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Abstract

In this paper we introduce a method of characteristic sets with respect

to several term orderings for difference-differential polynomials. Using this

technique, we obtain a method of computation of multivariate dimension

polynomials of finitely generated difference-differential field extensions.

Furthermore, we find new invariants of such extensions and show how the

computation of multivariate difference-differential polynomials is applied

to the equivalence problem for systems of algebraic difference-differential

equations.
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1 Introduction

The role of Hilbert polynomials in commutative and homological algebra as well
as in algebraic geometry and combinatorics is well known. A similar role in dif-
ferential algebra is played by differential dimension polynomials, which describe
in exact terms the freedom degree of a dynamic system, as well as the number
of arbitrary constants in the general solution of a system of partial algebraic
differential equations. The notion of a differential dimension polynomial was
introduced by E. Kolchin [6] who proved the following fundamental result.

Theorem 1.1. Let K be a differential field of zero characteristic with basic
derivations δ1, . . . , δm. Let Θ denote the free commutative semigroup generated
by δ1, . . . , δm, and for any r ∈ N, let Θ(r) = {θ = δk1

1 . . . δkm
m ∈ Θ |

∑m
i=1 ki ≤

r}. Furthermore, let L = K〈η1, . . . , ηn〉 be a differential field extension of K
generated by a finite set η = {η1, . . . , ηn}. Then there exists a polynomial
ωη|K(t) ∈ Q[t] such that ωη|K(r) = trdegKK({θηj |θ ∈ Θ(r), 1 ≤ j ≤ n})
for all sufficiently large r ∈ Z. The degree of this polynomial does not exceed m
and the numbers d = degωη|K , am and ad do not depend on the choice of the
system of differential generators η of the extension L/K. Moreover, am is equal
to the differential transcendence degree of L over K, that is, to the maximal
number of elements ξ1, . . . , ξk ∈ L such that the set {θξi|θ ∈ Θ, 1 ≤ i ≤ k} is
algebraically independent over K.

1

http://arxiv.org/abs/1302.1505v1
http://faculty.cua.edu/levin


The polynomial ωη|K(t) is called the differential dimension polynomial of the
extension L/K associated with the set of differential generators η.

If P is a prime differential ideal of a finitely generated differential algebra
R = K{ζ, . . . , ζn} over a differential field K, then the quotient field of R/P
is a differential field extension of K generated by the images of ζi (1 ≤ i ≤
n) in R/P . The corresponding differential dimension polynomial, therefore,
characterizes the ideal P ; it is denoted by ωP (t). Assigning such polynomials
to prime differential ideals has led to a number of new results on the Krull-type
dimension of differential algebras and dimension of differential varieties (see, for
example, [3], [4] and [5]). Furthermore, as it was shown by A. Mikhalev and
E. Pankratev [13], one can naturally assign a differential dimension polynomial
to a system of algebraic differential equations and this polynomial expresses
the A. Einstein’s strength of the system (see [1]). Methods of computation of
(univariate) differential dimension polynomials and the strength of systems of
differential equations via the Ritt-Kolchin technique of characteristic sets can be
found, for example, in [14] and [8, Chapters 5, 9]. Note also, that there are quite
many works on computation of dimension polynomials of differential, difference
and difference-differential modules with the use of various generalizations of the
Gröbner basis method (see, for example, [8, Chapters V - XI], [9], [10], [11], [12,
Chapter 3], and [15]).

In this paper we develop a method of characteristic sets with respect to sev-
eral orderings for algebras of difference-differential polynomials over a difference-
differential fields whose basic set of derivations is partied into several disjoint
subsets. We apply this method to prove the existence, outline a method of
computation, and determine invariants of a multivariate dimension polynomial
associated with a finite system of generators of a difference-differential field ex-
tension (and a partition of the basic sets of derivations). We also show that
most of these invariants are not carried by univariate dimension polynomials
and show how the consideration of the new invariants can be applied to the
isomorphism problem for difference-differential field extensions and equivalence
problem for systems of algebraic difference-differential equations.

2 Preliminaries

Throughout the paper, N,Z, Q, and R denote the sets of all non-negative
integers, integers, rational numbers, and real numbers, respectively. Q[t] will
denote the ring of polynomials in one variable t with rational coefficients.

By a difference-differential ring we mean a commutative ring R together
with finite sets ∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} of derivations and
automorphisms of R, respectively, such that any two mappings of the set ∆

⋃

σ
commute. The set ∆

⋃

σ is called the basic set of the difference-differential
ring R, which is also called a ∆-σ-ring. If R is a field, it is called a difference-
differential field or a ∆-σ-field. Furthermore, in what follows, we denote the set
{α1, . . . , αn, α

−1
1 , . . . , α−1

n } by σ∗.
If R is a difference-differential ring with a basic set ∆

⋃

σ described above,
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then Λ will denote the free commutative semigroup of all power products of the
form λ = δk1

1 . . . δkm
m αl1

1 . . . α
ln
n where ki ∈ N, lj ∈ Z (1 ≤ i ≤ m, 1 ≤ j ≤ n).

For any such an element λ, we set λ∆ = δk1

1 . . . δkm
m , λσ = αl1

1 . . . α
ln
n , and denote

by Λ∆ and Λσ the commutative semigroup of power products δk1

1 . . . δkm
m and

the commutative group of elements of the form αl1
1 . . . α

ln
n , respectively. The

order of λ is defined as ord λ =
∑m

i=1 ki +
∑n

j=1 |lj |, and for every r ∈ N, we
set Λ(r) = {λ ∈ Λ | ord λ ≤ r} (r ∈ N).

A subring (ideal) R0 of a ∆-σ-ring R is said to be a difference-differential
(or ∆-σ-) subring of R (respectively, difference-differential (or ∆-σ-) ideal of R)
if R0 is closed with respect to the action of any operator of ∆

⋃

σ∗. If a prime
ideal P of R is closed with respect to the action of ∆

⋃

σ∗, it is called a prime
difference-differential (or ∆-σ-) ideal of R.

If R is a ∆-σ-field and R0 a subfield of R which is also a ∆-σ-subring of
R, then R0 is said to be a ∆-σ-subfield of R; R, in turn, is called a difference-
differential (or ∆-σ-) field extension or a ∆-σ-overfield of R0. In this case we
also say that we have a ∆-σ-field extension R/R0.

If R is a ∆-σ-ring and Σ ⊆ R, then the intersection of all ∆-ideals of R
containing the set Σ is, obviously, the smallest ∆-σ-ideal of R containing Σ.
This ideal is denoted by [Σ]. (It is clear that [Σ] is generated, as an ideal, by
the set {λξ|ξ ∈ Σ, λ ∈ Λ}). If the set Σ is finite, Σ = {ξ1, . . . , ξq}, we say that
the ∆-ideal I = [Σ] is finitely generated (we write this as I = [ξ1, . . . , ξq]) and
call ξ1, . . . , ξq difference-differential (or ∆-σ-) generators of I.

If K0 is a ∆-σ-subfield of the ∆-σ-field K and Σ ⊆ K, then the intersection
of all ∆-σ-subfields of K containing K0 and Σ is the unique ∆-σ-subfield of
K containing K0 and Σ and contained in every ∆-σ-subfield of K containing
K0 and Σ. It is denoted by K0〈Σ〉. If K = K0〈Σ〉 and the set Σ is finite,
Σ = {η1, . . . , ηs}, then K is said to be a finitely generated ∆-σ-extension of
K0 with the set of ∆-σ-generators {η1, . . . , ηs}. In this case we write K =
K0〈η1, . . . , ηs〉. It is easy to see that the field K0〈η1, . . . , ηs〉 coincides with the
field K0({ληi|λ ∈ Λ, 1 ≤ i ≤ s}).

