
ar
X

iv
:1

30
1.

24
86

v1
 [

cs
.S

C
]

11
 J

an
 2

01
3

Finding Hyperexponential Solutions of Linear ODEs by
Numerical Evaluation

Fredrik Johansson
∗

RISC
Johannes Kepler University

4040 Linz, Austria

fjohanss@risc.jku.at

Manuel Kauers
∗

RISC
Johannes Kepler University

4040 Linz, Austria

mkauers@risc.jku.at

Marc Mezzarobba
Inria, Univ. Lyon, AriC, LIP

†

ENS de Lyon, 46 allée d’Italie
69364 Lyon Cedex 07, France

marc@mezzarobba.net

ABSTRACT
We present a new algorithm for computing hyperexponen-
tial solutions of ordinary linear differential equations with
polynomial coefficients. The algorithm relies on interpret-
ing formal series solutions at the singular points as analytic
functions and evaluating them numerically at some common
ordinary point. The numerical data is used to determine a
small number of combinations of the formal series that may
give rise to hyperexponential solutions.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Closed form solutions, D-finite equations, Effective analytic
continuation

1. INTRODUCTION
We consider linear differential operators

P = prDr + pr−1Dr−1 + · · · + p0

where p0, . . . , pr are polynomials and D represents the stan-
dard derivation d

dx
. Such operators act in a natural way

on elements of a differential ring containing the polynomi-
als. An object y is called a solution of the operator if P
applied to y yields zero. We are interested in finding the hy-
perexponential solutions of a given operator. An object y is

∗Supported by the Austrian Science Fund (FWF) grant
Y464-N18.
†UMR 5668 CNRS – ENS Lyon – Inria – UCBL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

called hyperexponential if the quotient D(y)/y can be identi-
fied with a rational function. Typical examples are rational
functions (e.g. (5x + 3)/(3x + 5)), radicals (e.g.

√
x + 1), ex-

ponentials (e.g. exp(3x2 − 4) or exp(1/x)), or combinations
of these (e.g.

√
x + 1 exp(x9/(x − 1))). Equivalently, y is

called hyperexponential if there is some first order operator
q1D + q0 with q0, q1 polynomials which maps y to zero. If
we regard differential operators as elements of an operator
algebra C(x)[D], then there is a one-to-one correspondence
between the hyperexponential solutions y of an operator P
and its first order right hand factors. In other words, if y is
a hyperexponential term with (q1D + q0) · y = 0, then y is
a solution of P if and only if there exist rational functions
u0, . . . , ur−1 such that

P = (ur−1Dr−1 + ur−2Dr−2 + · · · + u0)(q1D + q0).

Algorithms for finding the hyperexponential solutions of a
linear differential equation (or equivalently, the first order
right hand factors of the corresponding operators) are known
since long. They are needed as subroutine in algorithms for
factoring operators or for finding Liouvillean solutions. See
Chapter 4 of [11] for details and references.

Classical algorithms first compute “local solutions” at sin-
gular points (cf. Section 2.3 below) and then test for each
combination of local solutions whether it gives rise to a hy-
perexponential solution. This leads to a combinatorial ex-
plosion with exponential runtime. The situation is similar to
classical algorithms for factoring polynomials over Q, which
first compute the irreducible factors modulo a prime and
then test for each combination whether it gives rise to a
factor in Q[x].

The algorithm of van Hoeij [12] avoids the combinatorial
explosion as follows. It picks one local solution and consid-
ers the operator Q = q1D + q0 with q1, q0 ∈ C((x)) which
annihilates it. This operator is a right factor of P , though
not with rational coefficients. The algorithm then constructs
(if possible) a left multiple B of Q with rational coefficients
of order at most r − 1. This leads to a nontrivial factor-
ization P = AB in C(x)[D]. The procedure is then ap-
plied recursively to A and B until a complete factorization
is found. The first order factors in this factorization give
rise to at most r hyperexponential candidate solutions (pos-
sibly up to multiplication by a rational function). These are
then checked in a second step. Van Hoeij’s algorithm re-
minds of the polynomial factorization algorithm of Lenstra,
Lenstra, Lovász [6, 15], which picks one modular factor and
constructs (if possible) a multiple of this factor with integer

http://arxiv.org/abs/1301.2486v1

coefficients but smaller degree than the original polynomial.
This multiple is then a proper divisor in Q[x].

The algorithm we propose below avoids the combinato-
rial explosion in a different way. We start from the local
solutions and regard them as asymptotic expansions of com-
plex functions. By means of effective analytic continuation
and arbitrary-precision numerical evaluation, we compute
the values of these functions at some common ordinary ref-
erence point. Then a linear algebra algorithm is used to
determine a small list of possible combinations of local solu-
tions that may give rise to hyperexponential ones, possibly
up to multiplication by a rational function. These are then
checked in a second step. Our approach was motivated by
van Hoeij’s polynomial factorization algorithm [14], which
associates to every modular factor a certain vector and then
uses lattice reduction to determine a small list of combina-
tions that may give rise to proper factors.

Although our algorithm avoids the combinatorial explo-
sion problem, we do not claim that it runs in polynomial
time. Indeed, no polynomial time algorithm can be expected
because there are operators P which have hyperexponential
solutions y that are exponentially larger than P . Also van
Hoeij [12] makes no formal statement about the complexity
of his algorithm. It is clear though that his algorithm is su-
perior to the naive algorithm. Similarly, we believe that our
algorithm has chances to outperform van Hoeij’s algorithm,
at least in examples that are not deliberately designed to ex-
hibit worst case performance. The reason is partly that dur-
ing the critical combination phase we only work with floating
point numbers of moderate precision while van Hoeij’s algo-
rithm in general needs to do arithmetic in algebraic number
fields whose degrees may grow during the computation. An-
other advantage of our algorithm is that it is conceptually
simpler than van Hoeij’s, at least if we take for granted that
we can compute high-precision evaluations of D-finite func-
tions.

2. PRELIMINARIES
In this section, we recall some results from the literature

and introduce notation that will be used in subsequent sec-
tions.

2.1 Differential Fields and Operator Algebras
A differential ring/field is a pair (K, D) where K is a

ring/field and D : K → K is a derivation on K, i.e., a map
satisfying D(a+b) = D(a)+D(b) and D(ab) = D(a)b+aD(b)
for all a, b ∈ K. Throughout this paper, we consider the dif-
ferential field K = C(x), where C is some (computable)
subfield of C, together with the derivation D : K → K de-
fined by D(c) = 0 for all c ∈ C and D(x) = 1. For simplicity,
we assume throughout that C is algebraically closed.

