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Abstract

In this paper, the concept of sparse difference resultant for a Laurent transformally
essential system of difference polynomials is introduced and a simple criterion for the
existence of sparse difference resultant is given. The concept of transformally homogenous
polynomial is introduced and the sparse difference resultant is shown to be transformally
homogenous. It is shown that the vanishing of the sparse difference resultant gives a
necessary condition for the corresponding difference polynomial system to have non-zero
solutions. The order and degree bounds for sparse difference resultant are given. Based
on these bounds, an algorithm to compute the sparse difference resultant is proposed,
which is single exponential in terms of the number of variables, the Jacobi number, and
the size of the Laurent transformally essential system. Furthermore, the precise order
and degree, a determinant representation, and a Poisson-type product formula for the
difference resultant are given.

Keywords. Sparse difference resultant, difference resultant, Laurent transformally es-
sential system, Jacobi number, single exponential algorithm.

1 Introduction

The resultant, which gives conditions for an over-determined system of polynomial equations
to have common solutions, is a basic concept in algebraic geometry and a powerful tool in
elimination theory [3, 8, 10, 19, 21, 33]. The concept of sparse resultant originated from the
work of Gelfand, Kapranov, and Zelevinsky on generalized hypergeometric functions, where
the central concept of A-discriminant is studied [18]. Kapranov, Sturmfels, and Zelevinsky
introduced the concept of A-resultant [22]. Sturmfels further introduced the general mixed
sparse resultant and gave a single exponential algorithm to compute the sparse resultant
[33, 34]. Canny and Emiris showed that the sparse resultant is a factor of the determinant of
a Macaulay style matrix and gave an efficient algorithm to compute the sparse resultant based
on this matrix representation [12]. A determinant representation for the sparse resultant was
given by D’Andrea [9]. Recently, a rigorous definition for the differential resultant of n + 1
generic differential polynomials in n variables was presented [16] and also the theory of sparse

∗ Partially supported by a National Key Basic Research Project of China (2011CB302400) and by grants
from NSFC (60821002, 11101411).

1

http://arxiv.org/abs/1212.3090v2


differential resultants for Laurent differentially essential systems was developed [26, 27]. It
is meaningful to generalize the theory of sparse resultant to difference polynomial systems.

In this paper, the concept of sparse difference resultant for a Laurent transformally
essential system consisting of n + 1 Laurent difference polynomials in n difference variables
is introduced and its basic properties are proved. A criterion is given to check whether a
Laurent difference system is essential in terms of their supports, which is conceptually and
computationally simpler than the naive approach based on the characteristic set method.
The concept of transformally homogeneous is introduced and it is proved that the sparse
difference resultant is transformally homogeneous. It is shown that the vanishing of the sparse
difference resultant gives a necessary condition for the corresponding difference polynomial
system to have nonzero solutions, which is also sufficient in certain sense. It is also shown
that the sparse difference resultant is equal to the algebraic sparse resultant of a generic
sparse polynomial system, and hence has a determinant representation.

We also give order and degree bounds for the sparse difference resultant. It is shown that
the order and effective order of the sparse difference resultant can be bounded by the Jacobi
number of the corresponding difference polynomial system and the degree can be bounded by
a Bezout type bound. Based on these bounds, an algorithm is given to compute the sparse
difference resultant. The complexity of the algorithm in the worst case is single exponential of
the form O(mO(nlJ2)(nJ)O(lJ)), where n,m, J, and l are the number of variables, the degree,
the Jacobi number, and the size of the Laurent transformally essential system, respectively.

For the difference resultant, which is non-sparse, more and better properties are proved
including its precise order and degree, a determinant representation, and a Poisson-type
product formula.

Although most properties for sparse difference resultants and difference resultants are
similar to their differential counterparts given in [26, 27, 16], some of them are quite dif-
ferent in terms of descriptions and proofs due to the distinct nature of the differential and
difference operators. Firstly, the definition for difference resultant is more subtle than the
differential case as illustrated by Problem 3.16 in this paper. Secondly, the criterion for
Laurent transformally essential systems given in Section 3.3 is quite different and much sim-
pler than its differential counterpart given in [27]. Also, determinant representations for the
sparse difference resultant and the difference resultant are given in Section 5 and Section 7,
but such a representation is still not known for differential resultants [38, 30, 31]. Finally,
there does not exist a definition for homogeneous difference polynomials, and the definition
we give in this paper is different from its differential counterpart [25].

The rest of the paper is organized as follows. In Section 2, we prove some preliminary
results. In Section 3, we first introduce the concepts of Laurent difference polynomials and
Laurent transformally essential systems, and then define the sparse difference resultant for
Laurent transformally essential systems. Basic properties of sparse difference resultant are
proved in Section 4. In Section 5, the sparse difference resultant is shown to be the algebraic
sparse resultant for certain generic polynomial system. In Section 6, we present an algorithm
to compute the sparse difference resultant. In Section 7, we introduce the notion of difference
resultant and prove its basic properties. In Section 8, we conclude the paper by proposing
several problems for future research. An extended abstract of this paper appeared in the
proceedings of ISSAC2013 [28]. Section 4.4 and Section 5 are newly added.
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2 Preliminaries

In this section, some basic notations and preliminary results in difference algebra will be
given. For more details about difference algebra, please refer to [6, 20, 24, 36].

2.1 Difference polynomial ring

An ordinary difference field F is a field with a third unitary operation σ satisfying that
for any a, b ∈ F , σ(a + b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b), and σ(a) = 0 if and only if
a = 0. We call σ the transforming operator of F . If a ∈ F , σ(a) is called the transform of
a and is denoted by a(1). And for n ∈ Z+, σn(a) = σn−1(σ(a)) is called the n-th transform
of a and denoted by a(n), with the usual assumption a(0) = a. By a[n] we mean the set
{a, a(1), . . . , a(n)}. If σ−1(a) is defined for each a ∈ F , we say that F is inversive. All
difference fields in this paper are assumed to be inversive. A typical example of difference
field is Q(x) with σ(f(x)) = f(x+ 1).

Let S be a subset of a difference field G which contains F . We will denote respectively
by F [S], F(S), F{S}, and F〈S〉 the smallest subring, the smallest subfield, the smallest
difference subring, and the smallest difference subfield of G containing F and S. If we
denote Θ(S) = {σka|k ≥ 0, a ∈ S}, then we have F{S} = F [Θ(S)] and F〈S〉 = F(Θ(S)).

A subset S of a difference extension field G of F is said to be transformally dependent
over F if the set {σka

∣∣a ∈ S, k ≥ 0} is algebraically dependent over F , and is said to be
transformally independent over F , or to be a family of difference indeterminates over F in
the contrary case. In the case S consists of one element α, we say that α is transformally
algebraic or transformally transcendental over F , respectively. The maximal subset Ω of G
which are transformally independent over F is said to be a transformal transcendence basis
of G over F . We use σ.tr.deg G/F to denote the difference transcendence degree of G over
F , which is the cardinal number of Ω. Considering F and G as ordinary algebraic fields, we
denote the algebraic transcendence degree of G over F by tr.degG/F .

Now suppose Y = {y1, y2, . . . , yn} is a set of difference indeterminates over F . The

elements of F{Y} = F [y
(k)
j : j = 1, . . . , n; k ∈ N0] are called difference polynomials over F in

Y, and F{Y} itself is called the difference polynomial ring over F in Y. A difference ideal
I in F{Y} is an ordinary algebraic ideal which is closed under transforming, i.e. σ(I) ⊂ I.
If I also has the property that a(1) ∈ I implies that a ∈ I, it is called a reflexive difference
ideal. A prime difference ideal is a difference ideal which is prime as an ordinary algebraic
polynomial ideal. For convenience, a prime difference ideal is assumed not to be the unit
ideal in this paper. If S is a finite set of difference polynomials, we use (S) and [S] to denote
the algebraic ideal and the difference ideal in F{Y} generated by S.

An n-tuple over F is an n-tuple of the form a = (a1, . . . , an) where the ai are selected
from a difference overfield of F . For a difference polynomial f ∈ F{y1, . . . , yn}, a is called

a difference zero of f if when substituting y
(j)
i by a

(j)
i in f , the result is 0. An n-tuple η is

called a generic zero of a difference ideal I ⊂ F{Y} if for any polynomial P ∈ F{Y} we have
P (η) = 0 ⇔ P ∈ I. It is well known that

Lemma 2.1 [6, p.77] A difference ideal possesses a generic zero if and only if it is a reflexive
prime difference ideal other than the unit ideal.

3



Let I be a reflexive prime difference ideal and η a generic zero of I. The dimension of I
is defined to be σ.tr.degF〈η〉/F .

Given two n-tuples a = (a1, . . . , an) and ā = (ā1, . . . , ān) over F . ā is called a specializa-
tion of a over F , or a specializes to ā, if for any difference polynomial P ∈ F{Y}, P (a) = 0
implies that P (ā) = 0. The following property about difference specialization will be needed
in this paper.

Lemma 2.2 Let Pi(U,Y) ∈ F〈Y〉{U} (i = 1, . . . ,m) where U = (u1, . . . , ur) and Y =
(y1, . . . , yn) are sets of difference indeterminates. If Pi(U,Y) (i = 1, . . . ,m) are transformally
dependent over F〈U〉, then for any difference specialization U to U which are elements in F ,
Pi(U,Y) (i = 1, . . . ,m) are transformally dependent over F .

Proof: It suffices to show the case r = 1. Denote u = u1. Since Pi(u,Y) (i = 1, . . . ,m)
are transformally dependent over F〈u〉, there exist natural numbers s and l such that

P
(k)
i (u,Y) (k ≤ s) are algebraically dependent over F(u(k)|k ≤ s + l). When u special-

izes to ū ∈ F , u(k) (k ≥ 0) are correspondingly algebraically specialized to ū(k) ∈ F . By [37,

p.161], P
(k)
i (ū,Y) (k ≤ s) are algebraically dependent over F . Thus, Pi(ū,Y) (i = 1, . . . ,m)

are transformally dependent over F .

2.2 Characteristic set for a difference polynomial system

In this section, we prove several preliminary results about the characteristic set for a differ-
ence polynomial system. For details on difference characteristic set method, please refer to
[17].

Let f be a difference polynomial in F{Y}. The order of f w.r.t. yi is defined to be

the greatest number k such that y
(k)
i appears effectively in f , denoted by ord(f, yi). And

if yi does not appear in f , then we set ord(f, yi) = −∞. The order of f is defined to be
maxi ord(f, yi), that is, ord(f) = maxi ord(f, yi).

A ranking R is a total order over Θ(Y) = {σkyi|1 ≤ i ≤ n, k ≥ 0}, which satisfies the
following properties:

1) σ(θ) > θ for all derivatives θ ∈ Θ(Y).
2) θ1 > θ2 =⇒ σ(θ1) > σ(θ2) for θ1, θ2 ∈ Θ(Y).
Let f be a difference polynomial in F{Y} and R a ranking endowed on it. The greatest

y
(k)
j w.r.t. R which appears effectively in f is called the leader of p, denoted by ld(f) and
correspondingly yj is called the leading variable of f , denoted by lvar(f) = yj. The leading
coefficient of f as a univariate polynomial in ld(f) is called the initial of f and is denoted
by If .

Let p and q be two difference polynomials in F{Y}. q is said to be of higher rank than
p if

1) ld(q) > ld(p), or

2) ld(q) = ld(p) = y
(k)
j and deg(q, y

(k)
j ) > deg(p, y

(k)
j ).

Suppose ld(p) = y
(k)
j . Then q is said to be reduced w.r.t. p if deg(q, y

(k+l)
j ) < deg(p, y

(k)
j )

for all l ∈ N0.
A finite chain of nonzero difference polynomials A = A1, . . . , Am is said to be an ascending

chain if

4



1) m = 1 and A1 6= 0 or
2) m > 1, Aj > Ai and Aj is reduced w.r.t. Ai for 1 ≤ i < j ≤ m.
Let A = A1, A2, . . . , At be an ascending chain with Ii as the initial of Ai, and f any

difference polynomial. Then there exists an algorithm, which reduces f w.r.t. A to a
polynomial r that is reduced w.r.t. A, satisfying the relation

t∏

i=1

di∏

k=0

(σkIi)
eik · f ≡ r,mod [A],

where the eik are nonnegative integers. The difference polynomial r is called the difference
remainder of f w.r.t. A [17].

Let A be an ascending chain. Denote IA to be the minimal multiplicative set containing
the initials of elements of A and their transforms. The saturation ideal of A is defined to be

sat(A) = [A] : IA = {p : ∃h ∈ IA, s.t. hp ∈ [A]}.

And the algebraic saturation ideal of A is asat(A) = (A) : IA, where IA is the minimal
multiplicative set containing the initials of elements of A.

An ascending chain C contained in a difference polynomial set S is said to be a character-
istic set of S, if S does not contain any nonzero element reduced w.r.t. C. A characteristic
set C of a difference ideal J reduces all elements of J to zero.

Let A be a characteristic set of a reflexive prime difference ideal I. We rewrite A in the
following form

A =





A11, . . . , A1k1

· · ·
Ap1, . . . , Apkp

where lvar(Aij) = yci for j = 1, . . . , ki and ord(Aij , yci) < ord(Ail, yci) for j < l. In terms of
the characteristic set of the above form, p is equal to the codimension of I, that is n−dim(I).
Unlike the differential case, here even though I is of codimension one, there may be more
than one difference polynomials in a characteristic set of I as shown by the following example.

Example 2.3 Let A11 = (y
(1)
1 )2+ y21 +1, A12 = y

(2)
1 − y1. Then I = [A11,A12] is a reflexive

prime difference ideal whose characteristic set is A = A11, A12 and I = sat(A) [17]. Note

that [A11] is not a prime difference ideal, because σ(A11)−A11 = (y
(2)
1 −y1)(y

(2)
1 +y1) ∈ [A11]

and both y
(2)
1 − y1 and y

(2)
1 + y1 are not in [A11].

Now we proceed to show that a property of uniqueness still exists in characteristic sets
of a reflexive prime difference ideal in some sense. Firstly, we need several algebraic results.

Let B = B1, . . . , Bm be an algebraic triangular set in F [x1, . . . , xn] with lvar(Bi) = yi
and U = {x1, . . . , xn}

∖
{y1, . . . , ym}. We assume U < y1 < y2 < . . . < ym. A polynomial f

is said to be invertible w.r.t. B if (f,B1, . . . , Bs) ∩ K[U ] 6= {0} where lvar(f) = lvar(Bs).
We call B a regular chain if for each i > 1, the initial of Bi is invertible w.r.t. B1, . . . , Bi−1.
For a regular chain B, we say that f is invertible w.r.t. asat(B) if (f, asat(B))∩F [U ] 6= {0}.
The next two lemmas use the notations introduced in this paragraph.
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Lemma 2.4 Let B be a regular chain in F [x1, . . . , xn]. If
√

asat(B) =
⋂m

i=1Pi is an irre-
dundant prime decomposition of

√
asat(B), then a polynomial f is invertible w.r.t. asat(B)

if and only if f /∈ Pi for all i = 1, . . . ,m.

Proof: Since
√

asat(B) =
⋂m

i=1 Pi is an irredundant prime decomposition of
√

asat(B), U
is a parametric set of Pi for each i by paper [15]. And for prime ideals Pi, f /∈ Pi if and
only if (f,Pi) ∩ F [U ] 6= {0}. If f is invertible w.r.t. asat(B), {0} 6= (f, asat(B)) ∩ F [U ] ⊂
(f,Pi) ∩ F [U ]. Thus, f /∈ Pi for each i. For the other side, suppose f /∈ Pi for all i, then
there exist nonzero polynomials hi(U) such that hi(U) ∈ (f,Pi). Thus, there exists t ∈ N

such that (
∏m

i=1 hi(U))t ∈ (f, asat(B)). So f is invertible w.r.t. asat(B).

Lemma 2.5 [2] Let B be a regular chain in F [U, Y ]. Let f be a polynomial in F [U, Y ] and
L in F [U ]\{0} such that Lf ∈ (B). Then f ∈ asat(B).

Lemma 2.6 Let A be an irreducible difference polynomial in F{Y} with deg(A, yi0) > 0 for
some i0. If f is invertible w.r.t. A[k] = A,A(1), . . . , A(k) under some ranking R, then σ(f) is
invertible w.r.t. A[k+1] = A, . . . , A(k+1). In particular, A[k] is a regular chain for any k ≥ 0.

Proof: Since as a difference ascending chain, A is coherent and proper irreducible, by The-
orem 4.1 in paper [17], A is difference regular. As a consequence, A[k] is regular for any
k ≥ 0.

The following fact is needed to define sparse difference resultant.

Lemma 2.7 Let I be a reflexive prime difference ideal of codimension one in F{Y}. The
first element in any characteristic set of I w.r.t. any ranking, when taken irreducible, is
unique up to a factor in F .

Proof: Let A = A1, . . . , Am be a characteristic set of I w.r.t. some ranking R with A1

irreducible. Suppose lvar(A) = y1. Given another characteristic set B = B1, . . . , Bl of I
w.r.t. some other ranking R′ (B1 is irreducible), we need to show that there exists c ∈ F
such that B1 = c · A1. It suffices to consider the case lvar(B) 6= y1. Suppose lvar(B1) = y2.
Clearly, y2 appears effectively in A1 for B reduces A1 to 0. And since I is reflexive, there
exists some i0 such that deg(A1, yi0) > 0.

