causal explanations

Mazur’s work in Physics

education on peer instruction

[13] since adopted in CS

contexts [14]

5. Design and

action
Says how to do something

The theory gives explicit prescriptions (e.g. methods,

techniques, principles of form and function), for

Denny & Luxton-Reilly’s

paper on the design of the

Peerwise system [15]

constructing an artifact

Table 1: Gregor’s Taxonomy of Theory Types applied to CER Research [Adapted from 9]

As can be seen from the table above, there are many ways of designing research studies in CER, which extend well

beyond the experimental design. However, a key driver for the research design is the question relating to what sort

of theory the study is aiming to derive. If the goal is a theory for explanation and prediction, then the painstaking,

data driven and longitudinal work of scholars like Eric Mazur (who was the ICER2012 keynote speaker) provides

one example of an approach. For most time constrained doctoral studies in CER (or for that matter many CER

projects) a less ambitious design would be prudent. It would be wise to spend time on devising clear goals from the

outset. Thereby the choice can be consciously made of which theory is motivating the study. Choice of a theory for

analysis or explanation, or design and action with sound evaluation of impact [16] can also make a valid and useful

contribution.

References:

1. Ramesh, V., Glass, R., & Vessey, I. “Research in computer science: an empirical study”. The Journal

of Systems & Software, 70 (2004): 165-176.

2. Tichy, W. F. “Should computer scientists experiment more?” Computer, 31(5) (1998): 32-40.

doi:10.1109/2.675631.

3. Glass, R., Vessey, I. and Ramesh, V. “RESRES: The story behind the paper Research in software

engineering: An analysis of the literature.” Information and Software Technology, 51 (2009): 68-70.

4. Holz, H.J., Applin, A., Haberman, B., Joyce, D., Purchase, H. and Reed, C. “Research methods in

computing: what are they, and how should we teach them?” in Working group reports on Innovation

and technology in computer science education. (Bologna, Italy: ACM, 2006): 96-114.

5. Fincher, S. and Petre, M. Computer Science Education Research: The Field and The Endeavour.

(London: Routledge Falmer, Taylor & Francis Group, 2004).

6. Malmi, L., Sheard, J., Simon, Bednarik, R., Helminen, J., Korhonen, A., Myller, N., Sorva, J. and

Taherkhani, A. “Characterizing research in computing education: a preliminary analysis of the

literature.” in Proceedings of the Sixth international workshop on Computing education research.

(Aarhus, Denmark:ACM, 2010): 3-12.

7. Valentine, D.W. “CS educational research: a meta-analysis of SIGCSE technical symposium

proceedings.” in Proceedings of the 35th SIGCSE technical symposium on Computer science

education. (Norfolk, Virginia, USA: ACM, 2004): 255-259.

8. Thota, N., Berglund, A. and Clear, T. Illustration of Paradigm Pluralism in Computing Education

Research. in Proceedings of the Fourteenth Australasian Computing Education Research Conference.

(Melbourne, Australia: ACS, 2012): 103-112.

9. Gregor, S. “The Nature of Theory in Information Systems.” MIS Quarterly, 30, 3 (2006): 611-642.

10. Sheard, J., Simon, Carbone, A., Chinn, D., Clear, T., Corney, M., D'Souza, D., Fenwick, J., Harland,

J., Mikko-Jussi Laakso and Teague, D. “How difficult are exams? A framework for assessing the

complexity of introductory programming exams.” in Proceedings of the Fifteenth Australasian

Computing Education Research Conference. (Adelaide, Australia: ACS, 2013): 145-154.

11. Eckerdal, A. and Thuné, M. “Novice Java programmers' conceptions of ‘object’ and ‘class’, and

variation theory”. SIGCSE Bulletin, 37, 3 (2005): 89-93.

12. Lopez, M., Whalley, J., Robbins, P. and Lister, R. “Relationships Between Reading, Tracing and

Writing Skills in Introductory Programming.” in the Fourth International Computing Education

Research Workshop. (Sydney Australia, ACM, 2008): 101-111.

13. E. Mazur. Peer Instruction: A User’s Manual. (Upper Saddle River, NJ: Prentice Hall, 1997).

14. Simon, B., Kohanfars, M., Lee, J., Tamayo, K. and Cutts, Q., “Experience report: peer instruction in

introductory computing.” in Proceedings of the 41st ACM technical symposium on Computer science

education. (Milwaukee, Wisconsin: ACM, 2010): 341-345.

15. Denny, P., Luxton-Reilly, A. and Hamer, J., “The PeerWise system of student contributed assessment

questions.” in Tenth Australasian Computing Education Conference. (Wollongong, NSW, Australia:

ACS, 2008): 69-74.

16. Bain, J. “Introduction (to the special Issue on Evaluation).” Higher Education Research &

Development, 18, 2 (1999): 165-172.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, information systems education.
General Terms: Experimentation, Theory
Keywords: Computing Education Research, Research Approaches, Research Methods, Experimental Designs,

Theory Types