Let R and S be two difference-differential rings with the same basic set
∆
⋃

σ, so that elements of the sets ∆ and σ act on each of the rings as mutu-
ally commuting derivations and automorphisms, respectively. A ring homomor-
phism φ : R −→ S is called a difference-differential (or ∆-σ-) homomorphism if
φ(τa) = τφ(a) for any τ ∈ ∆

⋃

σ, a ∈ R.

IfK is a difference-differential (∆-σ-) field and Y = {y1, . . . , ys} is a finite set
of symbols, then one can consider the countable set of symbols ΛY = {λyj |λ ∈
Λ, 1 ≤ j ≤ s} and the polynomial ring R = K[{λyj |λ ∈ Λ, 1 ≤ j ≤ s}] in the set
of indeterminates ΛY over the field K. This polynomial ring is naturally viewed
as a ∆-σ-ring where τ(λyj) = (τλ)yj for any τ ∈ ∆

⋃

σ, λ ∈ Λ, 1 ≤ j ≤ s,
and the elements of ∆

⋃

σ act on the coefficients of the polynomials of R as
they act in the field K. The ring R is called a ring of difference-differential (or
∆-σ-) polynomials in the set of differential (∆-σ-)indeterminates y1, . . . , ys over
K. This ring is denoted by K{y1, . . . , ys} and its elements are called difference-
differential (or ∆-σ-) polynomials.
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Let L = K〈η1, . . . , ηs〉 be a difference-differential field extension of K gener-
ated by a finite set η = {η1, . . . , ηs}. As a field, L = K({ληj |λ ∈ Λ, 1 ≤ j ≤ s}).

The following is a unified version of E. Kolchin’s theorem on differential
dimension polynomial and the author’s theorem on the dimension polynomial
of a difference field extension (see [9] or [12, Theorem 4.2.5] ).

Theorem 2.1. With the above notation, there exists a polynomial φη|K(t) ∈
Q[t] such that

(i) φη|K(r) = trdegKK({ληj |λ ∈ Λ(r), 1 ≤ j ≤ s}) for all sufficiently large
r ∈ Z;

(ii) deg φη|K ≤ m+n and φη|K(t) can be written as φη|K(t) =

m+n
∑

i=0

ai

(

t+ i

i

)

where a0, . . . , am+n ∈ Z and 2n|am+n .
(iii) d = deg φη|K , am+n and ad do not depend on the set of difference-

differential generators η of L/K (ad 6= am+n if and only if d < m + n).

Moreover,
am+n

2n
is equal to the difference-differential transcendence degree of

L over K (denoted by ∆-σ-trdegKL), that is, to the maximal number of ele-
ments ξ1, . . . , ξk ∈ L such that the family {λξi|λ ∈ Λ, 1 ≤ i ≤ k} is algebraically
independent over K.

The polynomial whose existence is established by this theorem is called a
univariate difference-differential (or ∆-σ-) dimension polynomial of the exten-
sion L/K associated with the system of difference-differential generators η.

3 Partition of the basic set of derivations and

the formulation of the main theorem

Let K be a difference-differential field of zero characteristic with basic sets
∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} of derivations and automorphisms,
respectively. Suppose that the set of derivations is represented as the union of
p disjoint subsets (p ≥ 1):

∆ = ∆1

⋃

· · ·
⋃

∆p (3. 1)

where ∆1 = {δ1, . . . , δm1
}, ∆2 = {δm1+1, . . . , δm1+m2

}, . . . ,

∆p = {δm1+···+mp−1+1, . . . , δm} (m1 + · · ·+mp = m).

If λ = δk1

1 . . . δkm
m αl1

1 . . . α
ln
n ∈ Λ (ki ∈ N, lj ∈ Z), then the order of λ with

respect to ∆i (1 ≤ i ≤ p) is defined as

m1+···+mi
∑

ν=m1+···+mi−1+1

kν ; it is denoted by

ordiλ. (If i = 1, the last sum is replaced by k1 + · · · + km1
.) The number

ordσλ =

n
∑

j=1

|lj| is called the order of λ with respect to σ. Furthermore, for any
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r1, . . . , rp+1 ∈ N, we set

Λ(r1, . . . , rp+1) = {λ ∈ Λ | ordiλ ≤ ri (i = 1, . . . , p) and ordσλ ≤ rp+1}.

In what follows, for any permutation (j1, . . . , jp+1) of the set {1, . . . , p + 1},
<j1,...,jp+1

will denote the lexicographic order on Np+1 such that
(r1, . . . , rp+1) <j1,...,jp+1

(s1, . . . , sp+1) if and only if either rj1 < sj1 or there
exists k ∈ N, 1 ≤ k ≤ p, such that rjν = sjν for ν = 1, . . . , k and rjk+1

< sjk+1
.

Furthermore, if Σ ⊆ Np+1, then Σ′ denotes the set
{e ∈ Σ|e is a maximal element of Σ with respect to one of the (p + 1)! lexico-
graphic orders <j1,...,jp+1

}.
For example, if Σ = {(3, 0, 2), (2, 1, 1), (0, 1, 4), (1, 0, 3), (1, 1, 6), (3, 1, 0),

(1, 2, 0)} ⊆ N3, then Σ′ = {(3, 0, 2), (3, 1, 0), (1, 1, 6), (1, 2, 0)}.

Theorem 3.1. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension generated by a
set η = {η1, . . . , ηs}. Then there exists a polynomial Φη(t1, . . . , tp+1) in (p+ 1)
variables t1, . . . , tp+1 with rational coefficients such that

(i) Φη(r1, . . . , rp+q) = trdegKK(

s
⋃

j=1

Λ(r1, . . . , rp+1)ηj)

for all sufficiently large (r1, . . . , rp+1) ∈ Np+1 (it means that there exist nonneg-
ative integers s1, . . . , sp+1 such that the last equality holds for all (r1, . . . , rp+1) ∈
Np+1 with r1 ≥ s1, . . . , rp+1 ≥ sp+1);

(ii) degtiΦη ≤ mi (1 ≤ i ≤ p) and degtp+1
Φη ≤ n, so that degΦη ≤ m+n

and Φη(t1, . . . , tp+1) can be represented as

Φη(t1, . . . , tp+1) =

m1
∑

i1=0

. . .

mp
∑

ip=0

n
∑

ip+1=0

ai1...ip+1

(

t1 + i1
i1

)

. . .

(

tp+1 + ip+1

ip+1

)

where ai1...ip+1
∈ Z and 2n | am1...mpn.

(iii) Let Eη = {(i1, . . . , ip+1) ∈ Np+1 | 0 ≤ ik ≤ mk for k = 1, . . . , p,
0 ≤ ip+1 ≤ n, and ai1...ip+1

6= 0}. Then d = degΦη, am1...mp+1
, elements

(k1, . . . , kp+1) ∈ E′
η, the corresponding coefficients ak1...kp+1

and the coefficients
of the terms of total degree d do not depend on the choice of the system of
∆-σ-generators η.

Definition 3.2. The polynomial Φη(t1, . . . , tp+1) is said to be the difference-
differential (or ∆-σ-) dimension polynomial of the ∆-σ-field extension L/K as-
sociated with the set of ∆-σ-generators η and partition (3.1) of the basic set of
derivations.

The ∆-σ-dimension polynomial associated with partition (3.1) has the fol-
lowing interpretation as the strength of a system of difference-differential equa-
tions.