Suppose ord(A1, y2) = o2. Take another ranking under which y
(o2)
2 is the leader of A1

and we use Ã1 to distinguish it from the A1 under R. By Lemma 2.6, for each k, A
[k]
1 and

Ã
[k]
1 are regular chains.

Now we claim that asat(A
[k]
1 ) = asat(Ã

[k]
1 ) for any k. On the one hand, for any polynomial

f ∈ asat(A
[k]
1 ), we have (

∏k
i=0 σ

i(IA1))
af ∈ (A

[k]
1 ). Since IA1 is invertible w.r.t. Ã1, by

Lemma 2.6, (
∏k

i=0 σ
i(IA1))

a is invertible w.r.t. Ã
[k]
1 . Denote the parameters of Ã

[k]
1 by Ũ .

So there exists a nonzero polynomial h(Ũ) such that h(Ũ ) ∈ ((
∏k

i=0 σ
i(IA1))

a, Ã
[k]
1 ). Thus,

h(Ũ )f ∈ (Ã
[k]
1 ). Since Ã

[k]
1 is a regular chain, by Lemma 2.5, f ∈ asat(Ã

[k]
1 ). So asat(A

[k]
1 ) ⊆

asat(Ã
[k]
1 ). Similarly, we can show that asat(Ã

[k]
1 ) ⊆ asat(A

[k]
1 ). Thus, asat(A

[k]
1 ) = asat(Ã

[k]
1 ).

Suppose ord(B1, y2) = o′2. Clearly, o2 ≥ o′2. We now proceed to show that it is impossible

for o2 > o′2. Suppose the contrary, i.e. o2 > o′2. Then B1 is invertible w.r.t. asat(Ã
[k]
1 ).

6



Suppose

√
asat(Ã

[k]
1 ) =

⋂t
i=1 Pi is an irredundant prime decomposition. By Lemma 2.4,

B1 /∈ Pi for each i. Since asat(A
[k]
1 ) = asat(Ã

[k]
1 ), using Lemma 2.4 again, B1 is invertible

w.r.t. asat(A
[k]
1 ). Thus, there exists a nonzero difference polynomial H with ord(H, y1) <

ord(A1, y1) such that H ∈ (B1, asat(A
[k]
1 )) ⊂ I, which is a contradiction. Thus, o2 = o′2.

Since B reduces A1 to zero and A1 is irreducible, there exists c ∈ F such that B1 = c ·A1.

3 Sparse difference resultant

In this section, the concepts of Laurent difference polynomials and Laurent transformally
essential systems are first introduced, and then the sparse difference resultant for Laurent
transformally essential systems is defined. A criterion for a Laurent polynomial system to
be Laurent transformally essential in terms of the support of the given system is also given.

3.1 Laurent difference polynomial

Let F be an ordinary difference field with a transforming operator σ and F{Y} the ring
of difference polynomials in the difference indeterminates Y = {y1, . . . , yn}. Before defining
sparse difference resultant, we first introduce the concept of Laurent difference polynomials.

Definition 3.1 A Laurent difference monomial of order s is a Laurent monomial in vari-

ables Y[s] = (y
(k)
i )1≤i≤n;0≤k≤s. More precisely, it has the form

∏n
i=1

∏s
k=0(y

(k)
i )dik where dik

are integers which can be negative. A Laurent difference polynomial over F is a finite linear
combination of Laurent difference monomials with coefficients in F .

Clearly, the collections of all Laurent difference polynomials form a commutative differ-
ence ring under the obvious sum, product, and the usual transforming operator σ, where all
Laurent difference monomials are invertible. We denote the difference ring of Laurent differ-
ence polynomials with coefficients in F by F{y1, y

−1
1 , . . . , yn, y

−1
n }, or simply by F{Y,Y−1}.

Definition 3.2 For every Laurent difference polynomial F ∈ F{Y,Y−1}, there exists a
unique Laurent difference monomial M such that 1) M · F ∈ F{Y} and 2) for any Laurent
difference monomial T with T · F ∈ F{Y}, T · F is divisible by M · F as polynomials. This
M · F is defined to be the norm form of F , denoted by N(F ). The order and degree of N(F )
is defined to be the order and degree of F , denoted by ord(F ) and deg(F ).

In the following, we consider zeros for Laurent difference polynomials.

Definition 3.3 Let F be a Laurent difference polynomial in F{Y,Y−1}. An n-tuple (a1,
. . . , an) over F with each ai 6= 0 is called a nonzero difference solution of F if F (a1, . . . , an) =
0.

For an ideal I ∈ F{Y,Y−1}, the difference zero set of I is the set of common nonzero
difference zeros of all Laurent difference polynomials in I. We will see later in Example 4.5,
how nonzero difference solutions are naturally related with the sparse difference resultant.
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3.2 Definition of sparse difference resultant

In this section, the definition of the sparse difference resultant will be given. Similar to the
study of sparse resultants and sparse differential resultants, we first define sparse difference
resultants for Laurent difference polynomials whose coefficients are difference indeterminates.
Then the sparse difference resultant for a given Laurent difference polynomial system with
concrete coefficients is the value which the resultant in the generic case assumes for the given
case.

Suppose Ai = {Mi0,Mi1, . . . ,Mili} (i = 0, 1, . . . , n) are finite sets of Laurent differ-
ence monomials in Y. Consider n + 1 generic Laurent difference polynomials defined over
A0, . . . ,An:

Pi =

li∑

k=0

uikMik (i = 0, . . . , n), (1)

where all the uik are transformally independent over the rational number field Q. Denote

ui = (ui0, ui1, . . . , uili) (i = 0, . . . , n) and u =

n⋃

i=0

ui\{ui0}. (2)

The number li + 1 is called the size of Pi and Ai is called the support of Pi. To avoid the
triviality, li ≥ 1 (i = 0, . . . , n) are always assumed in this paper.

Definition 3.4 A set of Laurent difference polynomials of the form (1) is called Laurent

transformally essential if there exist ki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that σ.tr.degQ〈
M0k0
M00

,
M1k1
M10

, . . . ,
Mnkn

Mn0
〉/Q = n. In this case, we also say that A0, . . . ,An form a Laurent transfor-

mally essential system.

Although Mi0 are used as denominators to define transformally essential system, the
following lemma shows that the definition does not depend on the choices of Mi0.

Lemma 3.5 The following two conditions are equivalent.

1. There exist ki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that σ.tr.degQ〈
M0k0
M00

, . . . ,
Mnkn

Mn0
〉/Q

= n.

2. There exist pairs (ki, ji) (i = 0, . . . , n) with ki 6= ji ∈ {0, . . . , li} such that

σ.tr.degQ〈
M0k0
M0j0

, . . . ,
Mnkn

Mnjn
〉/Q = n.

Proof: Similar to the proof of [27, Lemma 3.7], it can be easily shown.
Let m be the set of all difference monomials in Y and [N(P0), . . . ,N(Pn)] the difference

ideal generated by N(Pi) in Q{Y,u0, . . . ,un}. Let

IY,u = ([N(P0), . . . ,N(Pn)] : m), (3)

Iu = IY,u ∩Q{u0, . . . ,un}. (4)

The following result is a foundation for defining sparse difference resultants.
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Theorem 3.6 Let P0, . . . ,Pn be the Laurent difference polynomials defined in (1). Then the
following assertions hold.

1. IY,u is a reflexive prime difference ideal in Q{Y,u0, . . . ,un}.

2. Iu is of codimension one if and only if P0, . . . ,Pn form a Laurent transformally essential
system.

Proof: Let η = (η1, . . . , ηn) be a sequence of transformally independent elements over Q〈u〉,
where u is defined in (2). Let

ζi = −

li∑

k=1

uik
Mik(η)

Mi0(η)
(i = 0, 1, . . . , n). (5)

We claim that θ = (η; ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln) is a generic zero of IY,u, which
follows that IY,u is a reflexive prime difference ideal.

Denote N(Pi) = MiPi (i = 0, . . . , n) where Mi are Laurent difference monomials. Clearly,
N(Pi) = MiPi vanishes at θ (i = 0, . . . , n). For any f ∈ IY,u, there exists an M ∈ m such
that Mf ∈ [N(P0), . . . ,N(Pn)]. It follows that f(θ) = 0. Conversely, let f be any difference
polynomial in Q{Y,u0, . . . ,un} satisfying f(θ) = 0. Clearly, N(P0),N(P1), . . . ,N(Pn) con-
stitute an ascending chain with ui0 as leaders. Let f1 be the difference remainder of f w.r.t.
this ascending chain. Then f1 is free from ui0 (i = 0, . . . , n) and there exist a, s ∈ N such
that (

∏n
i=0

∏s
l=0(σ

l(MiMi0)))
a · f ≡ f1,mod [N(P0), . . . , N(Pn)]. Clearly, f1(θ) = 0. Since

f1 ∈ Q{u,Y}, f1 = 0. Thus, f ∈ IY,u. So IY,u is a reflexive prime difference ideal with a
generic zero θ.

Consequently, Iu = IY,u∩Q{u0, . . . ,un} is a reflexive prime difference ideal with a generic
zero ζ = (ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln). From (5), it is clear that σ.tr.degQ〈ζ〉/Q ≤∑n

i=0 li + n. If there exist pairs (ik, jk) (k = 1, . . . , n) with 1 ≤ jk ≤ lik and ik1 6= ik2 (k1 6=

k2) such that
Mi1j1
Mi10

, . . . ,
Minjn

Min0
are transformally independent over Q, then by Lemma 2.2,

ζi1 , . . . , ζin are transformally independent over Q〈u〉. It follows that σ.tr.degQ〈ζ〉/Q =∑n
i=0 li + n. Thus, Iu is of codimension 1.
Conversely, let us assume that Iu is of codimension 1. That is, σ.tr.degQ〈ζ〉/Q =∑n

i=0 li + n. We want to show that there exist pairs (ik, jk) (k = 1, . . . , n) with 1 ≤

jk ≤ lik and ik1 6= ik2 (k1 6= k2) such that
Mi1j1
Mi10

, . . . ,
Minjn

Min0
are transformally independent

over Q. Suppose the contrary, i.e.,
Mi1j1

(η)

Mi10
(η) , . . . ,

Minjn (η)
Min0(η)

are transformally dependent for

any n different ik and jk ∈ {1, . . . , lik}. Since each ζik is a linear combination of
Mikjk

(η)

Mik0(η)

(jk = 1, . . . , lik), it follows that ζi1 , . . . , ζin are transformally dependent over Q〈u〉. Thus, we
have σ.tr.degQ〈ζ〉/Q <

∑n
i=0 li + n, a contradiction to the hypothesis.

Let [P0, . . . ,Pn] be the difference ideal in Q{Y,Y−1;u0, . . . ,un} generated by Pi. Then
we have

Corollary 3.7 Iu = [P0,P1, . . . ,Pn] ∩Q{u0, . . . ,un} is a reflexive prime difference ideal of
codimension one if and only if {Pi : i = 0, . . . , n} is a Laurent transformally essential system.
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Proof: It is easy to show that [P0,P1, . . . ,Pn]∩Q{u0, . . . ,un} = IY,u ∩Q{u0, . . . ,un} = Iu.
And the result is a direct consequence of Theorem 3.6.

Now suppose {P0, . . . ,Pn} is a Laurent transformally essential system. Since Iu defined
in (4) is a reflexive prime difference ideal of codimension one, by Lemma 2.7, there exists a
unique irreducible difference polynomialR(u;u00, . . . , un0) = R(u0, . . . ,un) ∈ Q{u0, . . . ,un}
such that R can serve as the first polynomial in each characteristic set of Iu w.r.t. any rank-
ing endowed on u0, . . . ,un. That is, if ui0 appears in R, then among all the difference
polynomials in Iu, R is of minimal order in ui0 and of minimal degree with the same order.

Now the definition of sparse difference resultant is given as follows:

Definition 3.8 The above R(u0, . . . ,un) ∈ Q{u0, . . . ,un} is defined to be the sparse differ-
ence resultant of the Laurent transformally essential system P0, . . . ,Pn, denoted by ResA0,...,An

or ResP0,...,Pn. When all the Ai are equal to the same A, we simply denote it by ResA.

The following lemma gives another description of sparse difference resultant from the
perspective of generic zeros.

Lemma 3.9 Let ζi = −
∑li

k=1 uik
Mik(η)
Mi0(η)

(i = 0, 1, . . . , n) be defined as in equation (5), where

η = (η1, . . . , ηn) is a generic zero of [0] over Q〈u〉. Then among all the polynomials in
Q{u0, . . . ,un} vanishing at (u; ζ0, . . . , ζn), R(u0, . . . ,un) = R(u;u00, . . . , un0) is of minimal
order and degree in each ui0 (i = 0, . . . , n). Equivalently, among all the polynomials in Iu,
R is of minimal order and degree in each ui0 (i = 0, . . . , n).

Proof: It is a direct consequence of Theorem 3.6 and Definition 3.8.

Remark 3.10 From its definition, the sparse difference resultant can be computed as follows.
With the characteristic set method given in [17], we can compute a proper irreducible ascend-
ing chain A which is a characteristic set for the difference polynomial system {P0,P1, . . . ,Pn}
under a ranking such that uij < yk. Then the first difference polynomial in A is the sparse
difference resultant. This algorithm does not have a complexity analysis. In Section 5, we
will give a single exponential algorithm to compute the sparse difference resultant.

We give several examples which will be used throughout the paper.

Example 3.11 Let n = 1 and P0 = u00 + u01y
2
1, P1 = u10y

(1)
1 + u11y1. Clearly, P0,P1 are

Laurent transformally essential. The sparse difference resultant of P0,P1 is

R = u210u01u
(1)
00 − u211u00u

(1)
01 .

Example 3.12 Let n = 2 and the Pi have the form

Pi = ui0y
(2)
1 + ui1y

(3)
1 + ui2y

(3)
2 (i = 0, 1, 2).

It is easy to show that y
(3)
1 /y

(2)
1 and y

(3)
2 /y

(2)
1 are transformally independent over Q. Thus,

P0,P1,P2 form a Laurent transformally essential system. The sparse difference resultant is

R = ResP0,P1,P2 =

∣∣∣∣∣∣

u00 u01 u02
u10 u11 u12
u20 u21 u22

∣∣∣∣∣∣
.
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The following example shows that for a Laurent transformally essential system, its sparse
difference resultant may not involve the coefficients of some Pi.

Example 3.13 Let n = 2 and the Pi have the form

P0 = u00 + u01y1y2, P1 = u10 + u11y
(1)
1 y

(1)
2 , P2 = u20 + u21y2.

Clearly, P0,P1,P2 form a Laurent transformally essential system. The sparse difference
resultant of P0,P1,P2 is

R = u
(1)
00 u11 − u

(1)
01 u10,

which is free from the coefficients of P2.

Example 3.13 can be used to illustrate the difference between the differential and differ-
ence cases. If P0,P1,P2 in Example 3.13 are differential polynomials, then the sparse differ-
ential resultant is u201u10u

2
20u

2
21 − u01u

′
00u11u20u

2
21u

′
20 + u00u

′
01u11u20u

2
21u

′
20 + u01u00u11u

2
20

(u′21)
2+u00u01u11u

2
21(u

′
20)

2−2u01u00u11u20u21u
′
20u

′
21+u01u

′
00u11u

2
20u

′
21u21−u00u

′
01u11 u21u

′
21u

2
20

which contains all the coefficients of P0,P1,P2.

Remark 3.14 When all the Ai (i = 0, . . . , n) are sets of difference monomials, unless ex-
plicitly mentioned, we always consider Pi as Laurent difference polynomials. But when we
regard Pi as difference polynomials, ResA0,...,An is also called the sparse difference resultant
of the difference polynomials Pi and we call Pi a transformally essential system. In this
paper, sometimes we regard Pi as difference polynomials where we will highlight it.

We now define the sparse difference resultant for any set of specific Laurent differ-
ence polynomials over a Laurent transformally essential system. For any finite set A =
{M0,M1, . . . ,Ml} of Laurent difference monomials in Y, we use

L(A) =
{ l∑

i=0

aiMi

}
(6)

to denote the set of all Laurent difference polynomials with support A, where the ai are in
some difference extension field of Q.

Definition 3.15 Let Ai = {Mi0,Mi1, . . . ,Mili} (i = 0, 1, . . . , n) be a Laurent transfor-
mally essential system. Consider n + 1 Laurent difference polynomials (F0, F1, . . . , Fn) ∈∏n

i=0L(Ai). The sparse difference resultant of F0, F1, . . . , Fn, denoted as ResF0,...,Fn, is
obtained by replacing ui with the corresponding coefficient vector of Fi in ResA0,...,An(u0,
. . . ,un).

A major unsolved problem about difference resultant is whetherR defined above contains
all the information about the elimination ideal Iu defined in (4). More precisely, we propose
the following problem.