A differential ring/field E is called an extension of K if
K ⊆ E, and the derivation of E restricted to K agrees with
the derivation of K.

By K[D] we denote the set of all polynomials in the in-
determinate D with coefficients in K. Addition in K[D] is
defined in the usual way, and multiplication is defined sub-
ject to the commutation rule Da = aD + D(a) for a ∈ K.
The elements of K[D] are called operators, and they act
on the elements of some extension E of K in the obvious
way: If P = p0 + p1D + · · · + prDr is an operator of or-
der r and y ∈ E, then P · y :=

∑r

i=1
piD

i(y) ∈ E. The
noncommutative multiplication is compatible with operator

application in the sense that we have (P Q) · y = P · (Q · y)
for all P, Q ∈ K[D] and all y ∈ E.

The elements y ∈ E such that P · y = 0 form a C-vector
space V with dim V ≤ r. By making E sufficiently large it
can always be assumed that dim V = r.

2.2 Hyperexponential Terms
Let E be an extension of K. An element h ∈ E \ {0} is

called hyperexponential over K if D(h)/h ∈ K. Equivalently,
h is hyperexponential if Q·h = 0 for some nonzero first order
operator Q ∈ K[D].

Two hyperexponential terms h1, h2 are called equivalent
if h1/h2 ∈ K. For example, the terms exp(3x2 − x) and
(1 − 2x)2 exp(3x2 − x) are equivalent, but exp(3x2 − x) and

(1 − 2x)
√

2 exp(3x2 − x) are not. (Here and below, we use
standard calculus notation to refer to elements of some ex-
tension E on which the derivation acts as the notation sug-
gests, e.g. D(exp(3x2 − x)) = (6x − 1) exp(3x2 − x).)

Every hyperexponential term can be written in the form
h = exp(

∫
v), where v is a rational function. The additive

constant of the integral amounts to a multiplicative constant
for h, which is irrelevant in our context, because P · h = 0
if and only if P · (ch) = 0 for every c ∈ C \ {0}. If we con-
sider the partial fraction decomposition of v and integrate
it termwise, we obtain something of the form

g +

n∑

i=1

γi log(pi)

with g ∈ K, γ1, . . . , γn ∈ C and monic square free pairwise
coprime polynomials pi ∈ C[x]. In terms of this representa-
tion, two hyperexponential terms are equivalent if the differ-
ence of the corresponding rational functions g is a constant
and any two corresponding coefficients γi differ by an inte-
ger.

The equivalence class of a hyperexponential term h is
called the exponential part of h. The motivation for this ter-
minology is that when we are searching for some hyperexpo-
nential solution h of P and we already know its equivalence
class, then we can take an arbitrary element h0 from this
class and make an ansatz h = uh0 for some rational func-
tion u ∈ K. The operator P̃ := P ⊗

(
D − D(1/h0)

1/h0

)
∈ K[D]

then has the property that u is a solution of P̃ if and only if
uh0 is a solution of P . This reduces the problem to finding
rational solutions, which is well understood and will not be
discussed here [1, 11].

2.3 Local Solutions
Consider an operator P ∈ C(x)[D] of order r. By clear-

ing denominators, if necessary, we may assume that P ∈
C[x][D], say P = prDr + · · · + p0 with pr 6= 0. A point
z ∈ C∪ {∞} is called singular if z is a root of pr, or z = ∞.
A point which is not singular is called ordinary. Note that
there are only finitely many singular points, and that we
include the “point at infinity” always among the singular
points.

If z = 0 is an ordinary point then P admits r linearly inde-
pendent power series solutions. If z = 0 is a singular point,
it is still possible to find r linearly independent generalized
series solutions of the form

xα exp(u(x−1/s))

m∑

k=0

bk(x1/s) log(x)k (1)

where α ∈ C, u ∈ C[x] with u(0) = 0, s ∈ N, m ∈ N

and b0, . . . , bm ∈ C[[x]]. We call these solutions the local
solutions at 0. The computation of such solutions is well-
known and will not be discussed here [13, 11].

Two series as in (1) are called equivalent if they have the
same u and s and the difference of the respective values of
α is in 1

s
Z. The equivalence classes of generalized series un-

der this equivalence relation are called the exponential parts
of the series. Adopting van Hoeij’s notation and defining
Exp(e) := exp(

∫
e
x

) for e ∈ C[x−1/s], we have that Exp(e1)

and Exp(e2) are equivalent iff e1 − e2 ∈ 1
s
Z. Note that if

m = 0 and s = 1, two series are equivalent iff their quotient
can be identified with a formal Laurent series. We will from
now on make no notational distinction between Exp(e) and
its equivalence class.

A point z 6= 0 can be moved to the origin by the change
of variables x̃ = x − z (if z ∈ C) or x̃ = 1/x (if z = ∞). If
P̃ is the operator obtained from P by replacing x by x̃ + z
or 1/x̃, then a local solution of P ∈ C[x][D] at z is defined
as the local solution of P̃ ∈ C[x̃][D] at 0.

Throughout the rest of this paper, we will use the follow-
ing notation. P is some operator in C[x][D] of order r, by
z1, . . . , zn−1 ∈ C we denote its finite singular points, zn = ∞.
We write x̃i = x − zi (i = 1, . . . , n − 1) and x̃n = 1/x for
the variables with respect to which the singularities at zi ap-
pear at the origin. For i = 1, . . . , n, we consider the vector
space Vi generated by all local solutions at zi. There may
be solutions with different exponential parts, say ℓi different

parts Exp(ei,1), . . . , Exp(ei,ℓi
) for ei,j ∈ C[x̃

−1/si,j

i]. By

Vi,j = Vi ∩ Exp(ei,j)C((x̃
1/si,j

i))[log x̃i]

we denote the vector space of all local solutions of P at zi

with exponential part (equivalent to) Exp(ei,ℓi
). Our Vi,j

are written Vei,j
(P) in van Hoeij’s papers [13, 12].

The condition in the definition of equivalence that the
difference of corresponding values of α be an integer (rather
than, say, requiring exactly the same value of α) ensures
that the Vi,j are indeed vector spaces, because if some Vi,j

contains, for example, the two series

xα(1 + x + x2 + · · ·) and xα(1 + x + 3x2 + · · ·)

then it must also contain their difference xα(2x2 + · · ·) =
xα+2(2 + · · ·).