Let us consider a system of partial difference-differential equations

Ai(f1, . . . , fs) = 0 (i = 1, . . . , q) (3. 2)
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over a field of functions of m real variables x1, . . . , xm (f1, . . . , fs are unknown
functions of x1, . . . , xm). Suppose that ∆ = {δ1, . . . , δm} where δi is the par-
tial differentiation ∂/∂xi (i = 1, . . . ,m) and the basic set of automorphisms σ =
{α1, . . . , αm} consists ofm shifts of arguments, f(x1, . . . , xm) 7→ f(x1, . . . , xi−1, xi+
hi, xi+1, . . . , xm) (1 ≤ i ≤ m, h1, . . . , hm ∈ R). Thus, we assume that the left-
hand sides of the equations in (3.2) contain unknown functions fi, their partial
derivatives, their images under the shifts αj , and various compositions of such
shifts and partial derivations. Furthermore, we suppose that system (3.2) is
algebraic, that is, all Ai(y1, . . . , ys) are elements of a ring of ∆-σ-polynomials
K{y1, . . . , ys} with coefficients in some functional ∆-σ-field K.

Let us consider a grid with equal cells of dimension h1 × · · · × hm that fills
the whole space Rm. We fix some node P and say that a node Q has order i
if the shortest path from P to Q along the edges of the grid consists of i steps
(by a step we mean a path from a node of the grid to a neighbor node along the
edge between them). We also fix partition (3.1) of the set of basic derivations
∆ (such a partition can be, for example, a natural separation of (all or some)
derivations with respect to coordinates and the derivation with respect to time).

For any r1, . . . , rp+1 ∈ N, let us consider the values of the unknown func-
tions f1, . . . , fs and their partial derivatives, whose order with respect to ∆i

does not exceed ri (1 ≤ i ≤ p), at the nodes whose order does not exceed rp+1.
If f1, . . . , fs should not satisfy any system of equations (or any other condition),
these values can be chosen arbitrarily. Because of the system (and equations
obtained from the equations of the system by partial differentiations and trans-
formations of the form fj(x1, . . . , xm) 7→ fj(x1 + k1h1, . . . , xm + kmhm) with
k1, . . . , km ∈ Z, 1 ≤ j ≤ s), the number of independent values of the func-
tions f1, . . . , fs and their partial derivatives whose ith order does not exceed
ri (1 ≤ i ≤ p) at the nodes of order ≤ rp+1 decreases. This number, which is
a function of p + 1 variables r1, . . . , rp+1, is the “measure of strength” of the
system in the sense of A. Einstein. We denote it by Sr1,...,rp+1

.
Suppose that the ∆-σ-ideal J generated in the ring K{y1, . . . , ys} by the

∆-σ-polynomials A1, . . . , Aq is prime (e. g., the polynomials are linear). Then
the field of fractions L of the ∆-σ-integral domain K{y1, . . . , ys}/J has a nat-
ural structure of a ∆-σ-field extension of K generated by the finite set η =
{η1, . . . , ηs} where ηi is the canonical image of yi inK{y1, . . . , ys}/J (1 ≤ i ≤ s).
It is easy to see that the ∆-σ-dimension polynomial Φη(t1, . . . , tp+1) of the exten-
sion L/K associated with the system of ∆-σ-generators η has the property that
Φη(r1, . . . , rp+1) = Sr1,...,rp+1

for all sufficiently large (r1, . . . , rp+q) ∈ Np+1, so
this dimension polynomial is the measure of strength of the system of difference-
differential equations (3.2) in the sense of A. Einstein.

4 Numerical polynomials of subsets of Nm × Zn

Definition 4.1. A polynomial f(t1, . . . , tp) in p variables t1, . . . , tp (p ≥ 1) with
rational coefficients is called numerical if f(r1, . . . , rp) ∈ Z for all sufficiently
large (r1, . . . , rp) ∈ Zp.
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Of course, every polynomial with integer coefficients is numerical. As an
example of a numerical polynomial in p variables with noninteger coefficients
(p ≥ 1) one can consider

∏p
i=1

(

ti
mi

)

where m1, . . . ,mp ∈ N. (As usual,
(

t
k

)

(k ≥ 1) denotes the polynomial t(t−1)...(t−k+1)
k! ,

(

t
0

)

= 1, and
(

t
k

)

= 0 if k < 0.)

The following theorem proved in [8, Chapter 2] gives the “canonical” rep-
resentation of a numerical polynomial in several variables.

Theorem 4.2. Let f(t1, . . . , tp) be a numerical polynomial in p variables and
let degti f = mi (m1, . . . ,mp ∈ N). Then f(t1, . . . , tp) can be represented as

f(t1, . . . tp) =

m1
∑

i1=0

. . .

mp
∑

ip=0

ai1...ip

(

t1 + i1
i1

)

. . .

(

tp + ip
ip

)

(4. 1)

with uniquely defined integer coefficients ai1...ip .

In what follows, we deal with subsets of Nm × Zn (m,n ≥ 1) and a fixed
partition of the set Nm = {1, . . . ,m} into p disjoint subsets (p ≥ 1):

Nm = N1

⋃

. . . Np (4. 2)

where N1 = {1, . . . ,m1},. . . , Np = {m1 + · · ·+mp−1 + 1, . . . ,m} (m1 + · · ·+
mp = m). If a = (a1, . . . , am+n) ∈ Nm × Zn we denote the numbers

∑m1

i=1 ai,
∑m1+m2

i=m1+1 ai, . . . ,
∑m

i=m1+···+mp−1+1 ai,
∑m+n

i=m+1 |ai| by ord1a, . . . , ordp+1a,

respectively. Furthermore, we consider the set Zn as a union

Zn =
⋃

1≤j≤2n

Z
(n)
j (4. 3)

where Z
(n)
1 , . . . ,Z

(n)
2n are all different Cartesian products of n sets each of which

is either N or Z− = {a ∈ Z|a ≤ 0}. We assume that Z
(n)
1 = Nn and call Z

(n)
j

the jth orthant of the set Zn (1 ≤ j ≤ 2n). The set Nm × Zn is considered
as a partially ordered set with the order E such that (e1, . . . , em, f1, . . . , fn) E
(e′1, . . . , e

′
m, f

′
1, . . . , f

′
n) if and only if (f1, . . . , fn) and (f ′

1, . . . , f
′
n) belong to the

same orthant Z
(n)
k and the (m+ n)-tuple (e1, . . . , em, |f1|, . . . , |fn|) is less than

(e′1, . . . , e
′
m, |f

′
1|, . . . , |f

′
n|) with respect to the product order on Nm+n.

In what follows, for any set A ⊆ Nm × Zn, WA will denote the set of all
elements of Nm × Zn that do not exceed any element of A with respect to the
order E. (Thus, w ∈ WA if and only if there is no a ∈ A such that a E w.)
Furthermore, for any r1, . . . rp+1 ∈ N, A(r1, . . . rp+1) will denote the set of all
elements x = (x1, . . . , xm, x

′
1, . . . , x

′
n) ∈ A such that ordix ≤ ri (i = 1, . . . , p+1).

The above notation can be naturally restricted to subsets of Nm. If E ⊆ Nm

and s1, . . . , sp ∈ N, then E(s1, . . . , sp) will denote the set {e = (e1, . . . , em) ∈
E | ordi(e1, . . . , em, 0, . . . , 0) ≤ si for i = 1, . . . , p} ( (e1, . . . , em, 0, . . . , 0) ends
with n zeros; it is treated as a point in Nm ×Zn.) Furthermore VE will denote
the set of all m-tuples v = (v1, . . . , vm) ∈ N which are not greater than or
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equal to any m-tuple from E with respect to the product order on Nm. (Recall
that the product order on Nm is a partial order ≤P on Nm such that c =
(c1, . . . , cm) ≤P c′ = (c′1, . . . , c

′
m) if and only if ci ≤ c′i for all i = 1, . . . ,m. If

c ≤P c′ and c 6= c′, we write c <P c′ ). Clearly, v = (v1, . . . , vm) ∈ VE if and
only if for any element (e1, . . . , em) ∈ E, there exists i ∈ N, 1 ≤ i ≤ m, such
that ei > vi.