11



Problem 3.16 As shown by Example 2.3, the characteristic set for a reflexive prime dif-
ference ideal of codimension one could contain more than one elements. Let Iu be the ideal
defined in (4). Then Iu is a reflexive prime difference ideal of codimension one and

Iu = IY,u ∩Q{u0, . . . ,un} = sat(R, R1, . . . , Rm), (7)

where R is the sparse difference resultant of {P0, . . . ,Pn} and R, R1, . . . , Rm is a character-
istic set of Iu. We conjecture that m = 0, or equivalently Iu = sat(R). If this is valid, then
better properties can be shown for sparse difference resultant as we will explain later. It is
easy to check that for Examples 3.11, 3.12, and 3.13, Iu = sat(R).

3.3 A criterion for Laurent transformally essential system in terms of

supports

Let Ai (i = 0, . . . , n) be finite sets of Laurent difference monomials. According to Defini-
tion 3.4, in order to check whether they form a Laurent transformally essential system, we
need to check whether there existMiki ,Miji ∈ Ai(i = 0, . . . , n) such that σ.tr.degQ〈M0k0/M0j0 ,
. . . ,Mnkn/Mnjn〉/Q = n. This can be done with the difference characteristic set method given
in paper [17]. In this section, a criterion will be given to check whether a Laurent difference
system is essential in terms of their supports, which is conceptually and computationally
simpler than the naive approach based on the characteristic set method.

Let Bi =
∏n

j=1

∏s
k=0(y

(k)
j )dijk (i = 1, . . . ,m) be m Laurent difference monomials. We

now introduce a new algebraic indeterminate x and let

dij =
s∑

k=0

dijkx
k (i = 1, . . . ,m, j = 1, . . . , n)

be univariate polynomials in Z[x]. If ord(Bi, yj) = −∞, then set dij = 0. The vector (di1, di2,
. . . , din) is called the symbolic support vector of Bi. The matrix M = (dij)m×n is called the
symbolic support matrix of B1, . . . , Bm.

Note that there is a one-to-one correspondence between Laurent difference monomials
and their symbolic support vectors, so we will not distinguish these two concepts in case
there is no confusion. The same is true for a set of Laurent difference monomials and its
symbolic support matrix.

Definition 3.17 A matrix M = (dij)m×n over Q[x] is called normal upper-triangular of
rank r if for each i ≤ r, dii 6= 0 and di,i−k = 0 (1 ≤ k ≤ i− 1), and the last m− r rows are
zero vectors.

A normal upper-triangular matrix is of the following form:



a11 ∗ · · · ∗ · · · ∗
0 a22 · · · ∗ · · · ∗
...

...
. . .

...
0 0 · · · arr · · · ∗
0 0 · · · 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 · · · 0
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Definition 3.18 A set of Laurent difference monomials B1, B2, . . . , Bm is said to be in r-
upper-triangular form if its symbolic support matrix M is a normal upper triangular matrix
of rank r.

The following lemma shows that it is easy to compute the difference transcendence degree
of a set of Laurent difference monomials in upper-triangular form.

Lemma 3.19 Let B1, . . . , Bm be a set of Laurent difference monomials in r-upper-triangular
form. Then σ.tr.degQ〈B1, . . . , Bm〉/Q = r.

Proof: From the structure of the symbolic support matrix, Bi =
∏n

j=i

∏
k≥0(y

(k)
j )dijk (i =

1, . . . , r) with ord(Bi, yi) ≥ 0 and Br+1 = · · · = Bm = 1. Let B′
i =

∏r
j=i

∏
k≥0(y

(k)
j )dijk .

Then

σ.tr.degQ〈B1, . . . , Bm〉/Q

= σ.tr.degQ〈B1, . . . , Br〉/Q

≥ σ.tr.degQ〈yr+1, . . . , yn〉〈B1, . . . , Br〉/Q〈yr+1, . . . , yn〉

= σ.tr.degQ〈B′
1, . . . , B

′
r〉/Q.

So it suffices to prove σ.tr.degQ〈B′
1, . . . , B

′
r〉/Q = r.

If r = 1, B′
1 is a nonconstant Laurent difference monomial in y1, so σ.tr.degQ〈B′

1〉/Q = 1.

Suppose we have proved for the case r − 1. Let B′′
i =

∏r−1
j=i

∏
k≥0(y

(k)
j )dijk , then by the

hypothesis, σ.tr.degQ〈B′′
1 , . . . , B

′′
r−1〉/Q = r − 1. Since B′

r ∈ Q{yr}, we have

r ≥ σ.tr.degQ〈B′
1, . . . , B

′
r〉/Q

= σ.tr.degQ〈B′
r〉/Q + σ.tr.degQ〈B′

1, . . . , B
′
r〉/Q〈B′

r〉

≥ 1 + σ.tr.degQ〈yr〉〈B
′
1, . . . , B

′
r−1〉/Q〈yr〉

= 1 + σ.tr.degQ〈B′′
1 , . . . , B

′′
r−1〉/Q = r.

So σ.tr.degQ〈B1, . . . , Bm〉/Q = r.
In the following, we will show that each set of Laurent difference monomials can be

transformed to an upper-triangular set with the same difference transcendence degree. Here
we use three types of elementary matrix transformations. For a matrix M over Q[x],

• Type 1 operations consist of interchanging two rows of M , say the i-th and j-th rows,
denoted by r[i, j];

• Type 2 operations consist of adding an f(x)-multiple of the j-th row to the i-th row,
where f(x) ∈ Q[x], denoted by [i+ j(f(x))];

• Type 3 operations consist of interchanging two columns, say the i-th and j-th columns,
denoted by c[i, j].
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In this section, by elementary transformations, we mean the above three types of transfor-
mations.

Let B1, . . . , Bm be Laurent difference monomials and M their symbolic support matrix.
Then the above three types of elementary transformations of M correspond to certain trans-
formations of the difference monomials. Indeed, interchanging the i-th and the j-th rows of
M means interchanging Bi and Bj , and interchanging the i-th and the j-th columns of M
means interchanging yi and yj in B1, . . . , Bm(or in the variable order). Multiplying the i-th
row of M by a polynomial f(x) = adx

d + ad−1x
d−1 + · · · + a0 ∈ Q[x] and adding the result

to the j-th row means changing Bj to
∏d

k=0(σ
kBi)

akBj.

Lemma 3.20 Let B1, . . . , Bm be Laurent difference monomials and C1, . . . , Cm obtained
by successive elementary transformations defined above. Then σ.tr.degQ〈B1, . . . , Bm〉/Q
= σ.tr.degQ〈C1, . . . , Cm〉/Q.

Proof: It suffices to show that Type 2 operations do not change the difference transcendence
degree. That is, for

∑d
i=0 aix

i ∈ Q[x], σ.tr.degQ〈B1, B2〉/Q = σ.tr.degQ〈B1,
∏d

k=0(σ
kB1)

akB2〉/Q.

Suppose ai = pi/q where pi, q ∈ Z∗. Then, clearly, σ.tr.degQ〈B1〉/Q = σ.tr.degQ〈
∏d

k=0

(σkB1)
pk〉/Q. Thus, σ.tr.degQ〈B1,

∏d
k=0(σ

kB1)
akB2〉/Q = σ.tr.degQ〈

∏d
k=0(σ

kB1)
pk ,

∏d
k=0

(σkB1)
pkBq

2〉/Q = σ.tr.degQ〈
∏d

k=0(σ
kB1)

pk , Bq
2〉/Q = σ.tr.degQ〈B1, B2〉/Q.

Theorem 3.21 Let B1, . . . , Bm be a set of Laurent difference monomials with symbolic sup-
port matrix M . Then σ.tr.degQ〈B1, . . . , Bm〉/Q = rk(M).

Proof: By Lemma 3.19 and Lemma 3.20, it suffices to show that M can be reduced to a
normal upper-triangular matrix by performing a series of elementary transformations. This
can be done since Q[x] is an Euclidean domain.

Suppose M = (dij) 6= 0m×n and we denote the new matrix obtained after performing
elementary transformations also by M . Firstly, perform Type 1 and Type 3 operations when
necessary to make d11 6= 0 have the minimum degree among all dij. Secondly, try to use
d11(x) to reduce other elements in the first column to 0 by performing Type 2 operations. Let
dk1 6= 0 and suppose dk1(x) = d11(x)q(x) + r(x) where deg(r(x)) < deg(d11(x)). Performing
the transformation [k+1(−q(x))] and then the transformation r[1, k] if r(x) 6= 0, we obtain a
new matrix in which the degree of d11 strictly decreases. Repeat this process when necessary,
then after a finite number of steps, we obtain a new matrix M such that dk1(x) = 0 for k > 1.
That is,

M =

(
d11 ∗
0 M1

)
.

Now we repeat the above process for M1 and whenever Type 3 operations are performed for
M1, we assume the same transformations are performed for the whole matrix M . In this
way, after a finite number of steps, we obtain a normal upper-triangular matrix M .

Remark 3.22 In the proof of Theorem 3.21, the Euclidean algorithm plays a crucial role.
That is why we work with Q[x], even if the symbolic support matrix of B1, . . . , Bm is a matrix
over Z[x].
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Example 3.23 Let B1 = y1y2 and B2 = y
(a)
1 y

(b)
2 . Then the symbolic support matrix of B1

and B2 is M =

(
1 1
xa xb

)
. Then rk(M) =

{
1 if a = b
2 if a 6= b.

Thus, by Theorem 3.21, if

a 6= b, B1 and B2 are transformally independent over Q. Otherwise, they are transformally
dependent over Q.

We now extend Theorem 3.21 to generic difference polynomials in (1). Let I ⊆ {0, . . . , n}
and for any i ∈ I, let βik be the symbolic support vector of Mik/Mi0. Then the vector

wi =

li∑

k=0

uikβik

is called the symbolic support vector of Pi and the matrix MI whose rows are wi for i ∈ I is
called the symbolic support matrix of Pi for i ∈ I. Similar to Theorem 4.17 in [27], we have

Lemma 3.24 Use the notations introduced above. We have σ.tr.degQ〈∪i∈Iui〉〈Pi/Mi0 :
i ∈ I〉/Q〈∪i∈Iui〉 = rk(MI), where ui = (ui0, . . . , uili).

Now, we have the following criterion for Laurent transformally essential system.

Theorem 3.25 Consider the set of generic Laurent difference polynomials defined in (1).
The following three conditions are equivalent.

1. P0, . . . ,Pn form a Laurent transformally essential system.

2. There exist Miki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that the symbolic support matrix
of M0k0/M00, . . . ,Mnkn/Mn0 is of rank n.

3. The rank of MI is equal to n, where I == {0, 1, . . . , n}.

Proof: The equivalence of 1) and 2) is a direct consequence of Theorem 3.21 and Definition
3.4. The equivalence of 1) and 3) follows from Lemma 3.24.

Both Theorem 3.21 and Theorem 3.25 can be used to check whether a system is trans-
formally essential.

Example 3.26 Continue from Example 3.13. Let B0 = M01/M00 = y1y2, B1 = M11/M10 =

y
(1)
1 y

(1)
2 , and B2 = M21/M20 = y2. Then the symbolic support matrix for {B0, B2} is M =(

1 1
0 1

)
. We have rk(M) = 2 and by Theorem 3.21, the system P = {P0,P1,P2} is

transformally essential. Also, the symbolic support matrix for P is MP =




u01 u01
u11x u11x
0 u21


.

We have rk(MP) = 2 and by Theorem 3.25, P is transformally essential.

We will end this section by introducing a new concept, namely super-essential systems,
through which one can identify certain Pi such that their coefficients will not occur in the
sparse difference resultant. This will lead to the simplification in the computation of the
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resultant. Let T ⊂ {0, 1, . . . , n}. We denote by PT the Laurent difference polynomial set
consisting of Pi (i ∈ T), and MPT

its symbolic support matrix. For a subset T ⊂ {0, 1, . . . , n},
if card(T) = rk(MPT

), then PT, or {Ai : i ∈ T}, is called a transformally independent set.

Definition 3.27 Let T ⊂ {0, 1, . . . , n}. Then we call T or PT super-essential if the following
conditions hold: (1) card(T)−rk(MPT

) = 1 and (2) card(J) = rk(MPJ
) for each proper subset

J of T.

Note that super-essential systems are the difference analogue of essential systems intro-
duced in paper [34] and also that of rank essential systems introduced in [27] . Using this
definition, we have the following property, which is similar to Corollary 1.1 in [34].

Theorem 3.28 If {P0, . . . ,Pn} is a Laurent transformally essential system, then for any
T ⊂ {0, 1, . . . , n}, card(T)−rk(MPT

) ≤ 1 and there exists a unique T which is super-essential.
In this case, the sparse difference resultant of P0, . . . ,Pn involves only the coefficients of
Pi (i ∈ T).

Proof: Since n = rk(MP) ≤ rk(MPT
)+card(P)−card(PT) = n+1+rk(MPT

)−card(T), we have
card(T)−rk(MPT

) ≤ 1. Since card(T)−rk(MPT
) ≥ 0, for any T, either card(T)−rk(MPT

) = 0
or card(T)− rk(MPT

) = 1. From this fact, it is easy to show the existence of a super-essential
set T. For the uniqueness, we assume that there exist two subsets T1,T2 ⊂ {1, . . . ,m} which
are super-essential. Then, we have

rk(MPT1∪T2
) ≤ rk(MPT1

) + rk(MPT2
)− rk(MPT1∩T2

)

= card(T1)− 1 + card(T2)− 1− card(T1 ∩ T2)
= card(T1 ∪ T2)− 2,

which is a contradiction.
Let T be a super-essential set. Similar to the proof of Theorem 3.6, it is easy to show that

[Pi]i∈T ∩ Q{ui}i∈T is of codimension one, which means that the sparse difference resultant
of P0, . . . ,Pn only involves the coefficients of Pi (i ∈ T).

Remark 3.29 If PT is the super-essential subsystem of a Laurent transformally essential
system P = {P0, . . . ,Pn}, then clearly [PT]∩Q{ui : i ∈ T} = [P]∩Q{ui : i ∈ T} = sat(R, . . .).
For convenience, sometimes we will not distinguish P and PT and also call R the sparse
difference resultant of PT.

Using this property, one can determine which polynomial is needed for computing the
sparse difference resultant, which will eventually reduce the computation complexity.

Example 3.30 Continue from Example 3.13. It is easy to show that P = {P0,P1,P2} is a
Laurent transformally essential system and P0,P1 constitute a super-essential system. Recall
that the sparse difference resultant of P is free from the coefficients of P2.

4 Basic properties of sparse difference resultant

In this section, we will prove some basic properties for the sparse difference resultant.
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4.1 Sparse difference resultant is transformally homogeneous

We first introduce the concept of transformally homogeneous polynomials.

Definition 4.1 A difference polynomial f ∈ F{y0, . . . , yn} is called transformally homoge-
neous if for a new difference indeterminate λ, there exists a difference monomial M(λ) in λ
such that f(λy0, . . . , λyn) = M(λ)p(y0, . . . , yn). If deg(M(λ)) = m, f is called transformally
homogeneous of degree m.

The difference analogue of Euler’s theorem related to homogeneous polynomials is valid.

Lemma 4.2 f ∈ F{y0, y1, . . . , yn} is transformally homogeneous if and only if for each
r ∈ N0, there exists mr ∈ N0 such that

n∑

i=0

y
(r)
i

∂f(y0, . . . , yn)

∂y
(r)
i

= mrf.

That is, f is transformally homogeneous if and only if f is homogeneous in {y
(r)
1 , . . . , y

(r)
n }

for any r ∈ N0.

Proof: “=⇒” Denote Y = (y0, . . . , yn) temporarily. Suppose f is transformally homoge-
neous. That is, there exists a difference monomial M(λ) =

∏r0
r=0(λ

(r))mr such that f(λY) =

M(λ)f(Y). Then
∑n

i=0 y
(r)
i

∂f

∂y
(r)
i

(λY) =
∑n

i=0
∂f

∂y
(r)
i

(λY)∂(λyi)
(r)

∂λ(r) = ∂f(λY)

∂λ(r) = ∂M(λ)f(Y)

∂λ(r) =

mrM(λ)

λ(r) f(Y). Substitute λ = 1 into the above equality, we have
∑n

i=0 y
(r)
i

∂f

∂y
(r)
j

= mrf .

“⇐=” Suppose ord(f,Y) = r0. Then for each r ≤ r0, λ
(r) ∂f(λY)

∂λ(r) = λ(r)
n∑

i=0
y
(r)
i

∂f

∂y
(r)
i

(λY)

=
∑n

i=0(λyi)
(r) ∂f

∂y
(r)
i

(λY) = mrf(λY). So f(λY) is homogeneous of degree mr in λ(r). Thus,

f(λY) = f(λy0, . . . , λyn;λ
(1)y

(1)
0 , . . . , λ(1)y

(1)
n ; . . . ;λ(r0)y

(r0)
0 , . . . , λ(r0)y

(r0)
n ) =

r0∏
r=0

(λ(r))mrf(Y). Thus, f is transformally homogeneous.

Sparse difference resultants have the following property.

Theorem 4.3 The sparse difference resultant is transformally homogeneous in each ui which
is the coefficient set of Pi.

