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AN EXPLICIT EXPRESSION OF THE LÜROTH INVARIANT

ROMAIN BASSON, REYNALD LERCIER, CHRISTOPHE RITZENTHALER, AND JEROEN SIJSLING

Abstract. In this short note, we give an algorithm to get an explicit expression of the
Lüroth invariant in terms of the Dixmier-Ohno invariants. We also get the explicit factorized
expression on the locus of Ciani quartics in terms of the coefficients. Finally, we answer two
open questions on sub-loci of singular Lüroth quartics.

1. Lüroth quartics

This note considers Lüroth quartics, which are plane quartics containing the ten vertices of a
non-degenerate pentalateral. To make these notions precise, we give the following definitions.
Let V be a three-dimensional vector space over the complex field C.

Definition 1. A complete pentalateral in the projective plane PV is a curve C ⊂ PV con-
sisting of the union of five lines ℓ1, . . . , ℓ5 that are three by three linearly independent (which
is to say that the pairwise intersections of the lines ℓi yield exactly 10 distinct points).

The vertices of a complete pentalateral C are the double points of C, that is, the 10 points⋃
i 6=j((ℓi = 0) ∩ (ℓj = 0)).

Definition 2. Let Q ⊂ PV be a non-singular quartic. Then Q is called a non-singular Lüroth
quartic if it contains the vertices of a complete pentalateral in PV .

The set of plane quartics in PV can be identified with the projective space P Sym4(V ∗) over
the fourth symmetric power of the dual vector space V ∗ of V . This inherits an action of the
group GL(V ) and its derived subgroup SL(V ), which act canonically on V . Choosing a basis,
as we will do during our calculations, identifies V with C3 and the set of quartics P Sym4(V ∗)
with the projectivization of the vector space on the homogeneous degree 4 monomials in the
canonical basis x, y, z of the dual space (C3)∗. We will in turn identify this projective space
with P14 by choosing some ordering of these 15 monomials. In this way, P14 inherits an action
of the groups GL3(C) and SL3(C).

The classical study of Lüroth quartics culminated in 1919 with the work of Morley [9]. This
showed that the Zariski closure of the locus of non-singular Lüroth quartics in the projective
space P Sym4(V ∗) is an irreducible hypersurface described as the vanishing locus of a single
homogeneous polynomial function L on the projective space of quartics P Sym4(V ∗), well-
defined up to scalars. We shall call this L the Lüroth invariant. Morley showed that L is of
degree 54.

Definition 3. Let Q ⊂ PV be a quartic. Then Q is called a Lüroth quartic if L(Q) = 0.
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In recent years, after the seminal work of [1], several authors have revived this subject
in [2, 11, 12, 13] (see also [14] on the undulation invariant).

However, an explicit expression of L was still missing. In the following section we explain
how to compute such an expression. Our main new technique lies in an effective use of [10],
an unfortunately unpublished article in which Ohno gives a complete set of generators for
the invariants of ternary quartics under the action of SL3(C), completing the set of primary
invariants found in [3]. These invariants were also used in [5], and new effective methods to
verify their correctness can be found in [4]. Our calculations use the implementation of these
invariants in Magma, which is due to Kohel.

2. The algorithm

The key point is the following observation:

Proposition 1. The homogeneous polynomial function L on P Sym4(V ∗) is GL(V )-invariant
up to scalars. In particular, L is SL(V )-invariant.

Proof. Since we are working over an algebraically closed field, this is obvious from the obvious
fact that any GL(V )-transform of a Lüroth quartic is again a Lüroth quartic. �

Let

R = S[P Sym4(V ∗)]SL(V )

be the ring of SL(V )-invariant homogeneous polynomial functions on P Sym4(V ∗), which
coincides with those functions that are GL(V )-invariant up to scalars. The structure of
the ring R is known. Indeed, let I = (I3, I6, I9, I12, I15, I18, I27) be the primary invari-
ants for ternary quartics under the action of SL3(C) found by Dixmier in [3], and let J =
(J9, J12, J15, J18, I21, J21) be the secondary invariants found by Ohno [10]. In both cases, the
index specifies the degree of the invariant as a homogeneous function. Then we have:

Theorem 1 (Dixmier-Ohno). We have R = C[I, J ].