The following two theorems proved in [8, Chapter 2] generalize the well-
known Kolchin’s result on the numerical polynomials associated with subsets
of Nm (see [7, Chapter 0, Lemma 16]) and give an explicit formula for the
numerical polynomials in p variables associated with a finite subset of Nm.

Theorem 4.3. Let E be a subset of Nm where m = m1+· · ·+mp for some non-
negative integers m1, . . . ,mp (p ≥ 1). Then there exists a numerical polynomial
ωE(t1, . . . , tp) with the following properties:

(i) ωE(r1, . . . , rp) = CardVE(r1, . . . , rp) for all sufficiently large (r1, . . . , rp) ∈
Np. (As usual, CardM denotes the number of elements of a finite set M).

(ii) degtiωE ≤ mi for all i = 1, . . . , p.

(iii) deg ωE = m if and only if E = ∅. Then ωE(t1, . . . , tp) =

p
∏

i=1

(

ti +mi

mi

)

.

Definition 4.4. The polynomial ωE(t1, . . . , tp) is called the dimension polyno-
mial of the set E ⊆ Nm associated with the partition (m1, . . . ,mp) of m.

Theorem 4.5. Let E = {e1, . . . , eq} (q ≥ 1) be a finite subset of Nm and let
a partition (4.2) of the set Nm into p disjoint subsets N1, . . . , Np be fixed. Let
ei = (ei1, . . . , eim) (1 ≤ i ≤ q) and for any l ∈ N, 0 ≤ l ≤ q, let Γ(l, q) denote
the set of all l-element subsets of the set Nq = {1, . . . , q}. Furthermore, for
any σ ∈ Γ(l, q), let ē∅j = 0, ēσj = max{eij |i ∈ σ} if σ 6= ∅ (1 ≤ j ≤ m), and

bσk =
∑

h∈Nk

ēσh (k = 1, . . . , p). Then

ωE(t1, . . . , tp) =

q
∑

l=0

(−1)l
∑

σ∈Γ(l, q)

p
∏

j=1

(

tj +mj − bσj
mj

)

(4. 4)

Remark. It is clear that if E ⊆ Nm and E∗ is the set of all minimal
elements of the set E with respect to the product order on Nm, then the set
E∗ is finite and ωE(t1, . . . , tp) = ωE∗(t1, . . . , tp). Thus, Theorem 4.5 gives an
algorithm that allows one to find a numerical polynomial associated with any
subset of Nm (and with a given partition of the set {1, . . . ,m}): one should first
find the set of all minimal points of the subset and then apply Theorem 4.5.

The following result can be obtained precisely in the same way as Theorem
3.4 of [10] (the only difference is that the proof in the mentioned paper uses
Theorem 3.2 of [10] in the case p = 2, while the proof of the theorem below
should refer to the Theorem 3.2 of [10] where p is any positive integer).

Theorem 4.6. Let A ⊆ Nm ×Zn and let partition (4.2) of Nm be fixed. Then
there exists a numerical polynomial φA(t1, . . . , tp+1) in p+1 variables such that

8



(i) φA(r1, . . . , rp+1) = CardWA(r1, . . . , rp+1) for all sufficiently large
(r1, . . . , rp+1) ∈ Np+1.

(ii) degtiφA ≤ mi (1 ≤ i ≤ p), degtp+1
φA ≤ n and the coefficient of

tm1

1 . . . t
mp
p tnp+1 in φA is of the form

2na

m1! . . .mp!n!
with a ∈ Z.

(iii) Let us consider a mapping ρ : Nm × Zn −→ Nm+2n such that

ρ((e1, . . . , em+n) = (e1, . . . , em,max{em+1, 0}, . . . ,max{em+n, 0},
max{−em+1, 0}, . . . ,max{−em+n, 0}).

Let B = ρ(A)
⋃

{ē1, . . . , ēn} where ēi (1 ≤ i ≤ n) is a (m + 2n)-tuple
in Nm+2n whose (m + i)th and (m + n + i)th coordinates are equal to 1 and
all other coordinates are equal to 0. Then φA(t1, . . . , tp+1) = ωB(t1, . . . , tp+1)
where ωB(t1, . . . , tp+1) is the dimension polynomial of the set B (see Definition
4.4) associated with the partition Nm+2n = {1, . . . ,m1}

⋃

{m1 + 1, . . . ,m1 +
m2}

⋃

· · ·
⋃

{m1+· · ·+mp−1+1, . . . ,m}
⋃

{m+1, . . . ,m+2n} of the set Nm+2n.

(iv) If A = ∅, then

φA(t1, . . . , tp+1) =

(

t1 +m1

m1

)

. . .

(

tp +mp

mp

) n
∑

i=0

(−1)n−i2i
(

n

i

)(

tp+1 + i

i

)

.

(4. 5)

The polynomial φA(t1, . . . , tp+1) is called the dimension polynomial of the
set A ⊆ Nm × Zn associated with partition (4.2) of Nm.

5 Proof of the main theorem and computation

of difference-differential dimension polynomi-

als via characteristic sets

In this section we prove Theorem 3.1 and give a method of computation of
difference-differential dimension polynomials of ∆-σ-field extensions based on
constructing a characteristic set of the defining prime ∆-σ-ideal of the extension.

In what follows we use the conventions of section 3. In particular, we assume
that partition (3.1) of the set of basic derivations ∆ = {δ1, . . . , δm} is fixed.

Let us consider p + 1 total orderings <1, . . . , <p, <σ of the set of power
products Λ such that

λ = δk1

1 . . . δkm
m αl1

1 . . . α
ln
n <i λ

′ = δ
k′

1

1 . . . δ
k′

m
m α

l′1
1 . . . α

l′n
n (1 ≤ i ≤ p) if and only if

(ordiλ, ord λ, ord1λ, . . . , ordi−1λ, ordi+1λ, . . . , ordpλ, ordσλ, km1+···+mi−1+1, . . . ,

km1+···+mi
, k1, . . . , km1+···+mi−1

, km1+···+mi+1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln) is

less than (ordiλ
′, ord λ′, ord1λ

′, . . . , ordi−1λ
′, ordi+1λ

′, . . . , ordpλ
′, ordσλ

′,

k′m1+···+mi−1+1, . . . , k
′
m1+···+mi

, k′1, . . . , k
′
m1+···+mi−1

, k′m1+···+mi+1, . . . ,

9



k′m, |l
′
1|, . . . , |l

′
n|, l

′
1, . . . , l

′
n) with respect to the lexicographic order onNm+2n+p+2.

Similarly, λ <σ λ
′ if and only if (ordσλ, ord λ, ord1λ, . . . , ordpλ, |l1|, . . . , |ln|,

l1, . . . , ln, k1, . . . , km) is less than the corresponding (m+ 2n+ p+ 2)-tuple for
λ′ with respect to the lexicographic order on Nm+2n+p+2.

Two elements λ1 = δk1

1 . . . δkm
m αl1

1 . . . α
ln
n and λ2 = δr11 . . . δrmm αs1

1 . . . αsn
n in

Λ are called similar , if the n-tuples (l1, . . . , ln) and (s1, . . . , sn) belong to the
same orthant of Zn (see (4.3) ). In this case we write λ1 ∼ λ2. We say that λ1
divides λ2 (or λ2 is a multiple of λ1) and write λ1|λ2 if λ1 ∼ λ2 and there exists
λ ∈ Λ such that λ ∼ λ1, λ ∼ λ2 and λ2 = λλ1.