2.4 Analytic Solutions
It is classical that the formal power series solutions ŷ of P

at an ordinary point z ∈ C actually converge in a neighbour-
hood of z and thus give rise to analytic function solutions y
of P . The correspondence is one-to-one. For any other or-
dinary point z′ ∈ C and a path z ❀ z′ avoiding singular
points there exists a matrix Mz❀z′ ∈ Cr×r such that

(
Djy(z′)

)r−1

j=0
= Mz❀z′

(
Djy(z)

)r−1

j=0

for every solution y analytic near z. There are algorithms [4,
8] for efficiently computing the entries of Mz❀z′ for any
given polygon path z ❀ z′ with vertices in Q̄ to any de-
sired precision. In other words, we can compute arbitrary
precision approximations of y and its derivatives at every
ordinary point (“effective analytic continuation”).

Assume now that 0 is a singular point, and consider the
case s = 1 and m = 0, i.e., let ŷ = Exp(e)b for some e ∈
C[x−1] and b ∈ C[[x]] be a formal solution of P . To give an

analytic meaning to Exp(e) = exp(
∫

e
x

) = exp(u+α log x) =

xα exp(u) (for suitable α ∈ C and u ∈ C[x−1]) amounts to
making a choice for a branch of the logarithm. Every choice
gives rise to the same function up to some multiplicative
constant.

Since Exp(e)b is a solution of P iff b is a solution of the
operator P ⊗ (D + e

x
), we may assume that e = 0. Then

the problem remains that the formal power series ŷ = b
may not be convergent if 0 is a singular point. However, by
resummation theory [2, 3] it is still possible to associate to
ŷ an analytic function y defined on some sector

∆ = ∆(d, ϕ, ρ) := {z ∈ C : 0 < |z| ≤ ρ ∧ |d − arg z| ≤ ϕ/2}
(with d ∈ [0, 2π], ρ, ϕ > 0) such that ŷ is the asymptotic
expansion of y for z → 0 in ∆.

The precise formulation of this result is technical and not
really needed for our purpose (see [3, Chap. 6, 10, and 11] or
[2, Chap. 5–7] for full details). It will be more than sufficient
to know the following facts:

• For every k = (k1, . . . , kq) ∈ Q

q with k1 > · · · > kq

and every d = (d1, . . . , dq) ∈ [0, 2π]q such that

|dj+1 − dj | ≤ (k−1
j+1 − k−1

j) π
2

, j = 1, . . . , q − 1,

one constructs [3, §10.2] a differential subring C{x}k,d

of C[[x]] [3, Theorems 51 and 53] which contains the
ring C{x} of all convergent power series.

• There is a differential ring homomorphism [3, The-
orems 51 and 53] Sk,d from C{x}k,d to the germs
of analytic functions defined on sectors of the form
∆(d1, ϕ, ρ) for suitable ϕ, ρ > 0, with the property that
for every ŷ ∈ C{x}k,d the function Sk,d(ŷ) has ŷ as its
asymptotic expansion for z → 0 [3, §10.2, Exercice 2].
The Sk,d map convergent formal power series to their
sum in the usual sense [3, Lemmas 8 and 20].

• For a given operator P ∈ C[x][D] of order r, one
can compute a tuple k and finite subsets D1, . . . , Dq

of [0, 2π] such that any ŷ ∈ C[[x]] with P ·ŷ = 0 belongs
to C{x}k,d for all d as above with d1 /∈ D1, . . . , dq /∈
Dq . Additionally, given such a d, one can compute
ϕ, ρ > 0 such that each Sk,d(ŷ) is defined on ∆(d1, ϕ, ρ).

• Furthermore, given a point z ∈ ∆(d1, ϕ, ρ), a precision
ε > 0, and ŷ ∈ C[[x]] with P · ŷ = 0, one can efficiently
compute an approximation Yε of the vector Y (z) =
(DjSk,d(ŷ))r−1

j=0 such that ‖Y (z) − Yε‖ ≤ ε.

The computational part of the last two items is a special
case of Theorem 7 of van der Hoeven [10]. As an application,
van der Hoeven [9] shows how to factor differential operators
using numerical evaluation. Note that our kj correspond to
1/kj in van der Hoeven’s articles, and the components of the
tuples k and d appear in reverse order.

Also observe that in the last item, z is an ordinary point,
so that from there we can use effective analytic continuation
to compute values of Sk,d(ŷ) and its derivatives at any other
ordinary point.

3. OUTLINE OF THE ALGORITHM
A hyperexponential term h can be expanded as a gener-

alized series at every point z ∈ C ∪ {∞}, in particular at
its singularities. The resulting generalized series are local

solutions of P if h is a solution of P . If h = exp(
∫

v) is a
hyperexponential solution where v ∈ C(x), and if we write
the partial fraction decomposition of v in the form

v =
e1

x − z1
+

e2

x − z2
+ · · · +

en

1/x
,

where the ei are polynomials in x̃−1
i , then expanding this h

at zi yields a generalized series in x̃i whose exponential part
matches Exp(ei). The components ei in the decomposition
of v must hence show up among the exponential parts of the
local solutions of P .

If Exp(ei,1), . . . , Exp(ei,ℓi
) are (representatives of) the dif-

ferent exponential parts that appear among the local so-
lutions at zi, then any hyperexponential solution must be
equivalent to the term exp(

∫
(

e1,j1

x̃1
+ · · · +

en,jn

x̃n
)) for some

tuple (j1, . . . , jn). It then remains to check for each of these
candidates whether some element of its equivalence class
solves the given equation. The basic structure of the algo-
rithm for finding hyperexponential solutions is thus as fol-
lows.

Algorithm 1. Input: a linear differential operator P =
p0 + p1D + · · · + prDr , pr 6= 0, with coefficients in C[x].
Output: all the hyperexponential terms h with P · h = 0.

1. Let z1, . . . , zn−1 ∈ C be the roots of pr in C, and let
zn = ∞.

2. For i = 1, . . . , n do

3. Find the exponential parts Exp(ei,1), . . . , Exp(ei,ℓi
)

of the local solutions of P at zi.

4. Determine a set U ⊆ {1, . . . , ℓ1} × · · · × {1, . . . , ℓn}
s.t. for every hyperexponential solution h equivalent to
exp
(∫ ∑n

i=1

ei,ji

x̃i

)
we have (j1, . . . , jn) ∈ U .