We now choose a basis for V and a corresponding coordinatization of P Sym4(V ∗) ∼= P14

as the projective space over the degree 4 monomials in x, y, z. The function L then becomes
a homogeneous expression in the coefficients of these monomials. It is unlikely that this
function can be written down in any reasonable way (see also the final remark in Section 5).
However, by Proposition 1 and Theorem 1, we can express L as a polynomial in the invariant
functions in I and J . This expression is not unique, since as we shall see, there are relations
between these invariant monomials in degree 54.

To obtain an expression for L, we apply the method of evaluation-interpolation. This is
based on the following observation:

Proposition 2. Let S = C[x3, . . . , x27, y9, . . . , y21, y
′
21] be a graded polynomial algebra in 13

variables, weighted by indices, and consider the surjection q given by

q : S −→ R

xk 7 −→ Ik

yℓ 7 −→ Jℓ.

Let R54 ⊂ R be the set of homogeneous functions of degree 54, and define S54 ⊂ S analogously.
Let K be the kernel of the map S54 → R54. Then the dim(K) = 215.
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Let X be a finite set of Lüroth quartics. Consider the linear map q′ : S54 → CX given by
evaluating at the polynomials in X. Let K ′ be the kernel of q′, and suppose that dim(K ′) =

216. Let L̃ be an element of K ′\K. Then the image L = q(L̃) equals the Lüroth invariant.

Proof. One calculates that the dim(S54) = 1380. Since calculating the Hilbert polynomial of
R as in [15, p.1045] yields dim(S54) = 1165, we indeed find that dim(K) = 215. The rest is
straightforward considering the uniqueness of L up to scalars. �

The details of the calculation are therefore as follows.

(1) Construct the 1380 monomials

I = {I183 , I163 I6, I
15
3 I9, I

15
3 J9, . . . , J

3
18, I

2
27}

of degree 54 that generate the C-vector space of invariants of degree 54.
(2) Generate a sufficiently large finite set Q of cardinality q of random plane quartics with

rational coefficients.
(3) Generate a sufficiently large finite set L of cardinality l of random Lüroth quartics of

the form

ℓ1ℓ2ℓ3ℓ4 + c1 · ℓ2ℓ3ℓ4ℓ5 + c2 · ℓ1ℓ3ℓ4ℓ5 + c3 · ℓ1ℓ2ℓ4ℓ5 + c4 · ℓ1ℓ2ℓ3ℓ5

where ℓ1 = x, ℓ2 = y, ℓ3 = z, ℓ4 = x+y+z, ℓ5 is a line with random rational coefficients
and ci are rational coefficients.

(4) Compute the matrix M1 = (I(q))I∈I,q∈Q, evaluating the monomials in I at the quar-
tics in Q.

(5) Compute the matrix M2 = (I(q))I∈I,q∈L, evaluating the monomials in I at the Lüroth
quartics in L.

(6) Compute the 215-dimensional kernel N1 of M1. This gives a basis of the homogeneous
relations of degree 54 that are satisfied by the invariants of all ternary quartics.

(7) Compute the 216-dimensional kernel N2 of M2. This gives a basis of the homogeneous
relations of degree 54 that are satisfied by all Lüroth quartics.

(8) A non-zero element in the complement of N2 in N1 is an expression for L in terms of
the Dixmier-Ohno invariants.

All these computations were done with Magma software. Over finite fields Fp with prime
cardinality p = 2017, 10007, 100003 or even 1000003, computations can be done in less than a
minute. However, getting the result over the rationals is more challenging. The main concern
is to deal with matrices M1 and M2 whose coefficients are as small as possible. So, at Step
(2) of the algorithm, we generate plane quartics with random integer coefficients only equal
to −1, 0, or 1. Similarly, we restrict Step (3) to Lüroth forms defined by integer coefficients
ci bounded in absolute value by 4.

We can estimate the size of the computations involved in this run of the algorithm by using
the Hadamard bounds for our matrices M1 and M2; the quartics under consideration yield
bounds slightly smaller than 2200 000 for M1 and 2350 000 for M2. As a sanity check before
running the code over the rationals, we verify that this subset of quartics yields a valid result
modulo small primes.