Let K be a difference-differential field (CharK = 0) with the basic sets ∆
and σ described above (and partition (3.1) of the set ∆). Let K{y1, . . . , ys} be
the ring of ∆-σ-polynomials overK and let ΛY denote the set of all elements λyi
(λ ∈ Λ, 1 ≤ i ≤ s) called terms. Note that as a ring, K{y1, . . . , ys} = K[ΛY ].
Two terms u = λyi and v = λ′yj are called similar if λ and λ′ are similar; in
this case we write u ∼ v. If u = λyi is a term and λ′ ∈ Λ, we say that u is
similar to λ′ and write u ∼ λ′ if λ ∼ λ′. Furthermore, if u, v ∈ ΛY , we say that
u divides v or v is a multiple of u, if u = λ′yi, v = λ′′yi for some yi and λ

′|λ′′.

(If λ′′ = λλ′ for some λ ∈ Λ, λ ∼ λ′, we write
v

u
for λ.)

Let us consider p+ 1 orders <1, . . . , <p, <σ on the set ΛY that correspond
to the orders on the semigroup Λ (we use the same symbols for the orders on Λ
and ΛY ). These orders are defined as follows: λyj <i (or <σ) λ

′yk if and only
if λ <i (respectively, <σ)λ

′ in Λ or λ = λ′ and j < k (1 ≤ i ≤ p, 1 ≤ j, k ≤ s).

The order of a term u = λyk and its orders with respect to the sets ∆i

(1 ≤ i ≤ p) and σ are defined as the corresponding orders of λ (we use the same
notation ord u, ordiu, and ordσu for the corresponding orders).

If A ∈ K{y1, . . . , ys}\K and 1 ≤ k ≤ p, then the highest with respect to <k

term that appears in A is called the k-leader of A. It is denoted by u
(k)
A . The

highest term of A with respect to <σ is called the σ-leader of A; it is denoted by
vA. If A is written as a polynomial in vA, A = Id(vA)

d
+ Id−1(vA)

d−1
+ · · ·+ I0,

where all terms of I0, . . . , Id are less than vA with respect to <σ, then Id is
called the initial of A. The partial derivative ∂A/∂vA = dId(vA)

d−1 + (d −

1)Id−1(vA)
d−2

+ · · ·+I1 is called the separant of A. The initial and the separant
of a ∆-σ-polynomial A are denoted by IA and SA, respectively.

If A,B ∈ K{y1, . . . , ys}, then A is said to have lower rank than B (we write

rk A < rk B) if either A ∈ K, B /∈ K, or (vA, degvAA, ord1u
(1)
A , . . . , ordpu

(p)
A ) is

less than (vB, degvBB, ord1u
(1)
B , . . . , ordpu

(p)
B ) with respect to the lexicographic

order (vA and vB are compared with respect to <σ). If the vectors are equal (or
A,B ∈ K) we say that A and B are of the same rank and write rk A = rk B.

Definition 5.1. If A,B ∈ K{y1, . . . , ys}, then B is said to be reduced with
respect to A if

(i) B does not contain terms λvA such that λ ∼ vA, λ∆ 6= 1, and ordi(λu
(i)
A ) ≤

ordiu
(i)
B for i = 1, . . . , p.
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(ii) If B contains a term λvA, where λ ∼ vA and λ∆ = 1, then either there

exists j, 1 ≤ j ≤ p, such that ordju
(j)
B < ordj(λu

(j)
A ) or ordj(λu

(j)
A ) ≤ ordju

(j)
B

for all j = 1, . . . , p and degλvAB < degvAA.

If B ∈ K{y1, . . . , ys}, then B is said to be reduced with respect to a set
Σ ⊆ K{y1, . . . , ys} if B is reduced with respect to every element of Σ.

A set Σ ⊆ K{y1, . . . , ys} is called autoreduced if Σ
⋂

K = ∅ and every element
of Σ is reduced with respect to any other element of this set.

The proof of the following lemma can be found in [7, Chapter0, Section 17].

Lemma 5.2. Let A be any infinite subset of Nm×Nn (m,n ∈ N, n ≥ 1). Then
there exists an infinite sequence of elements of A, strictly increasing relative to
the product order, in which every element has the same projection on Nn.

This lemma implies the following statement that will be used below.

Lemma 5.3. Let S be any infinite set of terms λyj (λ ∈ Λ, 1 ≤ j ≤ s) in
K{y1, . . . , ys}. Then there exists an index j (1 ≤ j ≤ s) and an infinite sequence
of terms λ1yj , λ2yj, . . . , λkyj , . . . such that λk|λk+1 for every k = 1, 2, . . . .

Proposition 5.4. Every autoreduced set is finite.

Proof. Suppose that Σ is an infinite autoreduced subset of K{y1, . . . , ys}. Then
Σmust contain an infinite set Σ′ ⊆ Σ such that all ∆-σ-polynomials from Σ′ have
different σ-leaders similar to each other. Indeed, if it is not so, then there exists
an infinite set Σ1 ⊆ Σ such that all ∆-σ-polynomials from Σ1 have the same

σ-leader v. By Lemma 5.2, the infinite set {(ord1u
(1)
A , . . . , ordpu

(p)
A )|A ∈ Σ1}

contains a nondecreasing infinite sequence

(ord1u
(1)
A1
, . . . , ordpu

(p)
A1

) ≤P (ord1u
(1)
A2
, . . . , ordpu

(p)
A2

) ≤P . . .

(A1, A2, · · · ∈ Σ1 and ≤P denotes the product order on Np). Since the sequence
{degvAi

Ai|i = 1, 2, . . .} cannot be strictly decreasing, there are two indices i
and j such that i < j and degvAi

Ai ≤ degvAj
Aj . We see that Aj is not reduced

with respect to Ai that contradicts the fact that Σ is an autoreduced set.
Thus, we can assume that all ∆-σ-polynomials of our infinite autoreduced

set Σ have distinct σ-leaders similar to each other. Using Lemma 5.3, we can
assume that there exists an infinite sequence B1, B2, . . . of elements of Σ such

that vBi
|vBi+1

and
(

vBi+1

vBi

)

∆
6= 1 for all i = 1, 2, . . . . Let kij = ordjvBi

and

lij = ordju
(j)
Bi

(1 ≤ j ≤ p). Obviously, lij ≥ kij (i = 1, 2, . . . ; j = 1, . . . , p), so
that {(li1 − ki1, . . . , lip − kip)|i = 1, 2, . . . } ⊆ Np. By Lemma 5.2, there exists
an infinite sequence of indices i1 < i2 < . . . such that (li11 − ki11, . . . , li1p −
ki1p) ≤P (li21 − ki21, . . . , li2p − ki2p) ≤P . . . . Then for any j = 1, . . . , p, we have

ordj (
vBi2

vBi1

u
(j)
Bi1

) = ki2j −ki1j + li1j ≤ ki2j + li2j −ki2j = li2j = ordju
(j)
Bi2

, so that

Bi2 contains a term λvBi1
= vBi2

such that λ∆ 6= 1 and ordj(λu
(j)
Bi1

) ≤ ordju
(j)
Bi2

for j = 1, . . . , p. Thus, the ∆-σ-polynomial Bi2 is reduced with respect to Bi1

that contradicts the fact that Σ is an autoreduced set.
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Throughout the rest of the paper, while considering autoreduced sets in
the ring K{y1, . . . , ys} we always assume that their elements are arranged in
order of increasing rank. (Therefore, if we consider an autoreduced set of ∆-σ-
polynomials Σ = {A1, . . . , Ad}, then rk A1 < · · · < rk Ad).

Proposition 5.5. Let Σ = {A1, . . . , Ad} be an autoreduced set in the ring
K{y1, . . . , ys} and let Ik and Sk (1 ≤ k ≤ d) denote the initial and separant
of Ak, respectively. Furthermore, let I(Σ) = {X ∈ K{y1, . . . , ys} |X = 1 or
X is a product of finitely many elements of the form γ(Ik) and γ′(Sk) where
γ, γ′ ∈ Λσ}. Then for any ∆-σ-polynomial B, there exist B0 ∈ K{y1, . . . , ys}
and J ∈ I(Σ) such that B0 is reduced with respect to Σ and JB ≡ B0 (mod[Σ])
(that is, JB −B0 ∈ [Σ]).