Proof: Suppose ord(R,ui) = hi ≥ 0. Follow the notations used in Theorem 3.6. By

Lemma 3.9, R(u; ζ0, . . . , ζn) = 0. Differentiating this identity w.r.t. u
(k)
ij (j = 1, . . . , li)

respectively, due to (5) we have

∂R

∂u
(k)
ij

+
∂R

∂u
(k)
i0

(
−

Mij(η)

Mi0(η)

)(k)
= 0. (8)

In the above equations, ∂R

∂u
(k)
ij

(k = 0, . . . , hi; j = 0, . . . , li) are obtained by replacing ui0 by

ζi (i = 0, 1, . . . , n) in each ∂R

∂u
(k)
ij

respectively.
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Multiplying (8) by u
(k)
ij and for j from 1 to li, adding them together, we get ζ

(k)
i

∂R

∂u
(k)
i0

+

∑li
j=1 u

(k)
ij

∂R

∂u
(k)
ij

= 0. So the difference polynomial fk =
∑li

j=0 u
(k)
ij

∂R

∂u
(k)
ij

vanishes at (ζ0, . . . , ζn).

Since ord(fk, ui0) ≤ ord(R, ui0) and deg(fk) = deg(R), by Lemma 3.9, there exists anmk ∈ Z

such that fk = mkR. Thus, by Lemma 4.2, R is transformally homogeneous in ui.

4.2 Condition for existence of nonzero solutions

In this section, we will first give a condition for a system of Laurent difference polynomials to
have nonzero solutions in terms of sparse difference resultant, and then study the structures
of nonzero solutions.

To be more precise, we first introduce some notations. Let A = {M0,M1, . . . ,Ml} be a
Laurent monomial set. Then, there is a one to one correspondence between L(A) defined in
(6) and E l+1 where E is some difference extension field of Q. For F =

∑l
i=0 ciMi ∈ L(A)

where ci ∈ E , denote the coefficient vector of F by C(F ) = (c0, . . . , cl) ∈ E l+1. Conversely,
for any c = (c0, . . . , cl) ∈ E l+1, denote the corresponding Laurent difference polynomial by
L(c) =

∑l
i=0 ciMi.

Let A0, . . . ,An be a Laurent transformally essential system of Laurent monomial sets. By
(F0, . . . , Fn) ∈ L(A0)× · · · × L(An), we always mean that there exists a common difference
extension field E such that C(Fi) ∈ E li+1 (i = 0, . . . , n). Clearly, each element (F0, . . . , Fn) ∈
L(A0)× · · · × L(An) can be represented by one and only one element (C(F0), . . . ,C(Fn)) ∈
Ê = E l0+1 × · · · × E ln+1. Let Z0(A0, . . . ,An) be the set consisting of points (v0, . . . ,vn) ∈ Ê
such that the corresponding L(vi) = 0 (i = 0, . . . , n) have nonzero solutions. That is,

Z0(A0, . . . ,An) =
⋃

E

{(v0, . . . ,vn) ∈ Ê : L(v0) = · · · = L(vn) = 0

have a common nonzero solution}. (9)

Note that the sparse resultant R(u0, . . . ,un) has L =
∑n

i=0(li+1) variables. In this section,
each element v ∈ EL is naturally treated as an element v = (v0, . . . ,vn) ∈ E l0+1×· · ·×E ln+1

and R(v) = R(v0, . . . ,vn). In this way, Z0(A0, . . . ,An) and V
(
ResA0,...,An

)
are in the same

affine space EL for any E .
The following result shows that the vanishing of sparse difference resultant gives a nec-

essary condition for the existence of nonzero solutions.

Lemma 4.4 Z0(A0, . . . ,An) ⊆ V
(
ResA0,...,An

)
.

Proof: Let P0, . . . ,Pn be a generic Laurent transformally essential system corresponding to
A0, . . . ,An with coefficient vectors u0, . . . ,un. By Definition 3.8, ResA0,...,An ∈ [P0, . . . ,Pn]
∩Q{u0, . . . ,un}. For any point (v0, . . . ,vn) ∈ Z0(A0, . . . ,An), let (P0, . . . , Pn) ∈ L(A0) ×
· · ·×L(An) be the difference polynomial system represented by (v0, . . . ,vn). Since P0, . . . ,Pn

have a nonzero common solution, ResA0,...,An vanishes at (v0, . . . ,vn).

Example 4.5 Continue from Example 3.12. Suppose F = Q(x) and σf(x) = f(x + 1).
In this example, we have ResP0,P1,P2 6= 0. But y1 = 0, y2 = 0 constitute a zero solution of
P0 = P1 = P2 = 0. This shows that Lemma 4.4 is not correct if we do not consider nonzero
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solutions. This example also shows why we need to consider nonzero difference solutions, or
equivalently why we consider Laurent difference polynomials instead of the usual difference
polynomials.

The following theorem shows that a particular principal component of the sparse differ-
ence resultant gives a sufficient and necessary condition for a Laurent transformally essential
system to have nonzero solutions in certain sense.

Theorem 4.6 Let Iu = [P0, . . . ,Pn] ∩ Q{u0, . . . ,un} = sat(ResA0,...,An , R1, . . . , Rm) as de-

fined in (7). Let Z0(A0, . . . ,An) be the Cohn topological closure1 of Z0(A0, . . . ,An). Then
Z0(A0, . . . ,An) = V

(
sat(ResA0,...,An , R1, . . . , Rm)

)
.

Proof: Similarly to the proof of Lemma 4.4, we can show that Iu vanishes at Z0(A0, . . . ,An).
So Z0(A0, . . . ,An) ⊆ V

(
sat(ResA0,...,An , R1, . . . , Rm)

)
.

For the other direction, follow the notations in the proof of Theorem 3.6. By Theorem 3.6,
[N(P0), . . . ,N(Pn)] : m is a reflexive prime difference ideal with a generic point (η, ζ) where
η = (η1, . . . , ηn) is a generic point of [0] over Q〈(uik)i=0,...,n;k 6=0〉 and ζ = (ζ0, u01, . . . , u0l0 ; . . . ;
ζn, un1, . . . , unln). Let (F0, . . . , Fn) ∈ L(A0) × · · · × L(An) be a set of Laurent difference
polynomials represented by ζ. Clearly, η is a nonzero solution of Fi = 0. Thus, ζ ∈
Z0(A0, . . . ,An) ⊂ Z0(A0, . . . ,An). Since ζ is a generic point of sat(ResA0,...,An , R1, . . . , Rm).

It follows that V
(
sat(ResA0,...,An , R1, . . . , Rm)

)
⊆ Z0(A0, . . . ,An). As a consequence, the

theorem is proved.

Remark 4.7 If Problem 3.16 can be solved positively, then the vanishing of sat(R) also
gives a sufficient condition for P0 = · · · = Pn = 0 to have a nonzero solution in the sense of
Cohn topological closure. That is, Z0(A0, . . . ,An) = V

(
sat(R)

)
.

The following example shows that the vanishing of the sparse difference resultant is not
a sufficient condition for the given system to have common nonzero solutions.

Example 4.8 Continue from Example 3.11. Suppose P0 = y21 − 4,P1 = y
(1)
1 + y1. Clearly,

Res(P0,P1) = 0 but P0 = P1 = 0 has no solution. Note that in this example, Problem 3.16
has a positive answer, that is, Iu = sat(R). Theorem 4.6 shows that Z0(A0, . . . ,An) is dense
in V(sat(R)). This example shows that for certain Ai, Z0(A0, . . . ,An) is a proper subset of
V(sat(R)).

The following lemma reflects the structures of the nonzero solutions.

Lemma 4.9 Use the notations in (1). Let A0, . . . ,An be a Laurent transformally essential
system and R = ResA0,...,An. Then there exists a τ such that deg(R, uτ0) > 0. Suppose
Pi = 0 is a system represented by (v0, . . . ,vn) ∈ Z0(A0, . . . ,An) and ∂R

∂uτ0
(v0, . . . ,vn) 6= 0.

If ξ is a common nonzero difference solution of Pi = 0(i = 0, . . . , n), then for each j, we
have

Mτj(ξ)

Mτ0(ξ)
=

∂R

∂uτj
(v0, . . . ,vn)

/ ∂R

∂uτ0
(v0, . . . ,vn). (10)

1For definition, see[36].
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Proof: Since IY,u = [N(P0), . . . ,N(Pn)] : m is a reflexive prime difference ideal and R ∈ IY,u,
there exists some τ and j such that deg(R, uτj) > 0. By equation (8), deg(R, uτ0) > 0 and
for each j = 1, . . . , l0, the polynomial ∂R

∂uτ0
MτMτj −

∂R
∂uτj

MτMτ0 ∈ IY,u, where N(Pi) =

MiPi (i = 0, . . . , n). Thus, if ξ is a common nonzero difference solution of Pi = 0, then
∂R
∂uτ0

(v0, . . . ,vn) · Mτj(ξ) −
∂R
∂uτj

(v0, . . . ,vn)Mτ0(ξ) = 0. Since ∂R
∂uτ0

(v0, . . . ,vn) 6= 0, (10)

follows.
The following result gives a condition for the system to have a unique solution.

Corollary 4.10 Assume that 1) for each j = 1, . . . , n, there exists djik ∈ Z such that

yj =
∏n

i=0

∏li
k=0(

Mik

Mi0
)djik and 2) for each i and k, deg(R, uik) > 0. Suppose Pi = 0 is a

specialized system represented by (v0, . . . ,vn) with R(v0, . . . ,vn) = 0 and ∂R
∂uik

(v0, . . . ,vn) 6=

0 (i = 0, . . . , n; k = 0, . . . , li). Then the system Pi = 0 (i = 0, . . . , n) could have at most one
nonzero solution. Furthermore, if Problem 3.16 has a positive answer, that is, Iu = sat(R),
then the system Pi = 0 (i = 0, . . . , n) has a unique nonzero solution.

Proof: Suppose ξ is a nonzero solution of Pi = 0. By (10), for each j,
∏n

i=0

∏li
k=0(

Mik(ξ)
Mi0(ξ)

)djik

=
∏n

i=0

∏li
k=0

(
∂R
∂uik

/
∂R
∂ui0

)djik = ξj 6= 0, where ∂R
∂uik

= ∂R
∂uik

(v0, . . . ,vn). That is, ξ is uniquely
determined by R and vi. Suppose Iu = sat(R). Let IY,u = [N(P0), . . . ,N(Pn)] : m. Similar

to the proof of Lemma 4.9, Tj =
∏n

i=0

∏li
k=0M

djik
ik yj −

∏n
i=0

∏li
k=0M

djik
i0 ∈ IY,u. Since

Iu = sat(R), A = {R, T1, . . . , Tn} is a characteristic set for Iu and Iu = sat(A), from

which we can deduce that yj =
∏n

i=0

∏li
k=0

(
∂R
∂uik

/
∂R
∂ui0

)djik , j = 1, . . . , n constitute a nonzero

solution of Pi = 0.

Example 4.11 Let n = 2 and the Pi have the form

P0 = u00 + u01y1y2, P1 = u10 + u11y1y
(1)
2 , P2 = u20 + u21y2.

Clearly, P0,P1,P2 form a super-essential system and the sparse difference resultant of P0,P1,P2

is R = u21u
(1)
20 u11u00−u

(1)
21 u20u01u10. Moreover, P0,P1,P2 satisfy the conditions of Corollary

4.10, so given a specialized system Pi with R(v0,v1,v2) = 0 and ∂R
∂uik

(v0,v1,v2) 6= 0 (i =

0, 1, 2; k = 0, 1), the system Pi = 0 (i = 0, . . . , n) have a unique nonzero solution y2 = − v20
v21

and y1 = − v00
v01y2

= v00v21
v01v20

.

4.3 Order bound in terms of Jacobi number

In this section, we will give an order bound for the sparse difference resultant in terms of
the Jacobi number of the given system.

Consider a generic Laurent transformally essential system {P0, . . . ,Pn} defined in (1)
with ui = (ui0, ui1, . . . , uili) being the coefficient vector of Pi (i = 0, . . . , n). Suppose R is the
sparse difference resultant of P0, . . . ,Pn. Denote ord(R,ui) to be the maximal order of R
in uik (k = 0, . . . , li), that is, ord(R,ui) = maxkord(R, uik). If ui does not occur in R, then
set ord(R,ui) = −∞. Firstly, we have the following result.
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Lemma 4.12 For fixed i and s, if there exists k0 such that deg(R, u
(s)
ik0

) > 0, then for all

k ∈ {0, 1, . . . , li}, deg(R, u
(s)
ik ) > 0. In particular, if ord(R,ui) = hi ≥ 0, then ord(R, uik) =

hi (k = 0, . . . , li).

Proof: Firstly, for each k ∈ {1, . . . , li}, by differentiating R(u; ζ0, . . . , ζn) = 0 w.r.t. u
(s)
ik ,

we have ∂R

∂u
(s)
ik

(u, ζ0, . . . , ζn) +
∂R

∂u
(s)
i0

(u, ζ0, . . . , ζn)
(
− Mik(η)

Mi0(η)

)(s)
= 0. If k0 = 0, then ∂R

∂u
(s)
i0

is a

nonzero difference polynomial not vanishing at (u, ζ0, . . . , ζn) by lemma 3.9. So ∂R

∂u
(s)
ik

6= 0.

Thus, deg(R, u
(s)
ik ) > 0 for each k. If k0 6= 0, then ∂R

∂u
(s)
ik0

(u, ζ0, . . . , ζn) 6= 0 and ∂R

∂u
(s)
i0

6= 0

follows. So by the case k0 = 0, for all k, deg(R, u
(s)
ik ) > 0.

In particular, if ord(R,ui) = hi ≥ 0, then there exists some k0 such that deg(R, u
(hi)
ik0

) >

0. Thus, for each k = 0, . . . , li, deg(R, u
(hi)
ik ) > 0 and ord(R, uik) = hi follows.

Let A = (aij) be an n×n matrix where aij is an integer or −∞. A diagonal sum of A is
any sum a1σ(1)+a2σ(2)+ · · ·+anσ(n) with σ a permutation of 1, . . . , n. If A is an m×n matrix
with k = min{m,n}, then a diagonal sum of A is a diagonal sum of any k × k submatrix
of A. The Jacobi number of a matrix A is the maximal diagonal sum of A, denoted by
Jac(A). Refer to [7, 20] for the concept of Jacobi number and its relation with the order of
a difference system.

Let sij = ord(N(Pi), yj) (i = 0, . . . , n; j = 1, . . . , n) and si = ord(N(Pi)). We call the
(n+1)×nmatrix A = (sij) the order matrix of P0, . . . ,Pn. By Aî, we mean the submatrix ofA
obtained by deleting the (i+1)-th row from A. We use P to denote the set {N(P0), . . . ,N(Pn)}
and by Pî, we mean the set P\{N(Pi)}. We call Ji = Jac(Aî) the Jacobi number of the system
P
î
, also denoted by Jac(P

î
). Before giving an order bound for sparse difference resultant in

terms of the Jacobi numbers, we first list several lemmas.

Given a vector
−→
K = (k0, k1, . . . , kn) ∈ Nn+1

0 , we can obtain a prolongation of P:

P[
−→
K ] =

n⋃

i=0

N(Pi)
[ki]. (11)

Let tj = max{s0j+k0, s1j +k1, . . . , snj+kn}. Then P[
−→
K ] is contained in Q[u[

−→
K ],Y[

−→
K ]], where

u[
−→
K ] = ∪n

i=0u
[ki]
i and Y[

−→
K ] = ∪n

j=1y
[tj ]
j .

Denote ν(P[
−→
K ]) to be the number of Y and their transforms appearing effectively in

P[
−→
K ]. In order to derive a difference relation among ui (i = 0, . . . , n) from P[

−→
K ], a sufficient

condition is
|P[

−→
K ]| ≥ ν(P[

−→
K ]) + 1. (12)

Note that ν(P[
−→
K ]) ≤ |Y[

−→
K ]| =

∑n
j=1(tj + 1). Thus, if |P[

−→
K ]| ≥ Y[

−→
K ] + 1, or equivalently,

k0 + k1 + · · ·+ kn ≥

n∑

j=1

max(s0j + k0, s1j + k1, . . . , snj + kn) (13)

is satisfied, then so is the inequality (12).

21



Lemma 4.13 Let P be a Laurent transformally essential system and
−→
K = (k0, k1, . . . , kn) ∈

Nn+1
0 a vector satisfying (13). Then ord(R,ui) ≤ ki for each i = 0, . . . , n.

Proof: Denote m[
−→
K ] to be the set of all monomials in variables Y[

−→
K ]. Let I = (P[

−→
K ]) : m[

−→
K ]

be an ideal in the polynomial ring Q[Y[
−→
K ],u[

−→
K ]]. Denote U = u[

−→
K ]\ ∪n

i=0 u
[ki]
i0 . Let ζil =

−(
∑li

k=1 uikMik/Mi0)
(l) for i = 0, 1, . . . , n; l = 0, 1, . . . , ki. Denote ζ = (U, ζ0k0 , . . . , ζ00, . . . ,

ζnkn , . . . , ζn0). It is easy to show that (Y[
−→
K ], ζ) is a generic zero of I. Let I1 = I ∩Q[u[

−→
K ]].

Then I1 is a prime ideal with a generic zero ζ. Since Q(ζ) ⊂ Q(Y[
−→
K ], U), Codim(I1) =

|U |+
∑n

i=0(ki+1)−tr.degQ(ζ)/Q ≥ |U |+ |P[
−→
K ]|−tr.degQ(Y[

−→
K ], U)/Q = |P[

−→
K ]|−|Y[

−→
K ]| ≥ 1.