5. For each (j1, . . . , jn) ∈ U do

6. Let h0 := exp
(∫ ∑n

i=1

ei,ji

x̃i

)
, and compute the oper-

ator P̃ := P ⊗ (D − D(1/h0)
1/h0

).

7. Compute a basis {u1, . . . , um} ⊆ C(x) of the vector
space of all rational solutions of P̃ , and output u1h0,
. . . , umh0.

There is some freedom in step 4 of this algorithm. A naive
approach would simply be to take all possible combinations,
i.e., U = {1, . . . , ℓ1} × · · · × {1, . . . , ℓn}. This is a finite
set, but its size is in general exponential in the number of
singular points. For finding a smaller set U , Cluzeau and
van Hoeij [5] use modular techniques to quickly discard un-
necessary tuples. Our algorithm, explained in the following
section, addresses the same issue. It computes a set U of at
most r tuples.

4. THE COMBINATION PHASE
In general, the differential operator P may have several

different solutions with the same exponential part, i.e., the
dimension of the vector spaces Vi,j might be greater than
one. In this case, it might be that Vi,j contains some series
which is the expansion of a hyperexponential solution h at zi

as well as some other series which are not. If we compute
some basis of Vi,j , we cannot expect it to contain the expan-
sion of h. Instead, each basis element will in general be the
linear combination of this series and some other one. Now, if
the expansion of h at some other singular point zi′ belongs

to the space Vi′,j′ (which possibly also has higher dimen-
sion), then, in some sense, h must belong to the intersection
of the vector spaces Vi,j and Vi′,j′ .

Our algorithm is based on testing which intersections are
nontrivial. To make these intersections meaningful, we must
first map the vector spaces we want to intersect into a com-
mon ambient space W . Let E be some differential ring con-
taining C(x) as well as all the hyperexponential solutions
of P , and let W ⊆ E be the C-vector space generated by
solutions of P in E. For each i, let πi be some vector space
homomorphism

ℓi⊕

j=1

Exp(ei,j)C((x̃
1/si,j

i))[log x̃i] ⊇ Vi
πi−→ W

with the following properties:

1. The sum πi(Vi,1) + · · · + πi(Vi,ℓi
) is direct.

2. If h ∈ W is hyperexponential, then π−1
i (h) contains

the formal series expansion ĥ of h at zi, possibly up to
a multiplicative constant.

Define Wi,j := πi(Vi,j). If h is some hyperexponential solu-
tion of P , say with exponential part

exp
(∫ (

e1,j1

x̃1
+

e2,j2

x̃2
+ · · · +

en,jn

x̃n

))

,

then h ∈ Wi,ji
for all i, and hence the vector space W1,j1

∩
· · · ∩ Wn,jn is not the zero subspace (because it contains at
least h). Our main observation is that there can be at most
r tuples j = (j1, . . . , jn) for which Wj 6= {0}, and that they
can be computed efficiently once we have bases of the Wi,j .

Postponing the discussion of making the πi constructive
to the next section, assume for the moment that W is some
vector space over C, let r = dim W < ∞ be its dimension,
and suppose we are given n different decompositions of sub-
spaces of W into direct sums:

W1,1 ⊕ W1,2 ⊕ · · · ⊕ W1,ℓ1
⊆ W,

W2,1 ⊕ W2,2 ⊕ · · · ⊕ W2,ℓ2
⊆ W,

...

Wn,1 ⊕ Wn,2 ⊕ · · · ⊕ Wn,ℓn ⊆ W.

Without loss of generality, we may make the following as-
sumptions:

• Each direct sum
⊕ℓi

i=1
Wi,j is in fact equal to W . If

not, add one more vector space to the sum.

• ℓ1 = ℓ2 = · · · = ℓn =: ℓ. If not, pad the sum with
several copies of {0}.

• ℓ ≤ r. If not, then because the sums are supposed
to be direct, each decomposition must contain at least
ℓ − r copies of {0}, which can be dropped.

Lemma 2. There are at most dim W = r different tuples

j = (j1, . . . , jn) ∈ {1, . . . , ℓ}n

such that Wj := W1,j1
∩ W2,j2

∩ · · · ∩ Wn,jn 6= {0}.

Proof. Induction on n. For n = 1, there are only ℓ ≤ r
different tuples altogether: (1), (2), . . . , (ℓ), so the claim is

obviously true. Suppose now that the claim is shown for
the case when n − 1 decompositions of some vector space
are given. Let U ⊂ {1, . . . , ℓ}n be a set of tuples j with
Wj 6= {0}. Partition the elements of U according to their
first components,

U = U1

.
∪ U2

.
∪ · · ·

.
∪ Uℓ,

i.e., Uk is the set of all tuples j whose first component is k,
for k = 1, . . . , ℓ.

For all j = (k, j2, . . . , jn) ∈ Uk we have {0} 6= Wj ⊆ W1,k.
Therefore, (j2, . . . , jn) ∈ {1, . . . , ℓ}n−1 is a valid solution tu-
ple for the modified problem with W ′

i,j := Wi+1,j ∩ W1,k

(i = 1, . . . , n − 1, j = 1, . . . , ℓ) in place of Wi,j (i = 1, . . . , n,
j = 1, . . . , ℓ). By induction hypothesis, since the W ′

i,j form
n − 1 decompositions of the space W1,k, there are at most
dim W1,k tuples (j2, . . . , jn) with W(j2,...,jm) 6= {0}. Con-

sequently, there are altogether at most
∑ℓ

k=1
dim W1,k =

dim W = r different tuples for the original space W .

The desired index tuples can be computed efficiently using
dynamic programming, as shown in the following algorithm.

Algorithm 3. Input: a vector space W of dimension r, and
a collection of subspaces Wi,j (i = 1, . . . , n; j = 1, . . . , ℓ)

such that W =
⊕ℓ

j=1
Wi,j for i = 1, . . . , n and ℓ ≤ r.

Output: the set U of all tuples j = (j1, . . . , jn) with the
property Wj =

⋂n

i=1
Wi,ji

6= {0}.

1. U := { (j) : W1,j 6= {0} }
2. For i = 2, . . . , n do

3. Unew := ∅
4. For j = 1, . . . , ℓ do

5. For k ∈ U do

6. If Wk ∩ Wi,j 6= {0} then

7. Unew := Unew ∪ {append(k, j)}
8. U := Unew

9. Return U

Theorem 4. Algorithm 3 is correct and needs no more than
8nr4 operations in C, if the bases of the Wk are cached.