Proof. If B is reduced with respect to Σ, the statement is obvious (one can set

B0 = B). Suppose that B is not reduced with respect to Σ. Let u
(j)
i and vi

(1 ≤ j ≤ p, 1 ≤ i ≤ d) be the leaders of the element Ai relative to the orders
<j and <σ, respectively. In what follows, a term wH , that appears in a ∆-σ-
polynomial H ∈ R, will be called a Σ-leader of H if wH is the greatest (with
respect to <σ) term among all terms λvi (λ ∈ Λ, 1 ≤ j ≤ d) such that λ ∼ vi,

λvi appears in H and either λ∆ 6= 1 and ordj(λu
(j)
i ) ≤ ordju

(j)
H for j = 1, . . . , p,

or λ∆ = 1, ordj(λu
(j)
i ) ≤ ordju

(j)
H (1 ≤ j ≤ p), and degviAi ≤ degλviH .

Let wB be the Σ-leader of B. Then B = B′wr
B + B′′ where B′ does not

contain wB and degwB
B′′ < r. Let wB = λvi for some i (1 ≤ i ≤ d) and for

some λ ∈ Λ, λ ∼ vi, such that ordj(λu
(j)
i ) ≤ ordju

(j)
B for j = 1, . . . , p. Without

loss of generality we may assume that i corresponds to the maximum (with
respect to <σ) σ-leader vi in the set of all σ-leaders of elements of Σ.

Suppose, first, that λ∆ 6= 1 (and ordj(λu
(j)
i ) ≤ ordju

(j)
B for j = 1, . . . , p).

Then λ∆Ai−Siλ∆vi has lower rank than λ∆vi, hence T = λAi−λσ(Si)λvi has
lower rank than λvi = wB . Also, (λσ(Si))

rB = (λσ(Si)λvi)
rB′+(λσ(Si))

rB′′ =
(λAi −T )rB′ +(λσ(Si))

rB′′. Setting B(1) = B′(−T )r +(λσ(Si))
rB′′ we obtain

that B(1) ≡ B (mod[Σ]), B(1) does not contain any Σ-leader, which is greater
than wB with respect to <σ, and degwB

B(1) < r.

Now let λ∆ = 1, ordj(λu
(j)
i ) ≤ ordju

(j)
B (1 ≤ j ≤ p), and ri < r where

ri = degviAi. Then the ∆-σ-polynomial (λIi)B − wr−ri
B (λAi)B

′ has all the
properties of B(1) mentioned above. Repeating the described procedure, we
arrive at a desired ∆-σ-polynomial B0, which is reduced with respect to Σ and
satisfies the condition JB ≡ B0 (mod[Σ]), where J = 1 or J is a product of
finitely many elements of the form γ(Ik) and γ

′(Sk) (γ, γ
′ ∈ Λσ).

With the notation of the last proposition, we say that the ∆-σ-polynomial
B reduces to B0 modulo Σ.

Definition 5.6. Let Σ = {A1, . . . , Ad} and Σ′ = {B1, . . . , Be} be two autore-
duced sets in the ring of ∆-σ-polynomials K{y1, . . . , ys}. An autoreduced set Σ
is said to have lower rank than Σ′ if one of the following two cases holds:

(1) There exists k ∈ N such that k ≤ min{d, e}, rk Ai = rk Bi for i =
1, . . . , k − 1 and rk Ak < rk Bk.
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(2) d > e and rk Ai = rk Bi for i = 1, . . . , e.
If d = e and rk Ai = rk Bi for i = 1, . . . , d, then Σ is said to have the same

rank as Σ′.

Proposition 5.7. In every nonempty family of autoreduced sets of difference-
differential polynomials there exists an autoreduced set of lowest rank.

Proof. Let Φ be a nonempty family of autoreduced sets in the ringK{y1, . . . , ys}.
Let us inductively define an infinite descending chain of subsets of Φ as follows:
Φ0 = Φ, Φ1 = {Σ ∈ Φ0|Σ contains at least one element and the first element
of Σ is of lowest possible rank}, . . . , Φk = {Σ ∈ Φk−1|Σ contains at least k ele-
ments and the kth element of Σ is of lowest possible rank}, . . . . It is clear that
if A and B are any two ∆-σ-polynomials in the same set Φk, then vA = vB,

degvAA = degvBB, and ordiu
(i)
A = ordiu

(i)
B for i = 1, . . . , p. Therefore, if all

sets Φk are nonempty, then the set {Ak|Ak is the kth element of some autore-
duced set in Φk} would be an infinite autoreduced set, and this would contradict
Proposition 5.4. Thus, there is the smallest positive integer k such that Φk = ∅.
Clearly, every element of Φk−1 is an autoreduced set of lowest rank in Φ.

Let J be any ideal of the ring K{y1, . . . , ys}. Since the set of all autoreduced
subsets of J is not empty (if A ∈ J , then {A} is an autoreduced subset of J),
the last statement shows that J contains an autoreduced subset of lowest rank.
Such an autoreduced set is called a characteristic set of the ideal J .

Proposition 5.8. Let Σ = {A1, . . . , Ad} be a characteristic set of a ∆-σ-ideal J
of the ring R = K{y1, . . . , ys}. Then an element B ∈ R is reduced with respect
to the set Σ if and only if B = 0.

Proof. First of all, note that if B 6= 0 and rk B < rk A1, then rk {B} < rkΣ
that contradicts the fact that Σ is a characteristic set of the ideal J . Let
rk B > rk A1 and let A1, . . . , Aj (1 ≤ j ≤ d) be all elements of Σ whose rank
is lower that the rank of B. Then Σ′ = {A1, . . . , Aj , B} is an autoreduced set
of lower rank than Σ, contrary to the fact that Σ is a characteristic set of J .
Thus, B = 0.

Since for any ∆-σ-polynomial A and any γ ∈ Λσ, ordi(γA) = ordiA for
i = 1, . . . , p, one can introduce the concept of a coherent autoreduced set of a
linear ∆-σ-ideal ofK{y1, . . . , ys} (that is, a ∆-σ-ideal generated by a finite set of
linear ∆-σ-polynomials) in the same way as it is defined in the case of difference
polynomials (see [8, Section 6.5]): an autoreduced set Σ = {A1, . . . , Ad} ⊆
K{y1, . . . , ys} consisting of linear ∆-σ-polynomials is called coherent if it satisfies
the following two conditions:

(i) λAi reduces to zero modulo Σ for any λ ∈ Λ, 1 ≤ i ≤ d.
(ii) If vAi

∼ vAj
and w = λvAi

= λ′vAj
, where λ ∼ λ′ ∼ vAi

∼ vAj
, then

the ∆-σ-polynomial (λ′IAj
)(λAi)− (λIAi

)(λ′Aj) reduces to zero modulo Σ.
The following two propositions can be proved precisely in the same way as

the corresponding statements for difference polynomials, see [8, Theorem 6.5.3
and Corollary 6.5.4]).
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Proposition 5.9. Any characteristic set of a linear ∆-σ-ideal of the ring of ∆-
σ-polynomials K{y1, . . . , ys} is a coherent autoreduced set. Conversely, if Σ is a
coherent autoreduced set in K{y1, . . . , ys} consisting of linear ∆-σ-polynomials,
then Σ is a characteristic set of the linear ∆-σ-ideal [Σ].

Proposition 5.10. Let us consider a partial order 4 on K{y1, . . . , ys} such that
A 4 B if and only if vA|vB . Let A be a linear ∆-σ-polynomial in K{y1, . . . , ys},
A /∈ K. Then the set of all minimal with respect to 4 elements of the set
{λA |λ ∈ Λ} is a characteristic set of the ∆-σ-ideal [A].