Thus, I1 6= {0}. Suppose f is a nonzero polynomial in I1. Clearly, ord(f,ui) ≤ ki and
f ∈ [P] : m ∩Q{u0, . . . ,un}. By Lemma 3.9 and Lemma 4.12, ord(R,ui) ≤ ord(f,ui) ≤ ki.

Lemma 4.14 [27, Lemma 5.6] Let P be a system with Ji ≥ 0 for each i = 0, . . . , n. Then
ki = Ji (i = 0, . . . , n) satisfy (13) in the equality case.

Corollary 4.15 Let P be a Laurent transformally essential system and Ji ≥ 0 for each
i = 0, . . . , n. Then ord(R,ui) ≤ Ji (i = 0, . . . , n).

Proof: It is a direct consequence of Lemma 4.13 and Lemma 4.14.
The above corollary shows that when all the Jacobi numbers are not less that 0, then

Jacobi numbers are order bounds for the sparse difference resultant. In the following, we deal
with the remaining case when some Ji = −∞. To this end, two more lemmas are needed.

Lemma 4.16 [7, 23] Let A be an m×n matrix whose entries are 0’s and 1’s. Let Jac(A) =
J < min{m,n}. Then A contains an a× b zero sub-matrix with a+ b = m+ n− J .

Lemma 4.17 Let P be a Laurent transformally essential system with the following (n+1)×n
order matrix

A =

(
A11 (−∞)r×t

A21 A22

)
,

where r + t ≥ n + 1. Then r + t = n + 1 and Jac(A22) ≥ 0. Moreover, when regarded
as difference polynomials in y1, . . . , yr−1, {P0, . . . ,Pr−1} is a Laurent transformally essential
system.

Proof: The proof is similar to [27, Lemma 5.9].

Theorem 4.18 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

ord(R,ui) =

{
−∞ if Ji = −∞,
hi ≤ Ji if Ji ≥ 0.

Proof: Corollary 4.15 proves the case when Ji ≥ 0 for each i. Now suppose there exists at
least one i such that Ji = −∞. Without loss of generality, we assume Jn = −∞ and let
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An = (sij)0≤i≤n−1;1≤j≤n be the order matrix of Pn̂. By Lemma 4.16, we can assume that An

is of the following form

An =

(
A11 (−∞)r×t

Ā21 Ā22

)
,

where r + t ≥ n+ 1. Then the order matrix of P is equal to

A =

(
A11 (−∞)r×t

A21 A22

)
.

Since P is Laurent transformally essential, by Lemma 4.17, r+t = n+1 and Jac(A22) ≥ 0.
Moreover, considered as difference polynomials in y1, . . . , yr−1, P̃ = {p0, . . . , pr−1} is Laurent
transformally essential and A11 is its order matrix. Let J̃i = Jac((A11 )̂i). By applying the

above procedure when necessary, we can suppose that J̃i ≥ 0 for each i = 0, . . . , r − 1.
Since [P] ∩ Q{u0, . . . ,un} = [P̃] ∩ Q{u0, . . . ,ur−1}, R is also the sparse difference resultant
of the system P̃ and ur, . . . ,un will not occur in R. By Corollary 4.15, ord(R,ui) ≤ J̃i.
Since Ji = Jac(A22) + J̃i ≥ J̃i for 0 ≤ i ≤ r − 1, ord(R,ui) ≤ Ji for 0 ≤ i ≤ r − 1 and
ord(R,ui) = −∞ for i = r, . . . , n.

Example 4.19 Let n = 2 and

P0 = u00 + u01y1y
(1)
1 , P1 = u10 + u11y1, P2 = u10 + u11y

(1)
2 .

The sparse resultant is R = u00u11u
(1)
11 + u01u10u

(1)
10 . In this example, the order matrix

of P is A =




1 −∞
0 −∞

−∞ 1


. Thus J0 = 1, J1 = 2, J2 = −∞. And ord(R,u0) = 0 <

J0, ord(R,u1) = 1 < J1, ord(R,u2) = −∞.

Corollary 4.20 Let P be super-essential. Then Ji ≥ 0 for i = 0, . . . , n and ord(R,ui) ≤ Ji.

Proof: From the proof of Theorem 4.18, if Ji = −∞ for some i, then P contains a proper
transformally essential subsystem, which contradicts to Theorem 3.28. Therefore, Ji ≥ 0 for
i = 0, . . . , n.

We conclude this section by giving two improved order bounds based on the Jacobi bound
given in Theorem 4.18.

For each j ∈ {1, . . . , n}, let oj = min{k ∈ N0| ∀i s.t.deg(N(Pi), y
(k)
j ) > 0}. In other words,

oj is the smallest number such that y
(oj)

j occurs in {N(P0), . . . ,N(Pn)}. Let B = (sij − oj)

be an (n + 1) × n matrix. We call J̄i = Jac(Bî) the modified Jacobi number of the system
Pî. Denote γ =

∑n
j=1 oj . Clearly, J̄i = Ji − γ. Then we have the following result.

Theorem 4.21 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

ord(R,ui) =

{
−∞ if Ji = −∞,
hi ≤ Ji − γ if Ji ≥ 0.
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Proof: The proof is similar to [27, Theorem 5.13].
Now, we assume that P is a Laurent transformally essential system which is not super-

essential. Let R be the sparse difference resultant of P. We will give a better order bound
for R. By Theorem 3.28, P contains a unique super-essential sub-system PT. Without loss
of generality, suppose T = {0, . . . , r} with r < n. Let AT be the order matrix of PT and for
i = 0, . . . , r, let (AT)̂i be the matrix obtained from AT by deleting the (i + 1)-th row. Note
that (AT)̂i is an r × n matrix. Then we have the following result.

Theorem 4.22 With the above notations, we have

ord(R,ui) =

{
hi ≤ Jac((AT)̂i) i = 0, . . . , r,
−∞ i = r + 1, . . . , n.

Proof: Similarly to the proof of [27, Theorem 5.16], it can be proved.

Example 4.23 Continue from Example 4.19. In this example, T = {0, 1}. Then AT =(
1
0

)
. Thus Jac((AT)0̂) = 0, Jac((AT)1̂) = 1. For this example, the exact bounds are given:

ord(R,u0) = 0 = Jac((AT)0̂), ord(R,u1) = 1 = Jac((AT)1̂), ord(R,u2) = −∞.

4.4 Effective order bound in terms of Jacobi number

In this section, we give an improved Jacobi-type bound for the effective order and order of
the sparse difference resultant.

For a difference polynomial f ∈ F{y1, . . . , yn} and an arbitrary variable yi, the least

order of f w.r.t. yi is Lord(f, yi) = min{k|deg(f, y
(k)
i ) > 0} and the effective order of f

w.r.t. yi is Eord(f, yi) = ord(f, yi) − Lord(f, yi). And if yi does not appear in f , then
set Eord(f, yi) = −∞. Let R be the sparse difference resultant of a Laurent transformally

essential system {P0,P1, . . . ,Pn} of the form (1). By Lemma 4.12, u
(s)
i0 effectively appears

in R if and only if u
(s)
ik effectively appears in R for each k ∈ {0, . . . , li}. Thus, we can

define Lord(R,ui) = Lord(R, ui0) and Eord(R,ui) = ord(R,ui)− Lord(R,ui) whenever ui

effectively appears in R.
For further discussion, suppose PT is the super-essential subsystem of {P0,P1, . . . ,Pn}.

Without loss of generality, assume T = {0, 1, . . . , p}. For each i ∈ {0, . . . , p}, let si =
minnj=1{Lord(Pi, yj)|Lord(Pi, yj) 6= −∞} and s =

∑p
i=0 si. Let J̃i = Ji − s+ si. Then,

Theorem 4.24 The effective order of R in ui is bounded by J̃i for each 0 ≤ i ≤ p.

Proof: Let m = maxpi=0si. Consider the following difference system

P1 = {P
(m−s0)
0 , . . . ,P

(m−sp)
p }

which is also super-essential. Suppose R1 is the sparse difference resultant of P1. Clearly,
R1 ∈ Iu = [P0, . . . ,Pp] ∩ Q{u0, . . . ,up}, so ord(R1,ui) ≥ ord(R,ui) for each i ∈ {0, . . . , p}.

Since y
[m−1]
j (j = 1, . . . , n) do not occur in P1, by replacing y

(t)
j (j = 1, . . . , n) by z

(t−m)
j in P1,
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we obtain a new system P2. It is clear that R1 is also the sparse difference resultant of P2.
By Theorem 4.22, Eord(R1,ui) ≤ J̃i and ord(R1,ui) ≤ J̃i +m− si for each i ∈ {0, . . . , p}.

Let hi = ord(R,ui) and oi = Lord(R,ui). We need to show that hi − oi ≤ J̃i holds for
each i ∈ {0, . . . , p}. Suppose the contrary, i.e. there exists some i0 ∈ {0, . . . , p} such that
Eord(R,ui0) = hi0 − oi0 > J̃i0 .

Suppose h̄i0 = ord(R1,ui0) and ōi0 = Lord(R1,ui0). Then, h̄i0 ≥ hi0 and Eord(R1,ui0)

= h̄i0 − ōi0 ≤ J̃i0 < hi0 − oi0 . Clearly, σ
h̄i0ui0 appears effectively in both σh̄i0

−hi0R and R1.

Let B1 be the Sylvester resultant of σh̄i0
−hi0R and R1 w.r.t. σ

h̄i0ui0. We claim that B1 6= 0.
Suppose the contrary, then we have σh̄i0

−hi0R|R1, for R is irreducible. This is impossible

since σh̄i0
−hi0

+oi0ui0 appears effectively in σh̄i0
−hi0R while not in R1 for h̄i0 −hi0 +oi0 < ōi0 .

Let h̃i0 = ord(B1, ui00) and õi0 = Lord(B1, ui00). Since B1 is the resultant of σh̄i0
−hi0R

and R1, h̃i0 < h̄i0 and õi0 ≥ h̄i0 −hi0 +oi0 . Then h̃i0 − õi0 < h̄i0 − (h̄i0 −hi0 +oi0) = hi0 −oi0 .
Since B1 ∈ Iu, by Lemma 3.9, ord(B1, ui00) ≥ ord(R, ui00). Repeat the above procedure for

B1 and σh̃i0
−hi0R, we obtain a nonzero difference polynomial B2 ∈ Iu and ord(B2, ui00) <

ord(B1, ui00). Continue the procedure in this way, one can finally obtain a nonzero Bl ∈ Iu
such that ord(Bl, ui00) < ord(R, ui00) which contradicts to Lemma 3.9.

By the proof of the above theorem, the order of R1 with respect to ui is bounded by
J̃i +m− si. Thus, we have the following new order bound for R.

Corollary 4.25 Let R and J̃i (i = 0, . . . , p) be defined as above. Then the order of R in ui

is bounded by Ji = J̃i +m− si = Ji − s+m for each 0 ≤ i ≤ p where m = maxpi=0si.

Example 4.26 Let P0 = u00+u01y1+u02y2,P1 = u10+u11y
(1)
1 +u12y

(1)
2 ,P2 = u20+u21y

(1)
1 +

u22y
(1)
2 . Then J0 = J̄0 = 2, J1 = J̄1 = 1, J2 = J̄2 = 1, J̃0 = J̃1 = J̃2 = 0. By corollary 4.25,

J0 = 1, J1 = 0, J2 = 0. Notice that R =

∣∣∣∣∣∣

u
(1)
00 u

(1)
01 u

(1)
02

u10 u11 u12
u20 u21 u22

∣∣∣∣∣∣
and J̃0 = J̃1 = J̃2 = 0,

J0 = 1, J1 = J2 = 0 give the exact effective order and order of R respectively.

5 Sparse difference resultant as algebraic sparse resultant

In this section, we will show that the sparse difference resultant is just equal to the algebraic
sparse resultant of certain generic sparse polynomial system, which leads to a determinant
representation for the sparse difference resultant.

5.1 Preliminary on algebraic sparse resultant

We first introduce several basic notions and properties on algebraic sparse resultants which
are needed in this paper. For more details about sparse resultant, please refer to [18, 33].

Let B0, . . . ,Bn be finite subsets of Zn. Assume 0 ∈ Bi and |Bi| ≥ 2 for each i. For alge-
braic indeterminates X = {x1, . . . , xn} and α = (α1, . . . , αn) ∈ Zn, denote Xα =

∏n
i=1 x

αi

i .
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Let
Fi(x1, . . . , xn) = ci0 +

∑

α∈Bi\{0}

ciαX
α (i = 0, . . . , n) (14)

be generic sparse Laurent polynomials, where ciα are algebraic indeterminates. We call Bi

the support of Fi and ωi =
∑

α∈Bi
ciαα is called the symbolic support vector of Fi. The

smallest convex subset of Rn containing Bi is called the Newton polytope of Fi. For any
subset I ⊂ {0, . . . , n}, the matrix MI whose row vectors are ωi (i ∈ I) is called the symbolic
support matrix of {Fi : i ∈ I}. Denote ci = (ciα)α∈Bi

and cI = ∪i∈Ici. Similar to the proof of
[27, Theorem 4.17] and use the Jacobi criterion for algebraic independence, it can be easily
shown that

Lemma 5.1 For any subset I ⊂ {0, . . . , n}, tr.degQ(cI)(Fi : i ∈ I)/Q(cI) = rk(MI).

Definition 5.2 Follow the notations introduced above.

• A collection of {Fi}i∈I is said to be weak essential if rk(MI) = |I| − 1.

• A collection of {Fi}i∈I is said to be essential if rk(MI) = |I| − 1 and for each proper
subset J of I, rk(MJ) = |J |.

Similar to Theorems 3.25 and 3.28, we have the following two lemmas.

Lemma 5.3 {Fi}i∈I is weak essential if and only if (Fi : i ∈ I)∩Q[cI ] is of codimension one.
In this case,there exists an irreducible polynomial R ∈ Q[cI ] such that (Fi : i ∈ I) ∩Q[cI ] =
(R) and R is called the sparse resultant of {Fi : i ∈ I}.

Lemma 5.4 {Fi}i∈I is essential if and only if (Fi : i ∈ I) ∩ Q[cI ] = (R) and ci appears
effectively in R for each i ∈ I.

Suppose an arbitrary total ordering of {F0, . . . ,Fn} is given, say F0 < F1 < · · · < Fn.
Now we define a total ordering among subsets of {F0, . . . ,Fn}. For any two subsets D =
{D0, . . . ,Ds} and C = {C0, . . . , Ct} where D0 > · · · > Ds and C0 > · · · > Ct, D is said to
be of higher ranking than C, denoted by D ≻ C, if 1) there exists an i ≤ min(s, t) such that
D0 = C0, . . . ,Di−1 = Ci−1, Di > Ci or 2) s > t and Di = Ci (i = 0, . . . , t). Note that if D is
a proper subset of C, then C ≻ D.

Lemma 5.5 Let F = {Fi : i = 0, . . . , n} be the system given in (14). Suppose rk(MF) ≤ n.
Then F has an essential subset with minimal ranking.

Proof: It suffices to show that F contains an essential subset, for the existence of an essential
subset with minimal ranking can be deduced from the fact that “≻” is a total ordering.

Let Ti = F\{F0, . . . ,Fi−1} (i = 1, . . . , n) and T0 = F. We claim that at least one of Ti
is weak essential. If rk(MT0) = n, we are done. Otherwise, rk(MT0) < n. It is clear that
rk(MTi) = rk(MTi−1) or rk(MTi) = rk(MTi−1)− 1 for i = 1, . . . , n − 1, so when deleting one
row from the matrix, the co-rank, i.e. |Ti| − rk(MTi), will be unchanged or decreased by 1.
Since rk(MT0) < n, the co-rank of MT0 is larger than 1. Since the co-rank of MTn is 0, there
exists k ∈ {1, . . . , n−1} such that the co-rank of MTk is 1. Then MTk is weak essential. Now,
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let R be the sparse resultant of Tk and let C be the set of Ti ∈ Tk such that the coefficients
of Fi occur in R effectively. Then, C is an essential subset of F by Lemma 5.4.

Lemma 5.6 Suppose FI = {Fi : i ∈ I} is an essential system. Then there exist n− |I| + 1
of the xi such that by setting these xi to 1, the specialized system F̃I = {F̃i : i ∈ I} satisfies
(1) F̃I is still essential.
(2) rk(M

F̃I
) = |I| − 1 is the number of variables in F̃I .

(3) (FI) ∩Q[cI ] = (F̃I) ∩Q[cI ].

Proof: Let MI = (mij)|I|×n be the symbolic support matrix of FI . Since FI is essential,
MI contains a submatrix of rank |I| − 1. Without loss of generality, we assume the matrix
M0 = (mij)i=1,...,|I|−1;j=1,...,|I|−1 is of full rank. Then consider the new system F̃I obtained

by setting xi = 1 (i = |I|, . . . , n) in FI . Since M0 is a submatrix of M
F̃I
, F̃I is weak

essential. By Lemma 5.3, we have (FI)∩Q[cI ] = (R) and (F̃I)∩Q[cI ] = (R̃) where R, R̃ are
irreducible polynomials in Q[cI ]. Hence, there exists a monomial m ∈ Q[x1, . . . , xn] such that
mR =

∑
QiFi. Set xi = 1 (i = |I|, . . . , n), then we have m̃R =

∑
Q̃iF̃i. Hence R ∈ (R̃).