Proof. Correctness is obvious by line 6 and the fact that
whenever k = (k1, . . . , kn) is such that Wk 6= {0} then we
necessarily also have W(k1,...,kn−1) 6= {0}.

For the complexity, we first show that it is a loop invari-
ant that Wk1

∩ Wk2
= {0} for any two distinct k1, k2 ∈ U .

This is clear for i = 1 by line 1 and the assumption in

the algorithm specification that W =
⊕ℓ

j=1
W1,j is a direct

sum. Assume it is true for some i and consider the situa-
tion right before line 8. At this point, for any two distinct
tuples k1, k2 ∈ U we have Wk1

∩ Wk2
= {0} by induction

hypothesis. We have to show that the same is true for any
two distinct tuples k1, k2 ∈ Unew. By line 7, any such tu-
ples have the form k1 = (u1, j1), k2 = (u2, j2) for some
u1, u2 ∈ U and j1, j2 ∈ {1, . . . , ℓ}. The tuples k1, k2 are
distinct if u1 6= u2 or j1 6= j2. If u1 6= u2, then by induction
hypothesis Wu1

∩ Wu2
= {0}, and therefore also

Wk1
∩ Wk2

= (Wu1
∩ Wi,j1

) ∩ (Wu2
∩ Wi,j2

)

= {0} ∩ Wi,j1
∩ Wi,j2

= {0}.

Similarly, if j1 6= j2, then Wi,j1
∩Wi,j2

= {0} by the assump-

tion that W =
⊕ℓ

j=1
Wi,j is a direct sum. Therefore

Wk1
∩ Wk2

= (Wu1
∩ Wi,j1

) ∩ (Wu2
∩ Wi,j2

)

= Wu1
∩ Wu2

∩ {0} = {0}.

This completes the proof of the loop invariant k1 6= k2 ⇒
Wk1

∩ Wk2
= {0}.

A consequence of this invariant is that
∑

k∈U
dim Wk ≤ r

in every iteration. Since the sum W =
⊕ℓ

j=1
Wi,j is direct,

we also have
∑ℓ

j=1
dim Wi,j ≤ r in every iteration. The

intersection of two subspaces of W of dimensions d1, d2 can
be computed using no more than

min(r, d1 + d2)2 max(r, d1 + d2)

operations in C. For the total cost of the algorithm we
therefore obtain, writing Ui for the set U in the ith iteration
and dk := dim Wk and di,j := dim Wi,j ,

n∑

i=2

ℓ∑

j=1

∑

k∈Ui

min(r, dk + di,j)2

︸ ︷︷ ︸

≤(dk+di,j)2

max(r, dk + di,j)
︸ ︷︷ ︸

≤2r

≤ 2r

n∑

i=2

ℓ∑

j=1

∑

k∈Ui

(
d2

k + 2dkdi,j + d2
i,j

)

≤ 2r

n∑

i=2

ℓ∑

j=1

(
r2 + 2r2di,j + rd2

i,j

)

≤ 2r

n∑

i=2

(
ℓr2 + 2r3 + r3

)

≤ 8nr4.

In the second step, we have used the bounds
∑

k∈Ui
d2

k ≤
r2 and |Ui| ≤ r, which follow from

∑

k∈Ui
dk ≤ r and

Lemma 2, respectively. In the third step, we used the bound
∑ℓ

j=1
d2

i,j ≤ r2, which follows from
∑ℓ

j=1
di,j ≤ r.

If the objective is just to show that the algorithm runs in
polynomial time, a simpler argument applies. It suffices to
observe that all the intersections can be done with a number
of operations which is at most cubic in r, then taking also
into account that we always have |U | ≤ r by Lemma 2, the
bound O(nℓr4) = O(nr5) follows immediately.

5. NUMERICAL EVALUATION AT A
REFERENCE POINT

We now turn to the question of how to construct the mor-
phisms πi. The basic idea is to choose a reference point z0

that is an ordinary point of P , and let W be the space of
analytic solutions of the equation in a neighborhood of z0.

z0

z1
z2

z3

z4

For each singular point zi, let ∆i be a
sector rooted at zi for which all formal
power series appearing in the generalized
series solutions of P at zi admit an inter-
pretation as analytic functions via some
operator Sk,d (depending on i, but not
on the series), as described in Section 2.4.
Such sectors exist and can be computed
explicitly. Next, let γi (i = 1, . . . , n) be polygonal paths

from zi to z0 avoiding singular points and leaving the start-
point through ∆i (meaning that for some ε > 0 all the points
on γi with a distance to zi less than ε should belong to ∆i).
Such paths exist. The analytic interpretations of the gener-
alized series solutions at the singular points zi defined in ∆i

admit a unique analytic continuation along the paths γi to
the neighborhood of z0.

We define πi : Vi → W as follows. Let V 0
i,j be the subspace

of Vi,j consisting of generalized series (1) with s = 1 and m =
0, and let V ′

i,j be a linear complement of V 0
i,j in Vi,j . If ŷ ∈

V 0
i,j i.e., if ŷ = Exp(ei,j)b with ei,j ∈ C[x̃−1

i] and b ∈ C[[x̃i]],
define πi(ŷ) to be the unique analytic continuation of the
function E(ei,j)Sk,d(b) along γi to z0, where E(ei,j) refers to
the function z 7→ exp(

∫ z

z0

ei,j/x̃i) with some arbitrary but

fixed choice of the branch of the logarithm, and Sk,d is as
described in Section 2.4. Set πi(ŷ) = 0 for ŷ ∈ V ′

i,j , and then
extend πi to Vi by linearity. The precise values of πi(Vi,j)
depend on the choice of ∆i and d (which is arbitrary, within
the limits indicated in Section 2.4), but, as shown below, the
properties of these spaces used in the algorithm do not.

Proposition 5. The functions πi defined above satisfy the
two requirements imposed in Section 4: (1) πi(Vi,1) + · · · +
πi(Vi,ℓi

) is a direct sum; (2) if h is a hyperexponential term,
then π−1

i (h) contains the formal series expansion of h at zi,
possibly up to a multiplicative constant.