Now we are ready to prove Theorem 3.1.

Proof. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension ofK generated by a finite
set η = {η1, . . . , ηs}. Then there exists a natural ∆-σ-homomorphism Υη of the
ring of ∆-σ-polynomials K{y1, . . . , ys} onto the ∆-σ-subring K{η1, . . . , ηs} of
L such that Υη(a) = a for any a ∈ K and Υη(yj) = ηj for j = 1, . . . , s. (If A ∈
K{y1, . . . , ys}, then Υη(A) is called the value of A at η; it is denoted by A(η).)
Obviously, the kernel P of the ∆-σ-homomorphism Υη is a prime ∆-σ-ideal of
K{y1, . . . , ys}. This ideal is called the defining ideal of η over K or the defining
ideal of the extension L = K〈η1, . . . , ηs〉. It is easy to see that if the quotient field
Q of the factor ring R̄ = K{y1, . . . , ys}/P is considered as a ∆-σ-field (where

δ( f
g
) = gδ(f)−fδ(g)

g2 and τ( f
g
) = τ(f)

τ(g) for any f, g ∈ R̄, δ ∈ ∆, τ ∈ σ∗), then Q

is naturally ∆-σ-isomorphic to the field L. The corresponding isomorphism is
identity on K and maps the images of the ∆-σ-indeterminates y1, . . . , ys in the
factor ring R̄ to the elements η1, . . . , ηs, respectively.

Let Σ = {A1, . . . , Ad} be a characteristic set of the defining ∆-σ-ideal P .
For any r1, . . . , rp+1 ∈ N, let us set Ur1...rp+1

= {u ∈ ΛY |ordiu ≤ ri for i =
1, . . . , p, ordσu ≤ rp+1, and either u is not a multiple of any vAi

or for every
λ ∈ Λ, A ∈ Σ such that u = λvA and λ ∼ vA, there exists j ∈ {1, . . . , p} such

that ordj(λu
(j)
A ) > rj}. We are going to show that the set Ūr1...rp+1

= {u(η)|u ∈

Ur1...rp+1
} is a transcendence basis of the field K(

n
⋃

j=1

Λ(r1, . . . , rp+1)ηj) over K.

Let us show first that the set Ūr1...rp+1
is algebraically independent over K.

Let g be a polynomial in k variables (k ∈ N, k ≥ 1) such that g(u1(η), . . . , uk(η)) =
0 for some u1, . . . , uk ∈ Ur1...rp+1

. Then the ∆-σ-polynomial ḡ = g(u1, . . . , uk)
is reduced with respect to Σ. (Indeed, if g contains a term u = λvAi

with
λ ∈ Λ, λ ∼ vAi

(1 ≤ i ≤ d), then there exists k ∈ {1, . . . , p} such that

ordk(λu
(k)
Ai

) > rk ≥ ordku
(k)
ḡ ). Since ḡ ∈ P , Proposition 5.8 implies that ḡ = 0.

Thus, the set Ūr1...rp+1
is algebraically independent over K.

Now, let us prove that every element ληj (1 ≤ j ≤ s, λ ∈ Λ(r1, . . . , rp+1)) is
algebraic over the field K(Ūr1,...,rp+1

). Let ληj /∈ Ūr1,...,rp+1
(if ληj ∈ Ūr1,...,rp+1

,
the statement is obvious). Then λyj /∈ Ur1,...,rp+1

whence λyj is equal to some

term λ′vAi
where λ′ ∈ Λ, λ ∼ vAi

(1 ≤ i ≤ d), and ordk(λ
′u

(k)
Ai

) ≤ rk for
k = 1, . . . , p. Let us represent Ai as a polynomial in vAi

: Ai = I0(vAi
)e +

I1(vAi
)
e−1

+ · · ·+ Ie, where I0, I1, . . . Ie do not contain vAi
(therefore, all terms
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in these ∆-σ-polynomials are lower than vAi
with respect to <σ). Since Ai ∈ P ,

Ai(η) = I0(η)(vAi
)(η)

e
+ I1(η)(vAi

)(η)
e−1

+ · · ·+ Ie(η) = 0 (5. 1)

It is easy to see that the ∆-σ-polynomials I0 and SAi
= ∂Ai/∂vAi

are reduced
with respect to any element of the set Σ. Applying Proposition 5.8 we obtain
that I0 /∈ P and SAi

/∈ P whence I0(η) 6= 0 and SAi
(η) 6= 0. Now, if we apply λ′

to both sides of equation (5.1), the resulting equation will show that the element
λ′vAi

(η) = ληj is algebraic over the field K({λ̄ηl|ordiλ̄ ≤ ri, ordσ λ̄ ≤ rp+1, for

i = 1, . . . , p, 1 ≤ l ≤ s, and λ̄yl <1 λ
′u

(1)
Ai

= λyj}). Now, the induction on the

set of terms ΛY ordered by <σ completes the proof of the fact that Ūr1...rp+1
(η)

is a transcendence basis of the field K(

s
⋃

j=1

Λ(r1, . . . , rp+1)ηj) over K.

Let U
(1)
r1...rp+1

= {u ∈ ΛY |ordiu ≤ ri for i = 1, . . . , p, ordσu ≤ rp+1, and u is

not a multiple of any vAj
, j = 1, . . . , d} and let U

(2)
r1...rp+1

= {u ∈ ΛY |ordiu ≤ ri,
ordσu ≤ rp+1 for i = 1, . . . , p and there exists at least one pair i, j (1 ≤ i ≤

p, 1 ≤ j ≤ d) such that u = λvAj
, λ ∼ vAj

, and ordi(λu
(i)
Aj

) > ri}. Clearly,

Ur1...rp+1
= U

(1)
r1...rp+1

⋃

U
(2)
r1...rp+1

and U
(1)
r1...rp+1

⋂

U
(2)
r1...rp+1

= ∅.
By Theorem 4.6, there exists a numerical polynomial φ(t1, . . . , tp+1) in p+1

variables t1, . . . , tp+1 such that φ(r1, . . . , rp+1) = CardU
(1)
r1...rp+1 for all suffi-

ciently large (r1, . . . , rp+1) ∈ Np+1, degtiφ ≤ mi (1 ≤ i ≤ p), and degtp+1
φ ≤ n.

Furthermore, repeating the arguments of the proof of theorem 4.1 of [11], we
obtain that there is a linear combination ψ(t1, . . . , tp+1) of polynomials of the

form (4.5) such that ψ(r1, . . . , rp+1) = CardU
(2)
r1...rp+1

for all sufficiently large
(r1, . . . , rp+1) ∈ Np+1. Then the polynomial Φη(t1, . . . , tp+1) = φ(t1, . . . , tp+1)+
ψ(t1, . . . , tp+1) satisfies conditions (i) and (ii) of Theorem 3.1.

In order to prove the last part of the theorem, suppose that ζ = {ζ1, . . . , ζq}
is another system of ∆-σ-generators of L/K, that is, L = K〈η1, . . . , ηs〉 =
K〈ζ1, . . . , ζq〉. Let

Φζ(t1, . . . , tp+1) =

m1
∑

i1=0

. . .

mp
∑

ip=0

n
∑

ip+1=0

bi1...ip+1

(

t1 + i1
i1

)

. . .