Since both R and R̃ are irreducible, (R̃) = (R) and (2) follows. Thus, ci (i ∈ I) appears
effectively in R̃, for FI is essential. By Lemma 5.4, F̃I is essential and (1) is proved. (2) is
obvious and the lemma is proved.

An essential system {Fi}i∈I is said to be variable-essential if there are only |I|−1 variables
appearing effectively in Fi. Clearly, if {Fi : i = 0, . . . , n} is essential, then it is variable-
essential.

Lemma 5.7 Let F = {Fi : i = 0, . . . , n} be an essential system of the form (14). Then
we can find an invertible variable transformation x1 =

∏n
j=1 z

m1j

j , . . . , xn =
∏n

j=1 z
mnj

j for
mij ∈ Q, such that the image G of F under the above transformation is a generic sparse
Laurent polynomial system satisfying
(1) G is essential.
(2) SpanZ(B) = Zn, where B is the set of the supports of all monomials in G.
(3) (F) ∩Q[c] = (G) ∩Q[c].

Proof: This is a direct consequence of the Smith normal form method [4, p. 67]. Also see
paper [32] for an alternative proof.

We call a variable-essential system F = {Fi : i = 0, . . . , n} strong essential if F also
satisfies condition (2) in Lemma 5.7. Recall that condition (2) is a basic requirement for
studying sparse resultant in historic literatures and a strong essential system here is just an
essential system as defined in papers [34, 9]. If F is strong essential, a matrix representation
for R can be derived, that is, R can be represented as the quotient of the determinants of
two matrices as shown in paper [9]. Moreover, the exact degree of the sparse resultant R
can be given in terms of mixed volumes [34], famous as the BKK-type degree bound. That
is,

Theorem 5.8 ([34]) Suppose F = {Fi : i = 0, . . . , n} is a strong essential system of the
form (14). Then, for each i ∈ {0, 1, . . . , n}, the degree of the sparse resultant in ui is a
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positive integer, equal to the mixed volume

M(Q0, . . . ,Qi−1,Qi+1, . . . ,Qn) =
∑

J⊂{0,...,i−1,i+1,...,n}

(−1)n−|J|vol(
∑

j∈J

Qj)

where Qi is the Newton polytope of Fi, vol(Q) means the n-dimensional volume of Q ⊂ Rn

and Q1 +Q2 means the Minkowski sum of Q1 and Q2.

5.2 Sparse difference resultant as algebraic sparse resultant

With the above preparation, we now give the main theorem of this section.

Theorem 5.9 Let R be the sparse difference resultant of a Laurent transformally essential
system (1). Then we can derive a strong essential generic algebraic sparse polynomial system
S from (1), such that the sparse resultant of S is equal to R.

Proof: By Theorem 3.28, the system (1) has a unique super-essential subsystem PT. Without
loss of generality, assume T = {0, 1, . . . , p}. For each i ∈ {0, . . . , p}, let ki = Jac((AT)̂i) as

defined in Theorem 4.22 and let
−→
K = (k0, k1, . . . , kp) ∈ N

p+1
0 . Similar to (11), let

P = P[
−→
K ] =

p⋃

i=0

N(Pi)
[ki] (15)

be the prolongation of PT with respect to
−→
K . Note that |P| =

∑p
i=0 ki + p+1. Regarding P

as a set of algebraic polynomials in y
(j)
i with coefficients U = ∪n

i=0u
[ki]
i , then P is a generic

sparse polynomial system.
A total ordering for polynomials in P is assigned as follows: σkPi < σlPj if and only if

i < j or i = j and k < l. A total ordering ≻ among subsets of P is the same as the one
given in Section 5.1. By Theorem 4.22, rk(MP ) ≤

∑p
i=0 ki + p = |P| − 1. By Lemma 5.5, we

can construct an essential subsystem P1 of P with minimal ranking. Let R1 be the sparse
resultant of P1, that is, (P1) ∩Q[U ] = (R1).

We claim that R1 = cR for some c ∈ Q. Since PT is super essential, for each i ∈ T,
ord(R,ui) ≥ 0. By Theorem 4.22, R ∈ (P). Let P2 be the elements of P whose coefficients
appear effectively in R. By Lemma 5.4, P2 is essential and (P2) ∩ Q[U ] = (R). Let k1
and k2 be the largest integers such that σk1Pp ∈ P1 and σk2Pp ∈ P2. Since P1 and P2

are essential, ord(R1,up) = k1 and ord(R,up) = k2. Since P2 ≻ P1, k1 ≤ k2. Since
R1 ∈ (P1) ∩ Q[U ] ⊂ [PT] ∩ Q{u0, . . . ,up}, by Lemma 3.9, k1 ≥ k2. Hence, k1 = k2. Since
R1 ∈ [PT] ∩ Q{u0, . . . ,up} = sat(R, . . .) and ord(R1,up) = ord(R,up), R1 is algebraically
reduced to zero by R. Since both R and R1 are irreducible, R = cR1 where c ∈ Q.

Apply Lemma 5.6 to P1, we obtain a variable-essential system P2 satisfying (P2)∩Q[U ] =
(R). Then apply Lemma 5.7 to P2, we obtain a strong essential generic system S satisfying
(S) ∩Q[U ] = (R) and the existence of S is proved.

We will show that S can be given algorithmically. Through the above procedures, only
Lemma 5.5 is not constructive. Since P contains an essential subsystem, we can simply check
each subsystems S of P to see whether S is essential and find the one with minimal ranking.
Note that S is essential if and only if rk(MS) = |S|−1 and any proper subset C of S satisfies
rk(MC) = |C|.
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Example 5.10 Let n = 3. Denote yij = y
(j)
i and let P = {P0,P1,P2,P3} where

P0 = u00 + u01y
2
11y

2
21y3 + u02y

2
1y2y3,

P1 = u10 + u11y
4
12y

4
22y

2
31 + u12y

2
11y21y31,

P2 = u20 + u21y
2
11y

2
21y3 + u22y

2
1y2y3,

P3 = u30 + u31y11y3.

It is easy to show that P is a Laurent transformally essential system and T = {0, 1, 2}.
Clearly, Jac((AT)0̂) = 3, Jac((AT)1̂) = 2 and Jac((AT)2̂) = 3. Using the notations in

Theorem 5.9, we have P = {P
[3]
0 ,P

[2]
1 ,P

[3]
2 }, and we can compute an essential subset P1

with minimal ranking. Here, we have P1 = {σP0,P1, σP2}. Using the variable order
y11 < y12 < y21 < y22 < y31 to obtain the symbolic support matrix of P1, the first 2 × 2
sub-matrix of MP1 is of rank 2. By the proof of Lemma 5.6, we set y21, y22, y31 to 1 to obtain

a variable essential system P2 = {σ̃P0, P̃1, σ̃P2} where

σ̃P0 = u
(1)
00 + u

(1)
01 y

2
12 + u

(1)
02 y

2
11,

P̃1 = u10 + u11y
4
12 + u12y

2
11,

σ̃P2 = u
(1)
20 + u

(1)
21 y

2
12 + u

(1)
22 y

2
11.

Apply Lemma 5.7 to P2, set z1 = y211, z2 = y212, we obtain a strong essential generic system
P3 = {Q0, Q1, Q2} where

Q0 = u
(1)
00 + u

(1)
01 z2 + u

(1)
02 z1,

Q1 = u10 + u11z
2
2 + u12z1,

Q2 = u
(1)
20 + u

(1)
21 z2 + u

(1)
22 z1.

The sparse resultant of system P3 is R = u10(u
(1)
02 u

(1)
21 −u

(1)
01 u

(1)
22 )

2+u11(u
(1)
00 u

(1)
22 −u

(1)
02 u

(1)
20 )

2+

u12(u
(1)
00 u

(1)
21 − u

(1)
01 u

(1)
20 )(u

(1)
02 u

(1)
21 − u

(1)
01 u

(1)
22 ), which is the sparse difference resultant of P.

The following corollary is a direct consequence of the proof of Theorem 5.9 and paper
[9].

Corollary 5.11 The sparse difference resultant R of a Laurent transformally essential sys-

tem (1) can be represented as the quotient of two determinants whose elements are u
(k)
ij or

their sums for certain i ∈ {0, . . . , n}, j ∈ {0, . . . , li} and k ∈ {0, . . . , Ji}, where Ji is the
Jacobi number of the system (1) as defined in Section 4.3.

Remark 5.12 It is desirable to derive a degree bound for R from Theorem 5.9. Let S be the
strong essential set mentioned in the theorem. Then, the degree of R is equal to the mixed
volume of S by Theorem 5.8. The problem is how to express the mixed volume of S in terms
of certain quantities of PT without computing S.
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6 A single exponential algorithm to compute the sparse dif-

ference resultant

In this section, we give an algorithm to compute the sparse difference resultant for a Laurent
transformally essential system with single exponential complexity. The idea is to estimate
the degree bounds for the resultant and then to use linear algebra to find the coefficients of
the resultant.

6.1 Degree bound for sparse difference resultant

In this section, we give an upper bound for the degree of the sparse difference resultant,
which will be crucial to our algorithm to compute the sparse resultant. Before proposing the
main theorem, we first give some algebraic results which will be needed in the proof.

Lemma 6.1 [27, Theorem 6.2] Let I be a prime ideal in K[x1, . . . , xn] and Ik = I ∩
K[x1, . . . , xk] for any 1 ≤ k ≤ n. Then deg(Ik) ≤ deg(I).

Lemma 6.2 [35, Corollary 2.28] Let V1, . . . , Vr ⊂ P
n (r ≥ 2) be pure dimensional projective

varieties in P
n. Then

r∏

i=1

deg(Vi) ≥
∑

C

deg(C)

where C runs through all irreducible components of V1 ∩ · · · ∩ Vr.

Now we are ready to give the main theorem of this section.

Theorem 6.3 Let P0, . . . ,Pn be a Laurent transformally essential system of form (1) with
ord(N(Pi)) = si and deg(N(Pi),Y) = mi. Suppose N(Pi) =

∑ti
k=0 uikNik and Ji is the Jacobi

number of {N(P0), . . . ,N(Pn)}\{N(Pi)}. Denote m = maxi{mi}. Let R(u0, . . . ,un) be the
sparse difference resultant of Pi (i = 0, . . . , n). Suppose ord(R,ui) = hi for each i. Then the
following assertions hold:

1) deg(R) ≤
∏n

i=0(mi + 1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1), where m = maxi{mi}.

2) R has a representation

n∏

i=0

hi∏

k=0

(N
(k)
i0 )deg(R) ·R =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k) (16)

where Gik ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] and h = max{hi+ei} such that deg(GikN(Pi)

(k)) ≤
[m+ 1 +

∑n
i=0(hi + 1)deg(Ni0)]deg(R).

Proof: In R, let ui0 be replaced by
(
N(Pi)−

∑ti
k=1 uikNik

)
/Ni0 for each i = 0, . . . , n and let R

be expanded as a difference polynomial in N(Pi) and their transforms. Then there exist aik ∈

N and polynomials Gik such that
∏n

i=0

∏hi

k=0

(
N

(k)
i0

)aikR =
∑n

i=0

∑hi

k=0GikN(Pi)
(k)+T with
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T ∈ Q{u,Y} free from ui0. Since T ∈ I = [N(P0), . . . ,N(Pn)] : m, T vanishes identically, for
I ∩Q{u,Y} = {0} by Theorem 3.6. Thus,

n∏

i=0

hi∏

k=0

(
N

(k)
i0

)aikR =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k).

1) Let J =
(
N(P0)

[h0], . . . ,N(Pn)
[hn]

)
: m[h] be an algebraic ideal in R = Q[Y[h],u

[h0]
0 ,

. . . ,u
[hn]
n ] where h = maxi{hi + si} and m[h] is the set of all monomials in Y[h]. Then

R ∈ J by the above equality. Let η = (η1, . . . , ηn) be a generic zero of [0] over Q〈u〉 and

denote ζi = −
∑ti

k=1 uik
Nik(η)
Ni0(η)

(i = 0, . . . , n). It is easy to show that J is a prime ideal

in R with a generic zero (η[h]; ũ, ζ
[h0]
0 , . . . , ζ

[hn]
n ) and J ∩ Q[u

[h0]
0 , . . . ,u

[hn]
n ] = (R), where

ũ = ∪iu
[hi]
i \{u

[hi]
i0 }. Let Hik be the homogeneous polynomial corresponding to N(Pi)

(k)

with x0 the variable of homogeneity. Then J 0 = ((Hik)1≤i≤n;0≤k≤hi
) : m̃ is a prime ideal

in Q[x0,Y
[h],u

[h0]
0 , . . . ,u

[hn]
n ] where m̃ is the whole set of monomials in Y[h] and x0. And

deg(J 0) = deg(J ).

Since V((Hik)1≤i≤n;0≤k≤hi
) = V(J 0) ∪ V(Hik, x0)

⋃
∪j,lV(Hik, y

(l)
j ), V(J 0) is an irre-

ducible component of V((Hik)1≤i≤n;0≤k≤hi
). By Lemma 6.2, deg(J 0)≤

∏n
i=0

∏hi

k=0(mi+1) =∏n
i=0(mi + 1)hi+1. Thus, deg(J ) ≤

∏n
i=0(mi + 1)hi+1. Since J ∩ Q[u

[h0]
0 , . . . ,u

[hn]
n ] = (R),

by Lemma 6.1, deg(R) ≤ deg(J ) ≤
∏n

i=0(mi +1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1) follows. The last
inequality holds because hi ≤ Ji by Theorem 4.21.

2) To obtain the degree bounds for the above representation of R, that is, to estimate

deg(GikN(Pi)
(k)) and aik, we take each monomial M in R and substitute ui0 by

(
N(Pi) −∑li

k=1 uikNik

)
/Ni0 into M and then expand it. To be more precise, we take one monomial

M(u;u00, . . . , un0) = uγ
∏n

i=0

∏hi

k=0(u
(k)
i0 )dik with |γ| +

∑n
i=0

∑hi

k=0 dik = deg(R) for an
example, where uγ represents a difference monomial in u and their transforms with exponent
vector γ. Then

M(u;u00, . . . , un0) = uγ

n∏

i=0

hi∏

k=0

((
N(Pi)−

li∑

k=1

uikNik

)(k))dik
/ n∏

i=0

hi∏

k=0

(
N

(k)
i0

)dik .

When expanded, every term of
∏n

i=0

∏hi

k=0

(
N

(k)
i0

)dikM is of degree bounded by |γ| +
∑n

i=0

∑hi

k=0(mi+1)dik ≤ (m+1)deg(R) in u
[h0]
0 , . . . ,u

[hn]
n and Y[h]. SupposeR =

∑
M aMM

and aik ≥ maxM{dik}. Then

n∏

i=0

hi∏

k=0

(
N

(k)
i0

)aikR =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k)

with deg(GikN(Pi)
(k)) ≤ (m + 1)deg(R) +

∑n
i=0

∑hi

k=0 deg(Ni0)aik. Clearly, we can take
aik = deg(R) and then deg(GikN(Pi)

(k)) ≤ (m + 1 +
∑n

i=0(hi + 1)deg(Ni0))deg(R). Thus,
(16) follows.

For a transformally essential difference polynomial system with degree 0 terms, the second
part of Theorem 6.3 can be improved as follows.
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Corollary 6.4 Let Pi = ui0+
∑li

k=1 uikNik (i = 0, . . . , n) be a transformally essential differ-
ence polynomial system with m = maxi{deg(Pi,Y)} and Ji the Jacobi number of {P0, . . . ,Pn}\{Pi}.
Let R(u0, . . . , un) be the sparse difference resultant of Pi (i = 0, . . . , n). Suppose ord(R,ui) =
hi for each i and h = max{hi + si}. Then R has a representation

R(u0, . . . ,un) =

n∑

i=0

hi∑

j=0

GijP
(j)
i

where Gij ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] such that deg(GijP

(j)
i ) ≤ (m+1)deg(R) ≤ (m+1)

∑n
i=0(Ji+1)+1.

Proof: It is direct consequence of Theorem 6.3 by setting Ni0 = 1.
The following result gives an effective difference Nullstellensatz under certain conditions.

Corollary 6.5 Let f0, . . . , fn ∈ F{y1, . . . , yn} have no common solutions with deg(fi) ≤ m.
Let Jac({f0, . . . , fn}\{fi}) = Ji. If the sparse difference resultant of f0, . . . , fn is nonzero,

then there exist Hij ∈ F{y1, . . . , yn} s.t.
∑n

i=0

∑Ji
j=0Hijf

(j)
i = 1 and deg(Hijf

(j)
i ) ≤ (m +

1)
∑n

i=0(Ji+1)+1.

Proof: The hypothesis implies that P(fi) form a transformally essential system. Clearly,
R(u0, . . . ,un) has the property stated in Corollary 6.4, where ui are coefficients of P(fi).
The result follows directly from Corollary 6.4 by specializing ui to the coefficients of fi.

6.2 A single exponential algorithm to compute sparse difference resultant

If a polynomial R is the linear combination of some known polynomials Fi(i = 1, . . . , s), that
is R =

∑s
i=1 HiFi, and we know the upper bounds of the degrees of R and HiFi, then a

general idea to estimate the computational complexity of R is to use linear algebra to find
the coefficients of R.