Proof. 1. Without loss of generality, we assume zi = 0. Let

ŷj ∈ Vi,j (j = 1, . . . , ℓi) and consider ŷ =
∑ℓi

j=1
ŷj . Write

ŷj = xαj exp(uj)bj + ŷ′
j where ŷ′

j ∈ V ′
i,j , the (αj , uj) are

pairwise distinct, uj(0) = 0, and bj(0) 6= 0 unless the series
bj is zero. Writing uj =

∑

k
uj,kx−k, choose a direction θ

such that ρeiθ ∈ ∆i for small ρ and any two unequal u
1/k
j,k eiθ

have different real parts.
By changing x to e−iθx, we can assume that d = 0. This

tranforms uj into
∑

k
(uj,keikθ)x−k, so that the real parts of

two polynomials uj can be the same only if the uj themselves
are equal. Hence, we can reorder the nonzero terms in the
expression of ŷ by asymptotic growth rate, in such a way that
the nonzero terms come first, u1 = · · · = ut and Re α1 =
· · · = Re αt, while

zRe α1 eRe u1(z) ≫ zRe αp eRe up(z), z → 0, z > 0

for all p ≥ t + 1 such that yp 6= 0. Using the definition of πi

and the fact that Sk,d(bj)(z) tends to bj(0) as z → 0 in the
positive reals, it follows that

z−Re α1 exp(−u1(z)) πi(ŷ)(z) =

t∑

j=1

cjbj(0)zi Im αj + o(1)

(as z → 0, z > 0) for some nonzero constants cj . Since
the (αj , uj) are pairwise distinct by assumption and the
(Re αj , uj) are equal for j = 1, . . . , t, the Im αj are pairwise
distinct for j = 1, . . . , t.

Now assume that πi(ŷ) = 0. Then, for all λ > 0, the

expression
∑t

j=1
cjbj(0)(λz)i Im αj tends to 0 as z → 0, z >

0. Choosing λ = ep for p = 1, . . . , t, it follows that if not all
the bj(0) were zero, the t × t determinant

det
(
(epz)i Im αq

)

p,q
= zi Im(α1+···+αt) det

(
(ei Im αq)p

)

p,q

would tend to zero as well, which however is not the case.
Therefore bj(0) = 0 for j = 1, . . . , t, and therefore ŷj = 0 for
j = 1, . . . , t, and therefore ŷj = 0 for j = 1, . . . , ℓi.

2. Let h ∈ W be hyperexponential. Then the expansion
ĥ of h at zi is clearly a local solution, so ĥ ∈ Vi,j for some j.

We show that πi(ĥ) = ch for some c ∈ C. The map πi is
a differential homomorphism because Sk,d is (as remarked
in Section 2.4) and the (formal) exponential parts Exp(ei,j)
are mapped to analytic functions satisfying the same differ-
ential equations. Since h is hyperexponential, it satisfies a
first order linear differential equation. Since ĥ is the expan-
sion of h, it satisfies the same equations as h. Since πi is
a differential homomorphism, πi(ĥ) satisfies the same equa-

tions as ĥ. Hence πi(ĥ) and h satisfy the same first-order
differential equation. The claim follows.

The definition of the maps π1, . . . , πm as outlined above
relies on analytic continuation, a concept which is only avail-
able if C = C. For actual computations, we must work in a
computable coefficient domain. At this point, we use numer-
ical approximations. By van der Hoeven’s result quoted in
Section 2.4, we are able to compute for every given ŷ ∈ Vi,j

and every given ε > 0 a vector Yε ∈ Q(i)r with
∥
∥
(
Dkπi(ŷ)(z0)

)r−1

k=0
− Yε

∥
∥

∞
< ε.

Using these approximations, the linear algebra parts of Al-
gorithm 3 are then performed with ball arithmetic to keep
track of accumulating errors during the calculations. The
test in line 6 of this algorithm requires to check whether a
certain matrix has full rank. There are two possible out-
comes: If during the Gaussian elimination we can find in
every iteration an entry which is definitely different from
zero, then the rank of the matrix is definitely maximal and
the intersection of the vector spaces is definitely empty. We
are then entitled to discard the possible extension of the par-
tial tuple under consideration. On the other hand, if during
the Gaussian elimination we encounter a column in which all
the entries are balls that contain zero, this can either mean
that the intersection is really nonempty, or that the accuracy
of the approximation was insufficient. In this case, in order
to be on the safe side, we must consider the intersection as
nonempty and include the corresponding tuple.

Regardless of which initial accuracy ε is used, this variant
of Algorithm 3 produces a set of tuples that is guaranteed to
contain all correct ones, but may possibly contain additional
ones. With sufficiently high precision, the number of tuples
in the output that actually have an empty intersection will
drop to zero. We don’t need to know in advance which
precision is sufficient in this sense, because it is not dramatic
to have some extra tuples in the output as long as they are
not too many. As a pragmatic strategy balancing precision
and output size, one might start the algorithm with some
fixed precision ε and let it abort and restart with doubled
precision whenever |U | exceeds 2r, say.

Observe that the numerical approximation is only used to
determine the tuple set U , and we do not use it to somehow
reconstruct the exact symbolic hyperexponential solutions
from it. We therefore don’t expect to need very high preci-
sion in typical situations.

6. A DETAILED EXAMPLE
Consider the operator

P = p0 + p1D + p2D2 + p3D3 ∈ Q[x][D]

where

p0 = −105x
20 + 3570x

19
− 58026x

18 + 556216x
17

− 3456830x
16 +

14810744x
15

− 45667732x
14 + 104614932x

13
− 182764261x

12 +
249940430x

11
− 276371642x

10 + 257839924x
9

− 211785148x
8 +

154714472x
7

− 95675216x
6 + 45214304x

5
− 13863936x

4 +
1685888x

3 + 424960x
2

− 182784x + 20480,

p1 = (x − 1)x(105x
19

− 3150x
18 + 51456x

17
− 489796x

16 +
2938210x

15
− 11903624x

14 + 34247824x
13

− 72603516x
12 +

116974957x
11

− 148046826x
10 + 153582952x

9
− 137261696x

8 +
109046080x

7
− 75250624x

6 + 41559168x
5

− 16084864x
4 +

3278080x
3 + 163840x

2
− 231424x + 32768),

p2 = −4(x − 2)2(x − 1)3
x

2(30x
15

− 693x
14 + 7314x

13
− 42905x

12 +
155930x

11
− 378483x

10 + 649718x
9

− 828795x
8 + 820160x

7
−

645092x
6 + 398200x

5
− 182384x

4 + 54656x
3

− 5696x
2

− 2944x + 1024),

p3 = 4(x − 2)4(x − 1)5
x

4(15x
10

− 258x
9 + 1492x

8
− 4446x

7 +
8309x

6
− 10972x

5 + 10520x
4

− 6456x
3 + 1552x

2 + 480x − 256).