(

tp+1 + ip+1

ip+1

)

be the dimension polynomial of our ∆-σ-field extension associated with the
system of generators ζ. Then there exist positive integers h1, . . . , hp+1 such that
ηi ∈ K(

⋃q
j=1 Λ(h1, . . . , hp+1)ζj) and ζk ∈ K(

⋃s
j=1 Λ(h1, . . . , hp+1)ηj) for any

i = 1, . . . , s and k = 1, . . . , q, whence Φη(r1, . . . , rp+1) ≤ Φζ(r1 + h1, . . . , rp+1 +
hp+1) and Φζ(r1, . . . , rp+1) ≤ Φη(r1 + h1, . . . , rp+1 + hp+1) for all sufficiently
large (r1, . . . , rp+1) ∈ Np+1. Now the statement of the third part of Theorem
3.1 follows from the fact that for any element (k1, . . . , kp+1) ∈ E′

η, the term
(

t1+k1

k1

)

. . .
(

tp+1+kp+1

kp+1

)

appears in Φη(t1, . . . , tp+1) and Φζ(t1, . . . , tp+1) with the

same coefficient ak1...kp+1
. The equality of the coefficients of the corresponding

terms of total degree d = degΦη in Φη and Φζ can be shown in the same way
as in the proof of Theorem 3.3.21 of [12].
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Example 5.11. Let us find the ∆-σ-dimension polynomial that expresses the
strength of the difference-differential equation

∂2y(x1, x2)

∂x21
+
∂2y(x1, x2)

∂x22
+ y(x1 + h) + a(x) = 0 (5. 2)

over some ∆-σ-field of functions of two real variables K, where the basic set of
derivations ∆ = {δ1 = ∂

∂x1
, δ2 = ∂

∂x2
} has the partition ∆ = {δ1}

⋃

{δ1} and σ
consists of one automorphisms α : f(x1, x2) 7→ f(x1 + h, x2)} (h ∈ R).

In this case, the associated ∆-σ-extension K〈η〉/K is ∆-σ-isomorphic to the
field of fractions of K{y}/[αy+ δ21y + δ22y + a] (the element a ∈ K corresponds
to the function a(x)). Applying Proposition 5.10 we obtain that the charac-
teristic set of the defining ideal of the corresponding ∆-σ-extension K〈η〉/K
consists of the ∆-σ-polynomials g1 = αy + δ21y + δ22y + a and g2 = α−1g1 =
α−1δ21y+α−1δ22y+ y+α−1(a). With the notation of the proof of Theorem 3.1,
the application of the procedure described in this proof, Theorem 4.6(iii), and
formula (4.4) leads to the following expressions for the numbers of elements of

the sets U
(1)
r1r2r3 and U

(2)
r1r2r3 : CardU

(1)
r1r2r3 = r1r2 + 2r2r3 + r1 + r2 + 2r3 + 1

and CardU
(2)
r1r2r3 = 4r1r3+2r2r3−2r3 for all sufficiently large (r1, r2, r3) ∈ N3.

Thus, the strength of equation (5.2) corresponding to the given partition of the
basic set of derivations is expressed by the ∆-σ-polynomial

Φη(t1, t2, t3) = t1t2 + 4t1t3 + 4t2t3 + t1 + t2 + 1.

Example 5.12. Let K be a difference-differential (∆-σ-) field where the basic
set of derivations ∆ = {δ1, δ2} is considered together with its partition

∆ = {δ1}
⋃

{δ1} (5. 3)

and σ = {α} for some automorphism α of K. Let L = K〈η〉 be a ∆-σ-field
extension with the defining equation

δa1δ
b
2α

cη + δa1δ
b
2α

−cη + δa1δ
b+c
2 η + δa+c

1 δb2η = 0 (5. 4)

where a, b, and c are positive integers. Let Φη(t1, t2, t3) denote the corresponding
difference-differential dimension polynomial (which expresses the strength of
equation (5.4) with respect to the given partition of the set of basic derivations
∆). In order to compute Φη, notice, first , that the defining ∆-σ-ideal P of the
extension L/K is the linear ∆-σ-ideal ofK{y} generated by the ∆-σ-polynomial

f = δa1δ
b
2α

cy + δa1δ
b
2α

−cy + δa1δ
b+c
2 y + δa+c

1 δb2y.

By Proposition 5.10, the characteristic set of the ideal P consists of f and

α−1f = α−(c+1)δa1δ
b
2y + δa1δ

b
2α

c−1y + δa1δ
b+c
2 α−1y + δa+c

1 δb2α
−1y.

The procedure described in the proof of Theorem 3.1 shows that CardU
(1)
r1r2r3 =

φA(r1, r2, r3) for all sufficiently large (r1, r2, r3) ∈ N3, where φA(t1, t2, t3) is the
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dimension polynomial of the set A = {(a, b, c), (a, b,−(c + 1) )} ⊆ N2 × Z.
Applying Theorem 4.6(iii), and formula (4.4) we obtain that φA(t1, t2, t3) =
2ct1t2+2bt1t3+2at2t3+(b+2c−2bc)t1+(a+2c−2ac)t2+(2a+2b−2ab)t3+a+

b+2c−ab−2ac−2bc+2abc. The computation of CardU
(2)
r1r2r3 with the use of the

method of inclusion and exclusion described in the proof of Theorem 3.1 yields

the following: CardU
(2)
r1r2r3 = (2r3−2c+1)[c(r2−b+1)+c(r1−a+1)−c2] for all

sufficiently large (r1, r2, r3) ∈ N3. Therefore, the ∆-σ-dimension polynomial of
the extension L/K, which expresses the strength of equation (5.4), is as follows.

Φη(t1, t2, t3) = 2ct1t2 + 2(b+ c)t1t3 + 2(a+ c)t2t3 + (b+ 3c− 2bc− c2)t1

+(2a+ 2b+ 4c− 2ab− 2ac− 2bc− 2c2)t3 + a+ b + 4c− ab− 3ac− 3bc

+ (a+ 3c− 2ac− 2c2)t2 ++2abc+ 2ac2 + 2bc2 + 2c3 − 5c2. (5. 5)

The computation of the Kolchin-type univariate ∆-σ-dimension polynomial (see
Theorem 2.1) via the method of Kähler differentials described in [8, Section
6.5] (by mimicking Example 6.5.6 of [8]) leads to the following result:

φη|K(t) =
D

2
t2 −

D(D − 2)

2
t+

D(D − 1)(D − 2)

6
(5. 6)

where D = a + b + c. In this case the polynomial φη|K(t) carries just one
invariant a + b + c of the extension L/K while Φη(t1, t2, t3) determines three
such invariants: c, b+c, and a+c (see Theorem 3.1(iii) ), that is, Φη determines
all three parameters a, b, c of the defining equation while φη(t) gives just the
sum of these parameters.

The extension K〈ζ〉/K with a ∆-σ-generator ζ, the same basic set ∆
⋃

σ
(∆ = {δ1, δ2}, σ = {α}), the same partition of ∆ and defining equation

δa+b
1 αcζ + δa+b

2 α−cζ = 0 (5. 7)

has the same univariate difference-dimension polynomial (5.6). However, its ∆-
σ-dimension polynomial is not only different, but also has different invariants
described in part (iii) of Theorem 3.1:

Φζ(t1, t2, t3) = 2ct1t2 + 2(a+ b)t1t3 + 2(a+ b)t2t3 +At1 +Bt2 + Ct3 + E

where A = B = (a + b)(1 − 2c) + 2c, C = 2[1 − (a + b − 1)2], and E =
1 + 2c(a+ b− 1)2.

Two systems of algebraic difference-differential (∆-σ-) equations with coeffi-
cients from a ∆-σ-field K are said to be equivalent if there is a ∆-σ-isomorphism
between the ∆-σ-field extensions of K with these defining equations, which
is identity on K. Our example shows that using a partition of the basic set
of derivations and the computation of the corresponding multivariate ∆-σ-
dimension polynomials, one can determine that two systems of ∆-σ-equations
(see systems (5.4) and (5.7) ) are not equivalent, even though they have the
same univariate difference-dimension polynomial.
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