For sparse difference resultant, we already have given its degree bound and the degrees
of the expressions in the linear combination in Theorem 6.3.

Now, we give the algorithm SDResultant to compute sparse difference resultants based
on the linear algebra techniques. The algorithm works adaptively by searching for R with
an order vector (h0, . . . , hn) ∈ Nn+1

0 with hi ≤ Ji by Theorem 6.3. Denote o =
∑n

i=0 hi.
We start with o = 0. And for this o, choose one vector (h0, . . . , hn) at a time. For this
(h0, . . . , hn), we search for R from degree d = 1. If we cannot find an R with such a degree,
then we repeat the procedure with degree d+1 until d >

∏n
i=0(mi+1)hi+1. In that case, we

choose another (h0, . . . , hn) with
∑n

i=0 hi = o. But if for all (h0, . . . , hn) with hi ≤ Ji and∑n
i=0 hi = o, R cannot be found, then we repeat the procedure with o + 1. In this way, we

will find an R with the smallest order satisfying equation (16), which is the sparse resultant.

Theorem 6.6 Let P0, . . . ,Pn be a Laurent transformally essential system of form (1). De-
note P = {N(P0), . . . ,N(Pn)}, Ji = Jac(Pî), J = maxiJi and m = maxni=0deg(Pi,Y). Al-
gorithm SDResultant computes the sparse difference resultant R of P0, . . . ,Pn with the
following complexities:

1) In terms of a degree bound D of R, the algorithm needs at most O(DO(lJ)(nJ)O(lJ))
Q-arithmetic operations, where l =

∑n
i=0(li + 1) is the size of all Pi.
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Algorithm 1 — SDResultant(P0, . . . ,Pn)

Input: A generic Laurent transformally essential system P0, . . . ,Pn.
Output: The sparse difference resultant R(u0, . . . ,un) of P0, . . . ,Pn.

1. For i = 0, . . . , n, set N(Pi) =
∑li

k=0 uikNik with deg(Ni0) ≤ deg(Nik).
Set mi = deg(N(Pi)), mi0 = deg(Ni0), ui = coeff(Pi) and |ui| = li + 1.
Set sij = ord(N(Pi), yj), A = (sij) and compute Ji = Jac(A

î
).

2. Set R = 0, o = 0, m = maxi{mi}.
3. While R = 0 do

3.1. For each (h0, . . . , hn) ∈ Nn+1
0 with

∑n
i=0 hi= o and hi ≤ Ji do

3.1.1. U = ∪n
i=0u

[hi]
i , h = maxi{hi + ei}, d = 1.

3.1.2. While R = 0 and d ≤
∏n

i=0(mi + 1)hi+1 do
3.1.2.1. Set R0 to be a homogeneous GPol of degree d in U .
3.1.2.2. Set c0 = coeff(R0, U).
3.1.2.3. Set Hij(i = 0, . . . , n; j = 0, . . . , hi) to be GPols of degree

[m+ 1 +
∑n

i=0(hi + 1)mi0]d−mi − 1 in Y[h], U .
3.1.2.4. Set cij = coeff(Hij ,Y

[h] ∪ U).

3.1.2.5. Set P to be the set of coefficients of
∏n

i=0

∏hi

k=0(N
(k)
i0 )dR0−∑n

i=0

∑hi

j=0Hij(N(Pi))
(j) as a polynomial in Y[h], U .

3.1.2.6. Solve the linear equation P = 0 in variables c0 and cij .
3.1.2.7. If c0 has a nonzero solution, then substitute it into R0 to

get R and go to Step 4, else R = 0.
3.1.2.8. d:=d+1.

3.2. o:=o+1.
4. Return R.

/*/ GPol stands for generic algebraic polynomial.

/*/ coeff(P, V ) returns the set of coefficients of P as an ordinary polynomial in variables V .

2) The algorithm needs at most O(mO(nlJ2)(nJ)O(lJ)) Q-arithmetic operations.

Proof: The algorithm finds a difference polynomial P in Q{u0, . . . ,un} satisfying equation
(16), which has the smallest order and the smallest degree in those with the same order.
Existence for such a difference polynomial is guaranteed by Theorem 6.3. By the definition
of sparse difference resultant, P must be R.

We will estimate the complexity of the algorithm below. Denote D to be the degree
bound of R. By Theorem 6.3, D ≤ (m+1)

∑n
i=0(Ji+1). In each loop of Step 3, the complexity

of the algorithm is clearly dominated by Step 3.1.2, where we need to solve a system of linear
equations P = 0 over Q in c0 and cij . It is easy to show that |c0| =

(
d+L−1
L−1

)
and |cij | =(

d1−mi−1+L+n(h+1)
L+n(h+1)

)
, where L =

∑n
i=0(hi + 1)(li + 1) and d1 = [m+ 1 +

∑n
i=0(hi + 1)mi0]d.

Then P = 0 is a linear equation system with N =
(
d+L−1
L−1

)
+
∑n

i=0(hi+1)
(
d1−mi−1+L+n(h+1)

L+n(h+1)

)

variables and M =
(
d1+L+n(h+1)
L+n(h+1)

)
equations. To solve it, we need at most (max{M,N})ω
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arithmetic operations over Q, where ω is the matrix multiplication exponent and the cur-
rently best known ω is 2.376.

The iteration in Step 3.1.2 may go through 1 to
∏n

i=0(mi + 1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1),
and the iteration in Step 3.1 at most will repeat

∏n
i=0(Ji +1) ≤ (n+1)(J +1) times, where

J = maxiJi. And by Theorem 6.3, Step 3 may loop from o = 0 to
∑n

i=0(Ji + 1). The whole
algorithm needs at most

∑n
i=0(Ji+1)∑

o=0

∑

hi≤Ji∑
i hi=o

∏n
i=0(mi+1)hi+1∑

d=1

(
max{M,N}

)2.376

≤ O(DO(lJ)(nJ)O(lJ)) ≤ O(mO(nlJ2)(nJ)O(lJ))

arithmetic operations over Q. In the above inequalities, we assume that (m+1)
∑n

i=0(Ji+1)+1 ≥
l(n + 1)J and l ≥ (n + 1)2, where l =

∑n
i=0(li + 1). Our complexity assumes an O(1)-

complexity cost for all field operations over Q. Thus, the complexity follows.

Remark 6.7 As we indicated at the end of Section 3.3, if we first compute the super-
essential set T, then the algorithm can be improved by only considering the Laurent difference
polynomials Pi (i ∈ T) in the linear combination of the sparse resultant.

Remark 6.8 Algorithm SDResultant can be improved by using a better search strategy. If
d is not big enough, instead of checking d+1, we can check 2d. Repeating this procedure, we
may find a k such that 2k ≤ deg(R) ≤ 2k+1. We then bisecting the interval [2k, 2k+1] again
to find the proper degree for R. This may lead to a better complexity, which is still single
exponential.

For difference polynomials with non-vanishing degree terms, a better degree bound is
given in Corollary 6.4. Based on this bound, we can simplify the Algorithm SDResultant
to compute the sparse difference resultant by removing the computation for N(Pi) and Ni0

in the first step where Ni0 is exactly equal to 1.

Theorem 6.9 Algorithm SDResultant computes the sparse difference resultant for a trans-
formally essential system {Pi = ui0 +

∑li
k=1 uikNik} with at most O(n3.376JO(n)mO(nlJ2))

Q-arithmetic operations.

Proof: Follow the proof process of Theorem 6.6, it can be shown that the complexity is
O(n3.376JO(n)mO(nlJ2)).

7 Difference resultant

In this section, we introduce the notion of difference resultant and prove its basic properties.

Definition 7.1 Let ms,r be the set of all difference monomials in Y of order ≤ s and
degree ≤ r. Let u = {uM}M∈ms,r be a set of difference indeterminates over Q. Then,
P =

∑
M∈ms,r

uMM is called a generic difference polynomial of order s and degree r.
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Throughout this section, a generic difference polynomial is assumed to be of degree
greater than zero. For any vector α = (a1, . . . , am) ∈ Zm and X = (x1, . . . , xm), denote
xa11 xa22 · · · xamm by Xα. Let

Pi = ui0 +
∑

α ∈ Z
n(si+1)
≥0

1 ≤ |α| ≤ mi

uiα(Y
[si])α (i = 0, 1, . . . , n) (17)

be n + 1 generic difference polynomials in Y of order si, degree mi and coefficients ui.
Since {1, y1, . . . , yn} is contained in the support of each Pi, {P0,P1, . . . ,Pn} is a super-
essential system and the sparse difference resultant ResP0,...,Pn(u0, . . . ,un) exists. We define
ResP0,...,Pn(u0, . . . ,un) to be the difference resultant of P0, . . . ,Pn.

Because each generic difference polynomial Pi contains all difference monomials of order
bounded by si and total degree at most mi, the difference resultant is sometimes called the
dense difference resultant, in contrary to the sparse difference resultant.

The difference resultant satisfies all the properties we have proved for sparse difference
resultants in previous sections. Apart from these, the difference resultant possess other better
properties to be given in the rest of this section.

7.1 Exact Order and Degree

In this section, we will give the precise order and degree for the difference resultant, which
is of BKK-style [1, 8].

Theorem 7.2 Let Pi (i = 0, . . . , n) be generic difference polynomials of form (17) with
order si, degree mi, and coefficients ui, respectively. Let R(u0, . . . ,un) be the difference
resultant of P0, . . . ,Pn. Denote s =

∑n
i=0 si. Then R(u0, . . . ,un) is also the algebraic sparse

resultant of P
[s−s0]
0 , . . . ,P

[s−sn]
n treated as polynomials in Y[s], and for each i ∈ {0, 1, . . . , n}

and k = 0, . . . , s− si,

ord(R,ui) = s− si (18)

deg(R,u
(k)
i ) = M

(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
(19)

where Qjl is the Newton polytope of P
(l)
j as a polynomial in Y[s] and u

(k)
i = {u

(k)
iα , uiα ∈ ui}.

Proof: Regard P
(k)
i (i = 0, . . . , n; k = 0, . . . , s − si) as polynomials in the n(s + 1) variables

Y[s] = {y1, . . . , yn, y
(1)
1 , . . . , y

(1)
n , . . . , y

(s)
1 , . . . , y

(s)
n }, and we denote its support by Bik. Since

the coefficients u
(k)
i of P

(k)
i can be treated as algebraic indeterminates, P

(k)
i are generic sparse

polynomials with supports Bik, respectively. Now we claim that B is strong essential, that is

C1) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s− si} is an essential set.

C2) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s− si} jointly spans the affine lattice Zn(s+1).

Note that |B| = n(s+1)+ 1. To prove C1), it suffices to show that any n(s+1) distinct

P
(k)
i are algebraically independent. Without loss of generality, we prove that for a fixed
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l ∈ {0, . . . , s − s0},

Sl = {(P
(k)
i )1≤i≤n;0≤k≤s−si,P0, . . . ,P

(l−1)
0 ,P

(l+1)
0 , . . . ,P

(s−s0)
0 }

is an algebraically independent set. Clearly, {y
(k)
j , . . . , y

(si+k)
j

∣∣j = 1, . . . , n} is a subset of the

support of P
(k)
i . Now we choose a monomial from each P

(k)
i and denote it by m(P

(k)
i ). Let

m(P
(k)
0 ) =

{
y
(k)
1 0 ≤ k ≤ l − 1

y
(s0+k)
1 l + 1 ≤ k ≤ s− s0

and m(P
(k)
1 ) =

{
y
(l+k)
1 0 ≤ k ≤ s0

y
(s1+k)
2 s0 + 1 ≤ k ≤ s− s1

.

For each i ∈ {2, . . . , n}, let

m(P
(k)
i ) =

{
y
(k)
i 0 ≤ k ≤

∑i−1
j=0 sj

y
(si+k)
i+1

∑i−1
j=0 sj + 1 ≤ k ≤ s− si

.

So m(Sl) is equal to {y
[s]
j : 1 ≤ j ≤ n}, which are algebraically independent over Q.

Thus, the n(s + 1) members of Sl are algebraically independent over Q. For if not, all the

P
(k)
i −u

(k)
i0 (P

(k)
i ∈ Sl) are algebraically dependent over Q(v) where v = ∪n

i=0u
[s−si]
i \{u

[s−si]
i0 }.

Now specialize the coefficient ofm(P
(k)
i ) in P

(k)
i to 1, and all the other coefficients of P

(k)
i −u

(k)
i0

to 0, by the algebraic version of Lemma 2.2, {m(P
(k)
i ) : P

(k)
i ∈ Sl} are algebraically dependent

over Q, which is a contradiction. Thus, claim C1) is proved. Claim C2) follows from the fact

that 1 and Y[s] are contained in the support of P
[s−s0]
0 .

By C1) and C2), the sparse resultant of (P
(k)
i )0≤i≤n;0≤k≤s−si exists and we denote it

by G. Then (G) =
(
(P

(k)
i )0≤i≤n;0≤k≤s−si

)⋂
Q[u

[s−s0]
0 , · · · ,u

[s−sn]
n ], and by Theorem 5.8,

deg(G,u
(k)
i ) = M

(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . , Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
, where u

(k)
i = (u

(k)
i0 ,

. . . , u
(k)
iα , . . .). The theorem will be proved if we can show that G = c ·R for some c ∈ Q.

Since G ∈ [P0, . . . ,Pn] and ord(G,ui) = s − si, by Lemma 3.9, ord(R,ui) ≤ s − si for

each i = 0, . . . , n. If for some i, ord(R,ui) = hi < s − si, then R ∈ ((P
(k)
j )j 6=i;0≤k≤s−sj ,Pi,

. . . ,P
(hi)
i ), a contradiction to C1). Thus, ord(R,ui) = s − si and R ∈ (G). Since R is

irreducible, there exists some c ∈ Q such that G = c · R. So R is equal to the algebraic

sparse resultant of P
[s−s0]
0 , . . . ,P

[s−sn]
n .

As a direct consequence of the above theorem and the determinant representation for
algebraic sparse resultant given by D’Andrea [9], we have the following result.

Corollary 7.3 The difference resultant for generic difference polynomials Pi, i = 0, . . . , n
can be written as the form det(M1)/det(M0) where M1 and M0 are matrixes whose elements
are coefficients of Pi and their transforms up to the order s− si and M0 is a minor of M1.

Based on the matrix representation given in the above corollary, the efficient algorithms
given by Canny, Emiris, and Pan [12, 14] can be used to compute the difference resultant.

Corollary 7.4 The degree of R in each coefficient set ui is

deg(R,ui) =

s−si∑

k=0

M
(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
,

36



and the total degree of R is

deg(R) =

n∑

i=0

s−si∑

k=0

M
(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
.

Remark 7.5 From the proof of Theorem 7.2, we can see that for each i and 0 ≤ k ≤ s− si,

deg(R,u
(k)
i ) > 0. Furthermore, by Lemma 4.12, deg(R, u

(k)
i0 ) > 0 and deg(R, u

(k)
iα ) > 0 for

each α. In particular, deg(R, ui0) > 0 and deg(R, uiα) > 0.

Example 7.6 Consider two generic difference polynomials of order one and degree two in
one indeterminate y:

P0 = u00 + u01y + u02y
(1) + u03y

2 + u04yy
(1) + u05(y

(1))2,

P1 = u10 + u11y + u12y
(1) + u13y

2 + u14yy
(1) + u15(y

(1))2.

Then the degree bound given by Theorem 6.3 is deg(R) ≤ (2 + 1)4 = 81. By Theo-
rem 7.2, deg(R,u0) = M(Q10,Q11,Q00) + M(Q10,Q11,Q01) = 8 + 8 = 16 and conse-
quently deg(R) = 32, where Q00 = Q10 = conv{(0, 0, 0), (2, 0, 0), (0, 2, 0)}, Q01 = Q11 =
conv{(0, 0, 0), (0, 2, 0), (0, 0, 2)}, and conv(·) means taking the convex hull in R3. By the
proof of Theorem 7.2, R is the sparse resultant of P0, σ(P0),P1, σ(P1).

7.2 Poisson-type product formula

In this section, we will give a Poisson-type product formula for difference resultant.
Let ũ = ∪n

i=0ui \ {u00} and Q〈ũ〉 be the transformally transcendental extension of Q in

the usual sense. Let Q0 = Q〈ũ〉(u00, . . . , u
(s−s0−1)
00 ). Here, Q0 is not necessarily a difference

overfield of Q, for the transforms of u00 are not defined. In the following, we will follow Cohn
[5] to obtain algebraic extensions Gi of Q0 and define transforming operators to make Gi

difference fields. Consider R as an irreducible algebraic polynomial r(u
(s−s0)
00 ) in Q0[u

(s−s0)
00 ].

In a suitable algebraic extension field of Q0, r(u
(s−s0)
00 ) = 0 has t0 = deg(r, u

(s−s0)
00 ) =

deg(R, u
(s−s0)
00 ) roots γ1, . . . , γt0 . Thus

R(u0,u1, . . . ,un) = A

t0∏

τ=1

(u
(s−s0)
00 − γτ ) (20)

where A ∈ Q0. Let Iu = [P0, . . . ,Pn] ∩ Q{u0, . . . ,un}. By the definition of the difference
resultant, Iu is an essential reflexive prime difference ideal in the decomposition of {R} which
is not held by any difference polynomial of order less than s−s0 in u00. SupposeR,R1,R2, . . .
is a basic sequence2 of R corresponding to Iu. That is, Iu =

⋃
k≥0 asat(R,R1, . . . ,Rk).