The leading coefficient p3 has 13 distinct roots in C, but
those coming from the degree-10-factor turn out to be ap-
parent, so we can ignore them. It thus remains to study the
singular points z1 := 0, z2 := 1, z3 := 2, and z4 := ∞.

For each singular point, we find three linearly indepen-
dent generalized series solutions with two distinct exponen-
tial parts:

V1,1 = Cŷ1,1 V1,2 = Cŷ1,2 +Cŷ1,3,

V2,1 = Cŷ2,1 V2,2 = Cŷ2,2 +Cŷ2,3,

V3,1 = Cŷ3,1 V3,2 = Cŷ3,2 +Cŷ3,3,

V4,1 = Cŷ4,1 V4,2 = Cŷ4,2 +Cŷ4,3

where

ŷ1,1 = exp(1
x

)
(

1 − 4
9
x + 37

32
x2 + 83

384
x3 + · · ·

)

,

ŷ1,2 =
√

x
(

1 − x − 25
24

x3 + · · ·
)

,

ŷ1,3 =
√

x
(

x2 − 7
4
x3 + 9

32
x4 + · · ·

)

,

ŷ2,1 = (x − 1)3 + (x − 1)5 − 4
3
(x − 1)6 + · · · ,

ŷ2,2 = exp(1
x−1

)
(

1 + 1
2
(x − 1) + 19

120
(x − 1)3 + · · ·

)

,

ŷ2,3 = exp(1
x−1

)
(

(x − 1)2 + 23
30

(x − 1)3 + · · ·
)

,

ŷ3,1 = 1 − 3
4
(x − 2) + 39

32
(x − 2)2 − 673

384
(x − 2)3 + · · · ,

ŷ3,2 = 1
(x−2)2 exp(1

x−2
)
(

1 + 11
4

(x − 2) + · · ·
)

,

ŷ3,3 = 1
(x−2)2 exp(1

x−2
)
(

(x − 2)3 + 1
4
(x − 2)4 + · · ·

)

,

ŷ4,1 = x
(
1 + 3x−1 + 9x−2 + 79

3
x−3 + 74x−4 + · · ·

)
,

ŷ4,2 =
√

x
(

1 + x−1 + 3
2
x−2 + 13

6
x−3 + · · ·

)

,

ŷ4,2 =
√

x
(

x3 + x + 19
6

x−1 + 283
30

x−2 + · · ·
)

.

Let us choose z0 = 3 as ordinary reference point and take
the branch of the logarithm for which

√
x is positive and

real on the positive real axis. The example was chosen in
such a way that all the power series are convergent in some
neighborhood of the expansion point, so that we do not need
to worry about sectors and resummation theory but can
use the somewhat simpler algorithm for effective analytic
continuation in the ordinary case to compute the values of
the analytic functions yi,j := πi(ŷi,j) (i = 1, . . . , 4; j =

1, 2, 3). The vectors
(
yi,j(z0), Dyi,j(z0), D2yi,j(z0)

)
to five

decimal digits of accuracy are as follows.

W1,1=
[
(−200.15

322.46
−1184.8

)
]

, W1,2=
[
(−70.513

−46.308
−101.17

)

,

(−156.55
−91.322
−205.47

)
]

,

W2,1=
[
(

30.349
−48.896
179.66

)
]

, W2,2=
[
(

12.494
5.2891
13.066

)

,

(
77.105
44.216
99.931

)
]

,

W3,1=
[
(

.74285
−.061904

.14960

)
]

, W3,2=
[
(

15.580
−31.307
105.26

)

,

(
4.5433
2.6503
5.9631

)
]

,

W4,1=
[
(

30.349
−48.896
179.66

)
]

, W4,2=
[
(

2.8557
−.23797
.57510

)

,

(
63.199
41.308
90.353

)
]

.

We now go through Algorithm 3. Start with the partial
tuples (1) and (2) corresponding to the vector spaces W1,1

and W1,2, respectively. To compute the intersection of W1,1

and W2,1 we apply Gaussian elimination to the 3 × 2-matrix
whose columns are the generators of W1,1 and W2,1:

(−200.15 30.349
322.46 −48.896

−1184.8 179.66

)

−→
(−200.15 30.349

0.00
0.00

)

The notation 0.00 refers to some complex number z with
|z| < 5·10−3 , which may or may not be zero, while the blank
entries in the left column signify exact zeros that have been
produced by the elimination. As the remaining submatrix
does not contain any entry which is certainly nonzero, we re-
gard the intersection as nonempty, which in this case means
W1,1 = W2,1. The partial tuple (1) is extended to (1, 1).

The intersections W1,1 ∩ W2,2 and W1,2 ∩ W2,1 turn out
to be trivial, as they have to be if we really have W1,1 =
W1,2, because the sums W1,1 ⊕ W1,2 and W2,1 ⊕ W2,2 are
direct. It thus remains to consider the intersection W1,2 ∩
W2,2. Applying Gaussian elimination to the 3 × 4-matrix
whose columns are the generators of W1,2 and W2,2, we find

(−70.513 −25.596 12.494 77.105
−46.308 2.1330 5.2891 44.216
−101.17 −5.1548 13.066 99.931

)

−→
(−70.513 −25.596 12.494 77.105

−17.50 4.440 9.777
0.00 0.00

)

,

which suggests that we have W1,2 = W2,2. We extend the
partial tuple (2) to (2, 2). At the end of the first iteration,
we have U = {(1, 1), (2, 2)}.

In the second iteration, we find W(1,1) ∩ W3,1 = {0} and
W(1,1) ⊆ W3,2, so we extend the partial tuple (1, 1) to
(1, 1, 2) and record W(1,1,2) = W(1,1) = W1,1. Furthermore
we find W3,1 ⊆ W(2,2), so we extend (2, 2) to (2, 2, 1) and
record W(2,2,1) = W3,1. Finally, there is a nontrivial inter-
section between W(2,2) and W3,2:

(
12.494 77.105 15.580 4.5433
5.2891 44.216 −31.307 2.6503
13.066 99.931 105.26 5.9631

)

−→
(

12.494 77.105 15.580 4.5433
−27.34 89.53 −1.72

216. 0.00

)

suggests a common subspace of dimension 1 generated by
the second listed generator of W3,2. We therefore extend
the partial tuple (2, 2) to (2, 2, 2) and record W(2,2,2) =
[(4.5433, 2.6503, 5.9631)]. At the end of the second iteration,
we have U = {(1, 1, 2), (2, 2, 1), (2, 2, 2)}.