Most of the time is spent at Step (6) and Step (7) of the algorithm, precisely 5 and 9 hours
on our laptop (based on a Intel Core i7 M620 2.67GHz processor).
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A program to get the result is available on the web page of the authors1. It uses the
implementation of the Dixmier-Ohno invariants in Magma by Kohel2. The 1.4Mb result is
also available online3. It is given by 1164 monomials with rational coefficients, the largest of
which is a quotient of a 680-digit integer by a coprime 671-digit integer. Modulo 1000003,
the expression starts as

I183 + 469313I23I
8

6 + 710780I96 + 969230I33I
6

6I9 + 374233I3I
7

6 I9 + 276144I23I
5

6I
2

9

+ 602674I6
6
I2
9
+ 527614I3

3
I3
6
I3
9
+ 538637I3I

4

6
I3
9
+ 392526I4

3
I6I

4

9
+ 645841I2

3
I2
6
I4
9

+ 914224I3
6
I4
9
+ 207808I3

3
I5
9
+ 31577I3I6I

5

9
+ 635768I6

9
+ 668878I15

3
J9

+ 507293I33I
6

6J9 + 318476I3I
7

6J9 + 59775I23I
5

6 I9J9 + 581086I66I9J9 + 830307I33I
3

6 I
2

9J9

+ 804817I3I
4

6
I2
9
J9 + 6418I6

3
I3
9
J9 + 578316I4

3
I6I

3

9
J9 + 741618I2

3
I2
6
I3
9
J9 + 452974I3

6
I3
9
J9

+ 36214I33I
4

9J9 + 522408I3I6I
4

9J9 + 253043I59J9 + 469299I23I
5

6J
2

9 + . . .

3. Ciani quartics

We call a Ciani quartic a plane quartic of the form

ax4 + bx2y2 + cx2z2 + dy4 + ey2z2 + fz4.

A generic Ciani quartic has automorphism group isomorphic with Z/2Z×Z/2Z, and conversely
every quartic with this property is C-isomorphic to a Ciani quartic. The dimension of the
substratum of Ciani quartics in the full dimension 6 moduli space of plane quartics equals 3.

In [7, Sec.5], using different techniques, Hauenstein and Sottile obtained the factorization
on Ciani quartics of the Lüroth invariant as

G4H2J

with G,H, J ∈ C[a, b, c, d, e, f ] homogeneous of respective degree 6, 9 and 12. Using our
expression, it is easy to confirm their decomposition. We give a slightly different version of
the result, which is due to the fact the coefficients b, c, e are replaced by 2b, 2c, 2e in [7, Sec.5]:

G = a · d · f · (adf − (1/4)ae2 − (1/4)b2f − (1/4)bce − (1/4)c2d),

H = (adf − (1/4)ae2

−(1/4)b2f+(1/4)bce+(3/4)c2d)·(adf−(1/4)ae2+(3/4)b2f+(1/4)bce−(1/4)c2d)·(adf+(3/4)ae2−(1/4)b2f+(1/4)bce−(1/4)c2d),

J = a4d4f4 − (1/49)a4d3e2f3 + (51/19208)a4d2e4f2

−(1/38416)a4de6f+(1/614656)a4e8−(1/49)a3b2d3f4−(205/9604)a3b2d2e2f3−(3/38416)a3b2de4f2+(1/153664)a3b2e6f+(15/343)a3bcd3ef3+(29/9604)a3bcd2e3f2−(5/38416)a3bcde5f−(1/153664)a3bce7−(1/49)a3c2d4f3−(205/9604)a3c2d3e2f2−(3/38416)a3c2d2e4f+(1/153664)a3c2de6+(51/19208)a2b4d2f4−(3/38416)a2b4de2f3+(3/307328)a2b4e4f2+(29/9604)a2b3cd2ef3−(5/19208)a2b3cde3f2−(3/153664)a2b3ce5f−(205/9604)a2b2c2d3f3+(2/2401)a2b2c2d2e2f2+(55/153664)a2b2c2de4f+(3/307328)a2b2c2e6+(29/9604)a2bc3d3ef2−(5/19208)a2bc3d2e3f−(3/153664)a2bc3de5+(51/19208)a2c4d4f2−(3/38416)a2c4d3e2f+(3/307328)a2c4d2e4−(1/38416)ab6df4+(1/153664)ab6e2f3−(5/38416)ab5cdef3−(3/153664)ab5ce3f2−(3/38416)ab4c2d2f3+(55/153664)ab4c2de2f2+(3/153664)ab4c2e4f−(5/19208)ab3c3d2ef2−(17/76832)ab3c3de3f−(1/153664)ab3c3e5−(3/38416)ab2c4d3f2+(55/153664)ab2c4d2e2f+(3/153664)ab2c4de4−(5/38416)abc5d3ef−(3/153664)abc5d2e3−(1/38416)ac6d4f+(1/153664)ac6d3e2+(1/614656)b8f4−(1/153664)b7cef3+(1/153664)b6c2df3+(3/307328)b6c2e2f2−(3/153664)b5c3def2−(1/153664)b5c3e3f+(3/307328)b4c4d2f2+(3/153664)b4c4de2f+(1/614656)b4c4e4−(3/153664)b3c5d2ef−(1/153664)b3c5de3+(1/153664)b2c6d3f+(3/307328)b2c6d2e2−(1/153664)bc7d3e+(1/614656)c8d4.

