
Parallel Scaling Properties from a Basic Block View

Melanie Kambadur Kui Tang Joshua Lopez Martha A. Kim
melanie@cs.columbia.edu kt2384@columbia.edu jl3497@columbia.edu martha@cs.columbia.edu

Department of Computer Science
Columbia University
New York, New York

ABSTRACT

As software scalability lags behind hardware parallelism, un-
derstanding scaling behavior is more important than ever.
This paper demonstrates how to use Parallel Block Vector
(PBV) profiles to measure the scaling properties of multi-
threaded programs from a new perspective: the basic block’s
view. Through this lens, we guide users through quick and
simple methods to produce high-resolution application scal-
ing analyses. This method requires no manual program
modification, new hardware, or lengthy simulations, and
captures the impact of architecture, operating systems, thread-
ing models, and inputs. We apply these techniques to a set
of parallel benchmarks, and, as an example, demonstrate
that when it comes to scaling, functions in an application
do not behave monolithically.
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1. INTRODUCTION
A host of factors determine an application’s performance,

including algorithmic and design choices, program inputs,
source language, thread library selection, operating system
configurations, and the hardware platform on which the pro-
gram is run. Many tools and measurement methodologies
are available to help identify parallel performance patholo-
gies. The tools vary widely in the type and form of infor-
mation they reveal and in their implementations, but they
generally employ one of two broad strategies. The first strat-
egy is to look for inefficiencies at important and commonly
known sites such as memory access and locking points, or
along critical paths. The second strategy is to profile per-
thread hardware or OS resource usage over time looking for
performance sub-optimalities, such as cache misses or low
CPU utilization.

This work takes a third perspective, evaluating program
scalability per region of code. This is accomplished through
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fine-grained, application-wide profiling, where the only ac-
tivity monitored is the total number of threads executing.
This approach reveals how each basic block in a program
scales as parallelism increases. Such “micro-scaling metrics”
can be aggregated or cross-referenced with other sources of
information (e.g. control or data flow graphs, or compiler
debug information) to reveal the scaling properties of each
line of code, function, algorithm, critical section, or data
structure. The metrics can be simply and efficiently col-
lected using techniques described in this paper, and require
no software annotations, hardware support, or software sim-
ulation.

2. BASIC BLOCK VIEW OF SCALING

Background on Parallel Block Vectors. The parallel
block vectors [1], or PBVs, on which the rest of this work
is built, measure application-level parallelism each time a
basic block is executed. As a parallel program runs, the
number of active threads fluctuates, moving it through dif-
ferent parallelism phases that are defined by the number
of threads working concurrently. PBV profiles capture the
dynamic basic block composition of these phases. Figure 1
shows a simple, data-parallel example with five basic blocks:
A, B, and C in main and D and E in worker. When the pro-
gram is executed, the number of parallel threads will change
over time. Of the four executions of block D in this exam-
ple, two were during a three-thread phase and two during a
five-thread phase.
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Figure 1: PBV profiles map basic blocks to dynamic

execution counts per-parallelism phase.
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Figure 2: Qualitative basic block

scaling categories
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Figure 3: Static basic block break-

down by scaling behavior.
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Figure 4: With respect to scaling

behavior, functions are not mono-

lithic.

Block-level Scaling. Block-level scaling metrics can be
constructed from PBV profiles collected for a program at
increasing available thread counts, thereby revealing how
each basic block scales — or does not — to higher working
thread counts.

Model of Runtime. Each basic block in a PBV pro-
file can be traced back to the assembly code, enabling us
to identify the instructions that compose the block and to
model execution time. Using a simple model that counts the
number of dynamic instructions executed by a particular re-
gion of the application divided by the number of working
threads this model estimates the parallel runtime of each
block. Across the Parsec benchmarks, our approximation
has a correlation coefficient of 0.9502 (min = 0.803).

Scaling Classification. Using multiple PBVS collected
at increasing thread counts and the model of program run-
time, one can classify how each basic block in the application

scales. Figure 2 suggests five useful classes:

• Perfectly scaling blocks’ runtimes decrease linearly or
superlinearly with the number of threads.

• Moderately scaling blocks come within 50% of perfect.
• Non-scaling blocks’ runtimes do not change as threads

increase.
• Poorly scaling blocks scale somewhat, but not enough

to be considered moderate.
• Negatively scaling blocks have runtimes that increase

as threads are added.
• If a block’s runtime increases, but never exceeds the

serial runtime, we call it partly negatively scaling.

3. EXPERIMENTS

Application-wide Block Scaling. To get a quick over-
all snapshot of a parallel program’s scaling properties, a user
can check how much of the program’s source code falls into
each of the qualitative micro-scaling categories. This view
reveals whether scaling deficiencies are isolated to a small
part of the code base or whether they are pervasive through-
out a program. Figure 3 shows how the static basic blocks in
Parsec benchmark applications are distributed amongst the
six micro-scaling categories. Examining fluidanimate —
the fourth bar from the left of the figure — we see that out
of its 518 blocks, roughly 30% are unexecuted, 32% do not
scale at all, 0.5% exhibit negative scaling, and 16.5% and

21% are poorly and moderately scaling, respectively. None
of the blocks are perfectly scaling, which indicates that no
part of the program consistently executes at the full number
of available threads.

Per-Function Micro-scaling. Because basic blocks are
so numerous and not typically exposed to the programmer,
it is often preferable to group blocks into more congruous
entities. Many tools profile in terms of functions, and while
functions are natural for programmers to reason about, they
might not be the most appropriate boundary for delineat-
ing scalability properties. In particular, functions are pro-
grammer constructs that, despite their name, do not always
delineate actual functionality. Here, we classified the static
blocks in each function according to their scaling properties.
As an example, Figure 4 shows the distribution of blocks
in streamcluster’s functions. While several functions (e.g.,
SimStream, LocalSearchSub) are made up of homogeneous
blocks (non- and poorly scaling, respectively), most are het-
erogeneous, comprising blocks from multiple scaling classes.
pkmedian, for example, contains blocks from five out of the
six categories. Similar patterns were visible in other appli-
cations, indicating that functions are not monolithic from a
scaling perspective, and that it is important to have analyses
that can capture and expose scaling nuances outside of func-
tion boundaries. Basic blocks, however, can be recomposed
into arbitrary regions of interest including loops, critical sec-
tions, algorithms, sets of related functions, or even entire
libraries so that a user can focus on relevant code regions to
analyze.

4. CONCLUSION
Block-level scaling analyses give users a new way to ap-

proach multi-threaded performance analysis. This work demon-
strates how to construct this perspective and shows how it
might be leveraged to analyze the scaling behavior of large,
complex applications.
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