Regard all the Ri as algebraic polynomials over the coefficient field Q〈ũ〉. Denote γτ0 = γτ .

Clearly, u
(s−s0)
00 = γτ0 is a generic zero of asat(R). Suppose γτi (i ≤ k) are found in some

2For the rigorous definition of basic sequence, please refer to [5]. Here, we list its basic properties: i) For
each k ≥ 0, ord(Rk, u00) = s − s0 + k and R,R1, . . . ,Rk is an irreducible algebraic ascending chain, and ii)⋃

k≥0 asat(R,R1, . . . ,Rk) is a reflexive prime difference ideal.

37



algebraic extension field of Q0 such that u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k) is a generic zero of

asat(R,R1, . . . ,Rk). Then let γτ,k+1 be an element such that u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k+1)

is a generic zero of asat(R,R1, . . . ,Rk,Rk+1). Clearly, γτ,k+1 is also algebraic over Q0. Let

Gτ = Q〈ũ〉(u00, . . . , u
(s−s0−1)
00 , γτ , γτ1, . . .). Clearly, Gτ is an algebraic extension of Q0 and Gτ

is algebraically isomorphic to the quotient field of Q{u0, . . . ,un}/Iu. Since the quotient field
of Q{u0, . . . ,un}/Iu is also a difference field, we can introduce a transforming operator στ
into Gτ to make it a difference field such that the above isomorphism becomes a difference
one. That is, στ |Q0 = σ|Q0 and

σk
τ (u00) =

{
u
(k)
00 0 ≤ k ≤ s− s0 − 1

γτ,k−s−s0 k ≥ s− s0

In this way, (Gτ , στ ) is a difference field.
Let F be a difference polynomial in Q{u0,u1, . . . ,un} = Q{ũ, u00}. For convenience,

by the symbol F
∣∣
u
(s−s0)
00 =γτ

, we mean substituting u
(s−s0+k)
00 by σk

τγτ = γτk (k ≥ 0) into F .

Similarly, by saying F vanishes at u
(s−s0)
00 = γτ , we mean F

∣∣
u
(s−s0)
00 =γτ

= 0. The following

lemma is a direct consequence of the above discussion.

Lemma 7.7 F ∈ Iu if and only if F vanishes at u
(s−s0)
00 = γτ .

Proof: Since Iu =
⋃

k≥0 asat(R,R1, . . . ,Rk) and u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k) is a generic zero

of asat(R,R1, . . . ,Rk), the lemma follows.

Remark 7.8 In order to make Gτ a difference field, we need to introduce a transform-
ing operator στ which is closely related to γτ . Since even for a fixed τ, generic zeros of

asat(R,R1, . . . ,Rk) beginning from u
(s−s0)
00 = γτ may not be unique, the definition of στ also

may not be unique, which is different from the differential case. In fact, it is a common
phenomena in difference algebra. Here, we just choose one, for they do not influence the
following discussions.

Now we give the following Poisson type formula for the difference resultant.

Theorem 7.9 Let R(u0, . . . ,un) be the difference resultant of P0, . . . ,Pn. Let deg(R, u
(s−s0)
00 )

= t0. Then there exist ξτk (τ = 1, . . . , t0; k = 1, . . . , n) in overfields (Gτ , στ ) of (Q〈ũ〉, σ) such
that

R = A

t0∏

τ=1

P0(ξτ1, . . . , ξτn)
(s−s0), (21)

where A ∈ Q〈u1, . . . ,un〉[u
[s−s0]
0 \u

(s−s0)
00 ]. Note that (21) is formal and should be understood

in the following precise meaning: P0(ξτ )
(s−s0) △

= σs−s0u00 + σs−s0
τ (

∑
α∈B0\{0}

u0α(ξ
[s−s0]
τ )α),

where ξτ = (ξτ1, . . . , ξτn).

Proof: By Theorem 4.3, there exists m ∈ N such that

u00
∂R

∂u00
+

∑

α

u0α
∂R

∂u0α
= mR.
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Setting u
(s−s0)
00 = γτ in both sides of the above equation, we have

u00
∂R

∂u00

∣∣∣
u
(s−s0)
00 =γτ

+
∑

α

u0α
∂R

∂u0α

∣∣∣
u
(s−s0)
00 =γτ

= 0.

Let ξτα = ( ∂R
∂u0α

/ ∂R
∂u00

)
∣∣
u
(s−s0)
00 =γτ

. Then u00 = −
∑

α u0αξτα with u
(s−s0)
00 = γτ . That is,

γτ = −σs−s0
τ (

∑
α u0αξτα) = −(

∑
α u0αξτα)

(s−s0). Thus,

R = A

t0∏

τ=1

(u00 +
∑

α

u0αξτα)
(s−s0).

Suppose P0 = u00 +
∑n

j=1 u0j0yj + T0. Let ξτj = ( ∂R
∂u0j0

/ ∂R
∂u00

)
∣∣
u
(s−s0)
00 =γτ

(j = 1, . . . , n) and

ξτ = (ξτ1, . . . , ξτn). It remains to show that ξτα = (ξ
[s0]
τ )α.

Let ζi = −
∑

α uiα(Y
[si])α (i = 0, . . . , n). Clearly, ζ = (u, ζ0, . . . , ζn) is a generic zero of

Iu = [P0, . . . ,Pn]∩Q{u0, . . . ,un}, where u = ∪n
i=1ui\{ui0}. For each (Y[s0])α =

∏n
j=1(y

(k)
j )djk ,

by equation (8), (Y[s0])α = ∂R
∂u0α

/
∂R
∂u00

=
n∏

j=1

s0∏
k=0

((
∂R

∂u0j0

/
∂R
∂u00

)(k))djk
, where ∂R

∂u0α
= ∂R

∂u0α

∣∣∣
ui0=ζi

.

So ∂R
∂u0α

n∏
j=1

s0∏
k=0

((
∂R
∂u00

)(k))djk
− ∂R

∂u00

n∏
j=1

s0∏
k=0

((
∂R

∂u0j0

)(k))djk
∈ Iu. By Lemma 7.7, ξτα =

n∏
j=1

s0∏
k=0

(
ξ
(k)
τj

)djk = (ξ
[s0]
τ )α. Thus, (21) follows.

Theorem 7.10 The points ξτ = (ξτ1, . . . , ξτn) (τ = 1, . . . , t0) in (21) are generic zeros of
the difference ideal [P1, . . . ,Pn] ⊂ Q〈u1, . . . ,un〉{Y}.

Proof: Clearly, ξτ are n-tuples over Q〈u1, . . . ,un〉. For each i = 1, . . . , n, rewrite Pi =

ui0 +
∑
α
uiα

n∏
j=1

si∏
k=1

(y
(k)
j )αjk . Since ζi = −

∑
α
uiα

n∏
j=1

si∏
k=1

(y
(k)
j )αjk and yj = ∂R

∂u0j0

/
∂R
∂u00

, ζi +

∑
α

uiα
n∏

j=1

si∏
k=1

(
( ∂R
∂u0j0

/
∂R
∂u00

)(k)
)αjk = 0. Let ajk = maxααjk. Then ui0

n∏
j=1

si∏
k=1

(
( ∂R
∂u00

)(k)
)ajk +

∑
α
uiα

n∏
j=1

si∏
k=1

(
( ∂R
∂u0j0

)(k)
)αjk

(
( ∂R
∂u00

)(k)
)ajk−αjk ∈ Iu. Thus, by Lemma 7.7, Pi(ξτ ) = ui0 +

∑
α
uiα

n∏
j=1

si∏
k=1

(ξ
(k)
τj )

αjk = 0 (i = 1, . . . , n).

On the other hand, suppose F ∈ Q〈u1, . . . ,un〉{Y} vanishes at ξτ . Without loss of
generality, suppose F ∈ Q{u1, . . . ,un,Y}. Clearly, P1, . . . ,Pn constitute an ascending chain
in Q{u1, . . . ,un,Y} with ui0 as leaders. Let G be the difference remainder of F with respect
to this ascending chain. Then G is free from ui0 and F ≡ Gmod [P1, . . . ,Pn]. Then G(ξτ ) =
G(ũ; ξτ1, . . . , ξτn) = 0, where ũ = ∪n

i=1ui\{ui0}. So there exist ak ∈ N such that G1 =∏
k

(
( ∂R
∂u00

)(k)
)akG(ũ;Y) ∈ Iu. Thus, G1 vanishes at ui0 = ζi (i = 1, . . . , n) while ∂R

∂u00
does

not. It follows that G(ũ;Y) ≡ 0 and F ∈ [P1, . . . ,Pn]. So ξτ are generic zeros of [P1, . . . ,Pn] ⊂
Q〈u1, . . . ,un〉{Y}.

By Theorems 7.9 and 7.10, we can see that difference resultants have Poisson-type product
formula, which is similar to their algebraic and differential analogues.
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We conclude this section by proving the following theorem, which explores the relation-
ship between the difference resultant and the solvability of the given systems.

Theorem 7.11 Let R be the difference resultant of P0, . . . ,Pn. Suppose when each ui is spe-
cialized to vi, Pi is specialized to Pi. If P0 = · · · = Pn = 0 has a common difference solution,
then R(v0, . . . ,vn) = 0. Moreover, if R(v0, . . . ,vn) = 0 and ∂R

∂u00
(v0, . . . ,vn) 6= 0, then P0 =

· · · = Pn = 0 has at most one solution (ȳ1, . . . , ȳn) with each ȳk =
(

∂R
∂u0k

/
∂R
∂u00

)
(v0, . . . ,vn),

where u0k is the coefficient of yk in P0.

Proof: Suppose Pi = ui0 + Ti (i = 1, . . . , n) and u = ∪n
i=0ui\{ui0}. Clearly, (Y;u,−T0(Y),

. . . ,−Tn(Y)) is a generic zero of [P0, . . . ,Pn] ⊂ Q{Y;u0, . . . ,un}. Taking the partial deriva-
tive of R(u;−T0(Y), . . . ,−Tn(Y)) = 0 w.r.t. u0k, we can show that ∂R

∂u00
yk − ∂R

∂u0k
∈

[P0, . . . ,Pn] (k = 1, . . . , n). If P0 = · · · = Pn = 0 has a common solution ξ, then (ξ;v0, . . . ,vn)
is a common solution of [P0, . . . ,Pn]. Since R ∈ [P0, . . . ,Pn], R must vanish at (v0, . . . ,vn).
Now suppose R(v0, . . . ,vn) = 0 and ∂R

∂u00
(v0, . . . ,vn) 6= 0. If (ȳ1, . . . , ȳn) is a common

solution of Pi = 0, then each ∂R
∂u00

yk − ∂R
∂u0k

vanishes at (ȳ1, . . . , ȳn;v0, . . . ,vn). Thus,

ȳk =
(

∂R
∂u0k

/
∂R
∂u00

)
(v0, . . . ,vn), since

∂R
∂u00

(v0, . . . ,vn) 6= 0. Hence, the second assertion holds.

Remark 7.12 If Problem 3.16 can be solved positively, then Theorem 7.11 can be strength-
ened as follows: If R(v0, . . . ,vn) = 0 and ∂R

∂u00
(v0, . . . ,vn) 6= 0, then P0 = · · · = Pn = 0 has

a unique solution (ȳ1, . . . , ȳn) with each ȳk =
(

∂R
∂u0k

/
∂R
∂u00

)
(v0, . . . ,vn).

8 Conclusion and problem

In this paper, we first introduce the concepts of Laurent difference polynomials and Laurent
transformally essential systems and give a criterion for a difference polynomial system to be
Laurent transformally essential in terms of its supports. Then the sparse difference resultant
for a Laurent transformally essential system is defined and its basic properties are proved.
Furthermore, order and degree bounds for the sparse difference resultant are given. Based on
these bounds, an algorithm to compute the sparse difference resultant is proposed, which is
single exponential in terms of the order, the number of variables, and the size of the Laurent
transformally essential system. Besides these, the difference resultant is introduced and its
basic properties are given, such as its precise order and BKK style degree, determinant
representation, and a Poisson-type product formula.

We now propose several questions for further study apart from Problem 3.16.
The degree of the algebraic sparse resultant is equal to the mixed volume of certain

polytopes generated by the supports of the polynomials as shown in [29] or [18, p.255]. And
Theorem 7.2 shows that the degree of difference resultants is exactly of such BKK-style. It
is desirable to obtain such a bound for sparse difference resultant. For more details, see
Remark 5.12.

There exist very efficient algorithms to compute algebraic sparse resultants [11, 12, 14, 9],
which are based on matrix representations for the resultant. How to apply the principles
behind these algorithms to compute sparse difference resultants is an important problem.
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Algebraic resultant and sparse resultant have many interesting applications [3, 8, 13, 18].
It is desirable to develop the corresponding theory for difference polynomial systems based
difference resultant.
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[19] W.V.D. Hodge and D. Pedoe. Methods of Algebraic Geometry, Volume I. Cambridge
Univ. Press, 1968.

[20] E. Hrushovski. The elementary theory of the Frobenius automorphisms. Available from
http://www.ma.huji.ac.il/˜ ehud/.

[21] J. P. Jouanolou. Le formalisme du rèsultant. Advances in Mathematics, 90(2), 117-263,
1991.

[22] M. Kapranov, B. Sturmfels, A Zelevinsky. Chow Polytopes and General Resultants.
Duke Math. J., 67, 189-218, 1992.

[23] B. A. Lando. Jacobi’s Bound for the Order of Systems of First Order Differential Equa-
tions. Trans. Amer. Math. Soc. 152, 119-135, 1970.

[24] A. Levin. Difference Algebra. Springer, 2008.

[25] W. Li and X.S. Gao. Differential Chow Form for Projective Differential Variety. Journal
of Algebra, 370: 344-360, 2012.

[26] W. Li, X. S. Gao, C. M. Yuan. Sparse Differential Resultant. Proc. ISSAC 2011, 225-232,
ACM Press, New York, 2011.

[27] W. Li, C. M. Yuan, X. S. Gao. Sparse Differential Resultant for Laurent Differential
Polynomials. arXiv:1111.1084v3, 70 pages, 2012.

[28] W. Li, C. M. Yuan, X. S. Gao. Sparse Difference Resultant, Proc. ISSAC 2013, Boston,
ACM Press, 2013.

[29] P. Pedersen and B. Sturmfels. Product Formulas for Resultants and Chow Forms. Math-
ematische Zeitschrift, 214(1), 377-396, 1993.

[30] S. L. Rueda. Linear Sparse Differential Resultant Formulas. Linear Algebra and its
Applications. 438(11), 4296-4321, 2013.

[31] S. L. Rueda and J. R. Sendra. Linear complete differential resultants and the impliciti-
zation of linear DPPEs. Journal of Symbolic Computation, 45(3), 324-341, 2010.

[32] L. Shen, E. Chionh, X. S. Gao, J. Li. Proper Reparametrization for inherently improper
unirational varieties. Journal of Systems Science and Complexity, 24(2), 367-380, 2011.

[33] B. Sturmfels. Sparse Elimination Theory. In Computational Algebraic Geometry and
Commutative Algebra, Eisenbud, D., Robbiano, L. eds. 264-298, Cambridge University
Press, 1993.

42

http://www.ma.huji.ac.il/~
http://arxiv.org/abs/1111.1084


[34] B. Sturmfels. On The Newton Polytope of the Resultant. Journal of Algebraic Combi-
natorics, 3, 207-236, 1994.

[35] W. Vogel. Lectures on Results on Bezout’s Theorem. Springer-Verlag, Berlin-Heidelberg-
New York-Tokyo, 1984.

[36] M. Wibmer. Lecture Notes on Algebraic Difference Equations. Preprint, February, 2013.

[37] W. T. Wu. Mathematics Machenization. Science Press/Kluwer, Beijing, 2003.

[38] Z. Y. Zhang, C. M. Yuan, X. S. Gao. Matrix Formula of Differential Resultant for First
Order Generic Ordinary Differential Polynomials. arXiv:1204.3773, 2012.

43

http://arxiv.org/abs/1204.3773

	1 Introduction
	2 Preliminaries
	2.1 Difference polynomial ring
	2.2 Characteristic set for a difference polynomial system

	3 Sparse difference resultant
	3.1 Laurent difference polynomial
	3.2 Definition of sparse difference resultant
	3.3 A criterion for Laurent transformally essential system in terms of supports

	4 Basic properties of sparse difference resultant
	4.1 Sparse difference resultant is transformally homogeneous 
	4.2 Condition for existence of nonzero solutions
	4.3 Order bound in terms of Jacobi number
	4.4 Effective order bound in terms of Jacobi number

	5 Sparse difference resultant as algebraic sparse resultant
	5.1 Preliminary on algebraic sparse resultant
	5.2 Sparse difference resultant as algebraic sparse resultant

	6 A single exponential algorithm to compute the sparse difference resultant
	6.1 Degree bound for sparse difference resultant
	6.2 A single exponential algorithm to compute sparse difference resultant

	7 Difference resultant
	7.1 Exact Order and Degree
	7.2 Poisson-type product formula

	8 Conclusion and problem