The product G4H2J has 1695 monomials. Note that the total amount of weighted monomials
in a, b, c, d, e and f in a generic degree 54 invariant is 3439.

1 http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/luroth.m
2 http://echidna.maths.usyd.edu.au/kohel/alg/index.html
3 http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/LurothInvF.m

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/luroth.m
http://echidna.maths.usyd.edu.au/kohel/alg/index.html
http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/LurothInvF.m
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4. Singular Lüroth quartics

Let L ⊂ P Sym4(V ∗) be the locus of Lüroth quartics, and let D ⊂ P Sym4(V ∗) be the
discriminantal hypersurface defined by the equation I27 = 0. We will now obtain new results
on the geometry of the locus L ∩ D of singular Lüroth quartics. Work by Le Potier and
Tikhomirov [8] shows that

L ∩ D = L1 ∪ L2,

where L1 and L2 are irreducible subschemes of P Sym4(V ∗) of codimension 2 whose respective
degrees as subschemes of D equal 24 and 30 respectively. Moreover, while L1 is reduced, the
reduced subscheme (L2)red of L2 is of degree 15.

In [12], Ottaviani and Sernesi showed that no new degree 15 invariant vanishes on (L2)red,
which implies that this scheme is not a principal hypersurface in L. We will prove a stronger
result, namely that none of L1, L2, (L2)red is a complete intersection. We apply the same
methods as in Section 2. The main problem now is to generate quartics in L1 and L2.

For L2, we can proceed by using Remark 3.3 in [12]: we now choose the lines in Step (3)
above such that three of them have a common point of intersection.

For L1, we have to perform the constructions and results in [12, p. 1759]. The procedure
is as follows.

(1) Construct a cubic surface S with two skew lines l, m.
(2) Calculate the double cover f : l → m sending p ∈ l to the intersection TpS ∩m of the

tangent plane TpS to p at S with the line m, and construct g : m → l analogously.
(3) Let Bf ⊂ m (resp. Bg ⊂ l) be the branch divisor of f (resp. g). Construct morphisms

f ′ : l → P1 (resp. g′ : m → P1) ramifying over Bg (resp. Bf ).
(4) Construct Q ∈ m ⊂ S such that f−1(Q) is also a fiber of f ′.
(5) Construct the ramification locus of the degree 2 projection S → P(TQS) from the

point Q ∈ S. Then by Proposition 3.1(i) of [12], we obtain a quartic in L1.

The following string of propositions and remarks show how these steps can be implemented
without extending the base field (we will take k = Q throughout).

Proposition 3. Let k be a field, and suppose that we are given six rational points p1, . . . , p6 ∈
PV (k) in the projective plane over k. Suppose additionally that this set of points is sufficiently
general in the sense that the complete linear system C of cubics passing through them has
dimension 4. Construct the Clebsch rational map c : PV → PC, and let S ⊂ PC be the Zariski
closure of c(PV ). Then S is the vanishing locus of a quaternary cubic form F ∈ Sym3(C∗)
over k.

The rational map c restricts to a birational map between PV and S. Let l0 ⊂ PV be the
rational line containing p1 and p2, and let m0 ⊂ PV be the rational line containing p1 and
p3. Let x and x′ be two points in l not equal to p1 or p2, and let y and y′ be two points in l
not equal to p1 or p3. Then the images c(x) and c(x′) are well-defined elements of S, and the
line l through them is defined over k and included in S. Analogously, one obtains a line m
through c(y) and c(y′). The lines l and m are skew.

