REPRESENTING PROBLEMS AS STRING TRANSFORMATIONS*

K.L. Williams, Western Michigan University
® M.R. Meybodi, Ohio University
Introduction
A string transformation function operates on an input string to give an
output string which is a permutation of the input string. (See [3]). Common
examples include string reversal, string rotation, matrix transformation and
sorting. We show here that a variety of much more complex problems,
including problems which are not computable, problems relating directly to
the computing function of digital computers, and classic problems such as
SAT (satisfiability of a boolean function) may also be posed as string
transformation problems.

Problem Representation

Let I be a string over alphabet £. V 1¢ =%, define f(I) = w where w is the
reversal of I. Then f is an example of a string transformation function.

It is easy to see that solutions to problems such as sorting may be
represented directly as string transformation functions. It may appear that
string transformations represent only a small class of well understood,
easily solved problems. This, however, is not the case.

The following string transformation is nhot computable. Let wy, Wy, ...
be an enumeration of all strings from {0, 1} and Ty, T,, ... be an enumeration
(encoded into strings of binary digits) of all Turing Machines over input
alphabet {0, 1}. For string x composed of the digits {0, 1) consider

transformation:
XOTif X = w,; and w; is accepted by T,
f(x01) = . .
X10 1f X = W, and w; is not accepted by T].

In order for f to be computable both Sy = {x01|x=w; and w;eL(T;)} and
S, = {XO1|x=w, and w,;4L(T;)} must be recursively enumerable. (See [2]). 5,
however, is hot recursively enumerable therefore §f is not computable.
Alternatively, let x = <T;, w;> (x is an encodement of Turing Machine T;
followed by input string w;) and define
XO1if w s not in L(Ty)
g(x01) = ¢ x10if w. is not in L(T;) and T, halts on input w

1 ]
undefined otherwise

*This work was partially funded by Western Michigan University
Grant FRCAF*#86-028.

18-3. 89


http://crossmark.crossref.org/dialog/?doi=10.1145%2F24658.24659&domain=pdf&date_stamp=1987-04-01

g, then, is a partial recursive function which can be computed for all
values where it is defined.

One may use the above technique to represent any language acceptance
problem as a string transformation problem as long as the class of accepting
machines is such that a string encodement can be defined to uniquely represent
each machine in the class. This is easily done for those classes of machines
that are often used as models of computation including dfa, fa, pda, Turing
Machines, RAM machines etc. Those strings from the appropriate alphabet
that do not represent an actual machine may be treated as representing a "null
machine" which accepts precisely language &. In fact, the characteristics of
any digital computer can be encoded into a string and the above technique can
be applied to create a string transformation reflecting whether or not an
actual computer accepts a string.

Of course, for most applications of digital computers the question is not
whether the computer accepts a string but rather what output the computer
will produce for a given input. Again we observe that a given input sequence
and output sequence for a computer can each be encoded into a string. Even in
the case of real-time applications, appropriate encodements including timing
information, input and output unit characteristics etc. can be developed. A
string transformation can then be defined to represent the action of computer
C on input I producing output 2. Let x = <C,I,G>. Define:

X01 if C operating on | produces G

T(X01)= .
Xx10 otherwise

Problems such as SAT (see [1]) can be represented directly as string
transformations. Let X be a boolean function of several variables. Define:

XxO01if % is satisfiable

S(XO1) - _
Xx10 otherwise

[t is clear that S is an NP-Complete function.

From the above examples it can be seen that string transformations,
which are a natural representation for some problems, provide an alternate
representation system for a much wider class of problems.

References
[1] Garey,M.R. and Johnson,D.S., Computers and Intractability, Bell
Laboratories, 1979.

(2] Hopcroft, J. and Ullman, J., Introduction to Automata Theory,

Languages and Computation, Addison-Wwesley, 1979,
[3] Wwilliams, K.L. and Meybodi, M.R., "Notes on Parallel Computation for

String Transformation Problems"”, Proceedings, IEEE Phoenix
Conference on Computers and Communications, 1986.

18-3.30