For the final iteration, we see by inspection that W4,1 =
W2,1 = W(1,1,2), so we extend (1, 1, 2) to (1, 1, 2, 1). Because
dim W4,1 = 1 and the sums of the vector spaces are direct,
the other two partial tuples cannot also have a nontrivial
intersection with W4,1, nor can W(1,1,2) ∩ W4,2 be nontriv-
ial. We do however have W(2,2,1) ⊆ W4,2 and W(2,2,2) ⊆
W4,2, so the algorithm terminates with the output U =
{(1, 1, 2, 1), (2, 2, 1, 2), (2, 2, 2, 2)}.

At this point we know that every hyperexponential solu-
tion of the operator P must have one of the following three
exponential parts:

1

(x − 2)2
exp
(

1

x
+

1

x − 2

)

from (1,1,2,1)

√
x exp

(
1

x − 1

)

from (2,2,1,2)

√
x exp

(
1

x − 1
+

1

x − 2

)

from (2,2,2,2).

Following the steps of Algorithm 1, it remains to check
whether some rational function multiples of these terms are
solutions of P . The important point is that we have to do
this only for three different candidates, while the naive al-
gorithm would have to go through all 24 = 16 combinations.
Indeed, it turns out that P has the following three hyperex-
ponential solutions:

(x − 1)3

(x − 2)2
exp
(

1

x
+

1

x − 2

)

,
√

x exp
(

1

x − 1

)

,

(x − 2)x2√
x exp

(
1

x − 1
+

1

x − 2

)

.

7. CONCLUDING REMARKS
Our algorithm as described above takes advantage of the

fact that series expansions of hyperexponential terms can-
not involve exponential terms with ramification (s > 1) or
logarithms (m > 0), by letting the morphisms πi map all
these irrelevant series solutions to zero. As a result, we get
smaller vector spaces Wi,j , which not only reduces the ex-
pected computation time per vector space intersection but
also makes it somehow more likely for intersections to be
empty, thus decreasing the chances of getting tuples that do
not correspond to hyperexponential solutions.

As a further refinement in this direction, it would be desir-
able to exploit the fact that if ĥ = Exp(e)b is the expansion
of some hyperexponential term h, then the formal power
series b must be convergent in some neighborhood of the ex-
pansion point. Instead of the vector spaces Wi,j used above,
it would be sufficient to consider the subspaces W ′

i,j ⊆ Wi,j

corresponding to generalized series solutions involving only
convergent power series. Besides the advantage of having
to work with even smaller vector spaces, an additional ad-
vantage would be that the numerical evaluation becomes
simpler because algorithms for the regular case [4, 8] be-
come applicable. Implementations of these algorithms are
available [7], which to our knowledge is not yet the case for
van der Hoeven’s general algorithm for the divergent case
[10]. Unfortunately however, it is not obvious how to com-
pute from a given basis of Wi,j a basis of the subspace W ′

i,j .

Miller’s algorithm [16] numerically solves a similar problem,
but so far we have not been able to turn the underlying con-
vergence statements into explicit error bounds that would
yield an algorithm producing output with certified precision.

Finally, it would of course be also interesting to see an
analog of our algorithm for finding hypergeometric solutions
of linear recurrence equations with polynomial coefficients.
A translation is not immediate because there is no notion of
local solution around a finite singularity in this case.

8. REFERENCES
[1] S.A. Abramov and K.Yu. Kvashenko. Fast algorithms

to search for the rational solutions of linear differential
equations with polynomial coefficients. In Proceedings
of ISSAC’91, pages 267–270, 1991.

[2] Werner Balser. From Divergent Power Series to
Analytic Functions, volume 1582 of Lecture Notes in
Mathematics. Springer-Verlag, 1994.

[3] Werner Balser. Formal power series and linear
systems of meromorphic ordinary differential
equations. Springer, 2000.

[4] David V. Chudnovsky and Gregory V. Chudnovsky.
Computer algebra in the service of mathematical
physics and number theory. In David V. Chudnovsky
and Richard D. Jenks, editors, Computers in
Mathematics, volume 125 of Lecture Notes in Pure and
Applied Mathematics, pages 109–232, Stanford
University, 1986. Dekker.

[5] Thomas Cluzeau and Mark van Hoeij. A modular
algorithm to compute the exponential solutions of a
linear differential operator. Journal of Symbolic
Computation, 38:1043–1076, 2004.

[6] A. K. Lenstra, H. W. Lenstra, and L. Lovász.
Factoring polynomials with rational coefficients.
Annals of Mathematics, 126:515–534, 1982.

[7] Marc Mezzarobba. NumGfun: a package for numerical
and analytic computation with d-finite functions. In
Proceedings of ISSAC’10, 2010.

[8] Joris van der Hoeven. Fast evaluation of holonomic
functions. Theoretical Computer Science,
210(1):199–216, 1999.

[9] Joris van der Hoeven. Around the numeric-symbolic
computation of differential galois groups. Journal of
Symbolic Computation, 42:236–264, 2007.

[10] Joris van der Hoeven. Efficient accelero-summation of
holonomic functions. Journal of Symbolic
Computation, 42(4):389–428, 2007.

[11] Marius van der Put and Michael Singer. Galois Theory
of Linear Differential Equations. Springer, 2003.

[12] Mark van Hoeij. Factorization of differential operators
with rational functions coefficients. Journal of
Symbolic Computation, 24:537–561, 1997.

[13] Mark van Hoeij. Formal solutions and factorization of
differential operators with power series coefficients.
Journal of Symbolic Computation, 24(1):1–30, 1997.

[14] Mark van Hoeij. Factoring polynomials and the
knapsack problem. Journal of Number Theory,
95:167–189, 2002.

[15] Joachim von zur Gathen and Jürgen Gerhard. Modern
Computer Algebra. Cambridge University Press, 1999.

[16] Jet Wimp. Computing with Recurrence Relations.
Pitman Publishing Ltd., 1984.

	1 Introduction
	2 Preliminaries
	2.1 Differential Fields and Operator Algebras
	2.2 Hyperexponential Terms
	2.3 Local Solutions
	2.4 Analytic Solutions

	3 Outline of the Algorithm
	4 The Combination Phase
	5 Numerical Evaluation at aReference Point
	6 A Detailed Example
	7 Concluding Remarks
	8 References