Proof. This is a standard result from the theory of cubic surfaces, see [6, Section V.4]. �

This deals with part 1. To perform the calculations in point 2 explicitly, choose coordinates
on l by taking two points l1, l2 on l and sending (x : y) ∈ P1 to xl1 + yl2, and similarly on
m by choosing m1,m2 ∈ m. To determine the morphism f : l → m explicitly in these in
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coordinates, we choose two equations M1 = M2 = 0 defining m. Given p ∈ l with coordinates
(x : y) ∈ P1, the point f(p) = TpS∩m corresponds to the vector space that is the kernel of the
matrix whose rows are given by M1, M2 and the partial derivatives of F . A generating vector
for this space will be a combination of m1 and m2 with homogeneous quadratic coefficients
f1(x, y), f2(x, y) in (x, y). The morphism f now corresponds to the map P1 → P1 given by
(f1, f2). Similarly, one determines g. For point 3, we use the following result.

Proposition 4. Let l be a projective line over k, with homogeneous coordinates x and y, and
let D be a k-rational divisor of degree 2 on l. Then the following formulae determine a degree
2 morphism f ′ : l → P1 over k whose ramification locus equals D.

• If D consists of two points (x1 : y1) and (x2 : y2) that are rational over k, then one
can take

f ′(x : y) = ((y1x− x1y)
2 : (y2x− x2y)

2).

• If D is defined by an equation rx2 + ty2 = 0, then one can take

f ′(x : y) = (rx2 − 2txy − ty2 : rx2 + 2txy − ty2);

• If D is defined by an equation rx2 + sxy + ty2 = 0 with s 6= 0, then one can take

f ′(x : y) =(r2sx2 + 2r(s2 − 2rt)xy + (s3 − 3rst)y2 :

r(rsx2 + 4rtxy + sty2)).

Proof. Once the answer is given, the verification is trivial. But let us illustrate how to find
these expressions by treating the thir case, where the points of D are defined over a proper
quadratic extension of k. We use the affine coordinate t = x/y on l. Suppose that using
this coordinate, the divisor D = [d] + [d] consists of two conjugate points, not summing
to zero because we are in case (iii). Then f ′ = ((t − d)/(t − d))2 of above now has the
property that f ′ = 1/f ′. But then one verifies that (df ′ + d)/(df ′ + d) is a fractional linear
transformation of f ′ that is stable under conjugation and hence defines a morphism over the
ground field. Homogenizing, one obtains the more elegant expression given in the statement
of the proposition. �

We now treat point 4.

Proposition 5. Let f, f ′ : P1 → P1 be two degree 2 morphisms, neither of which can be
obtained from the other by postcomposing with an automorphism of P1. Then the q in P1 such
that the fiber of f over q is also a fiber of f ′ over a point q′ can be obtained as follows.

Write

f(x : y) = (a1x
2 + b1xy + c1y

2 : a2x
2 + b2xy + c2y

2)

and

f ′(x : y) = (a′1x
2 + b′1xy + c′1y

2 : a′2x
2 + b′2xy + c′2y

2).

Then q = (λ1 : λ2), where (λ1, λ2, λ
′
1, λ

′
2) generates the kernel of the matrix




a1 −a2 −a′1 a′2
b1 −b2 −b′1 b′2
c1 −c2 −c′1 c′2


 .
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Proof. If we let q = (λ1 : λ2) and q′ = (λ′
1 : λ

′
2), then finding q and q′ comes down to solving

the equation

λ2(a1x
2 + b1xy + c1y

2)− λ1(a2x
2 + b2xy + c2y

2)

= λ′
2(a

′
1x

2 + b′1xy + c′1y
2)− λ′

1(a
′
2x

2 + b′2xy + c′2y
2),

which evidently corresponds to the determination of the kernel of the matrix in question. �

To calculate point 5, we choose an isomorphism PC ∼= P3 mapping the point Q to (1 : 0 :
0 : 0) and apply the following elementary result.

Proposition 6. Let S ⊂ P3 be a cubic surface containing Q = (1 : 0 : 0 : 0) that is defined by
a quaternary cubic form F ∈ k[w, x, y, z]. Let q be the projection S → P(TQS) from the point
Q ∈ S. Then the ramification locus of q is isomorphic to the quartic curve in P2 determined
by the vanishing of the discriminant of the quadratic polynomial F (1, xt, yt, zt)/t.

