Fast Parallel Orthogonalization

Dexter Kozen
Computer Science Department
Cornell University
Ithaca, New York 14853

Given a linearly independent set of vectors $x_{1}, \ldots, x_{n} \in \mathbf{C}^{d}$, the GramSchmidt orthogonalization procedure produces a new set y_{1}, \ldots, y_{n} such that y_{i} is contained in the linear span of $x_{1}, \ldots, x_{i}, 1 \leq i \leq n$, and $y_{i}^{T} \bar{y}_{j}=0, i \neq j$. The y_{i} are produced sequentially, using the formula

$$
y_{i}=x_{i}-\sum_{j=1}^{i-1} \frac{x_{i}^{T} \bar{y}_{j}}{y_{j}^{T} \bar{y}_{j}} \cdot y_{j}
$$

There is a simple $N C$ algorithm for producing the y_{1}. Let A be a square matrix with the property that all principal minors are nonsingular. Let

$$
\left|A_{j_{1} \ldots \ldots i_{m}}^{i_{1} \ldots \ldots i_{m}}\right|
$$

denote the determinant of the submatrix of A consisting of rows i_{1}, \ldots, i_{m} and columns $j_{1}, j_{2}, \ldots, j_{m}$. Then $A=L U$, where

Note that L is lower triangular and U is upper triangular. L and U can be computed in NC using Csanky's algorithm [2].

Now let P be the $d \times n$ matrix whose columns are the given vectors x_{1}, \ldots, x_{n}. By results of $[1,3]$, we can assume without loss of generality that the x_{i} are linearly independent. Then all principal minors of $P^{T} \bar{P}$ are nonsingular. Using the $L U$ algorithm above, compute

$$
P^{T} \bar{P}=L U, \quad Q=P\left(L^{-1}\right)^{T} .
$$

Let y_{1}, \ldots, y_{n} be the columns of Q. Then y_{1} is contained in the linear span of x_{1}, \ldots, x_{i} since $\left(L^{-1}\right)^{T}$ is upper triangular; and the y_{i} are orthogonal, since

$$
Q^{T} \bar{Q}=L^{-1} P^{T} \bar{P}\left(\bar{L}^{-1}\right)^{T}=L^{-1} L U\left(\bar{L}^{-1}\right)^{T}=U\left(\bar{L}^{-1}\right)^{T}
$$

is upper triangular and Hermitian, thus diagonal.
[1] Borodin, A., J. von zur Gathen, and J. Hopcroft, "Fast Parallel Matrix and GCD Computations," Information and Control 52:3 (1982), 241-256.
[2] Csanky, L., "Fast parallel matrix inversion algorithms," SIAM J. Comput. 5 (1976), 618-623.
[3] Ibarra, O., S. Moran, and L.E. Rosier, "A note on the parallel complexity of computing the rank of order n matrices," Info. Proc. Letters 11 (1980), 162.