Proof. Since S is a subscheme of P3, we get an induced coordinatization of TQS by sending
(x : y : z) to the tangent direction given by the line through the points (1 : 0 : 0 : 0) and
(1 : x : y : z). Then (x : y : z) is a ramification point of the projection S → P(TQS) if and
only if the equation F (1, xt, yt, zt) = 0 has a double root outside 0, or in other words if the
discriminant of the quadratic polynomial F (1, xt, yt, zt)/t vanishes. This discriminant is a
homogeneous quartic form in the variables x, y, z, which defines the plane quartic in L1 that
we were looking for. �

A program to generate quartics in L1 by using the steps above is available online4.

Remark 1. We also tried to generate quartics in L1 by using Remark 3.4 of [12]. We take
cubics S of the form

t2x+ t(ax2 + 2bxy + 2cxz + dy2 + 2eyz + fz2) + g(x, y, z)

with g a random degree 3 homogeneous polynomial, such that S is non singular and e2 = df .
The last condition ensures that p = (0 : 0 : 0 : 1) belongs to the Hessian H of S and, after
checking that p is non singular, we take quartics which are tangent plane sections of H at
p. Unfortunately, it seems that these quartics are special in L1, since there are degree 24
relations between their invariants (there is a 27 dimensional space of relations in degree 24
between randomly generated quartics of this form).

Having generated a sufficiently large database5 of curves in L1 by choosing random 6-tuples
{p1, . . . , p6}, we can again proceed as in Section 2. Up to degree 30, all invariants vanishing
on the quartics in this databases for L1 and L2 are multiples of I27. Since the codimension 2
components L1, L2, (L2)red of L ∩ D have degree at most 24 · 27,24 · 30,24 · 15, which are all
smaller than (30)2, we have the following result.

Theorem 2. The subschemes L1, L2, (L2)red of the projective space of quartic curves P Sym4(V ∗)
(and hence their images in the coarse moduli space of plane quartic curves) are not complete
intersections. In particular, they are not principal hypersurfaces in the discriminant locus D.

As there is no degree 24 invariant vanishing on L1, Morley’s putative construction of such
an invariant I24 in [9, p.282] is incorrect. On the authors’ webpage, a Magma program6 is
available to check all steps on the way to Theorem 2.

4http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/GenerateL1.m
51024 curves overQ are available at http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/L1Database.m
6http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/SingularLurothInv.m

http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/GenerateL1.m
http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/L1Database.m
http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/luroth/SingularLurothInv.m
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5. Open questions

The expression L of the Lüroth invariant that we found depends on several arbitrary choices
that may explain its cumbersomeness. First, there is the choice of the basis of invariants.
Though some of the Dixmier invariants have geometrical interpretations that are ‘natural’,
the same is far from evident for the new Ohno invariants. Secondly, our choice can be modified
by any element of the kernel N1. Beyond a cancellation of the coefficients of 215 of these
monomials that we have already accomplished by simple linear algebra, further minimization
of the number of monomials in the expression for L could in theory be achieved by techniques
based on coding theory. Still, the parameters seem too large to make this feasible in practice.
The negative answers concerning the existence of degree 24 and 30 invariants in Section 4
exclude the decomposition from [12, p.1764]. The geometry of the situation does not seem to
give a clue for the existence of another such decomposition.
An expression in terms of the 15 coefficients of the generic quartic would of course be useful.
However, it is not even practically achievable to formally express the fundamental Dixmier-
Ohno invariants in this way, since these expressions contain far too many monomials, as is
for instance the case for the discriminant I27. A count of weighted monomials in 15 variables
for degree 54 invariants leads to a total of 62 422 531 333. Of course only a fraction of these
monomials may occur in the final expression of L, but we could not figure out their number,
let alone the Newton polytope of L.
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IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.

E-mail address: ritzenth@iml.univ-mrs.fr

Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United

Kingdom.

E-mail address: sijsling@gmail.com

http://arxiv.org/abs/1208.5775

	1. Lüroth quartics
	2. The algorithm
	3. Ciani quartics
	4. Singular Lüroth quartics
	5. Open questions
	References

