
ar
X

iv
:1

40
2.

38
09

v2
 [

cs
.M

S
]

13
 M

ar
 2

01
4

1

Toward Resilient Algorithms and Applications
Michael A. Heroux, Sandia National Laboratories

I. I NTRODUCTION

Since the early days of supercomputing1, large-scale com-
puting platforms have been engineered to handle unreliability.
In contrast, algorithms and applications for large-scale systems
have generally assumed a fairly simplistic failure model: The
computer is a reliable digital machine, with consistent execu-
tion times and infrequent failures. If failure occurs, recovery
can be handled by checkpoint-restart (CPR): occasionally
storing a snapshot of application state and restarting fromthat
saved state.

Over the past decade, the high performance computing
community has become increasingly concerned that preserving
the reliable, digital machine model will become too costly or
infeasible [1], [2]. With the push toward exascale computing,
this concern has become even greater [3], and we must explore
other models and improve algorithms.

In this paper we discuss possibilities for developing new
algorithms that are resilient to hard and soft failures. However,
in order to reason about such algorithms, we first need
programming models that enable more sophisticated recovery
strategies than CPR.

II. FOUR RESILIENCE-ENABLING PROGRAMMING

MODELS

Algorithm-based fault tolerance has certainly been studied,
going back many decades [4], and many algorithms have been
developed [5], [6], [7], [8], but none of these algorithms have
made it into broad practical use because we have no standard
programming model support. In order to develop effective re-
silient algorithms and applications, we first need programming
models that permit us to reason about failure and implement
recovery. Here we present four programming models that we
think have strong promise of being useful, ordering them
from easiest to hardest to implement in a production system.
Even though these models are not widely deployed today,
using them as abstractions for developing new algorithms will
provide motivation and guidance for development of both new
algorithms and the underlying system software and hardware.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration (NNSA) under contract DE-AC04-94AL85000.

1The first Cray-1 (SN1) was delivered to Los Alamos National Laboratory
without SECDED memory. Errors were so frequent that SN2 was scrapped
and SN3 was delivered to NCAR with SECDED.

A. Skeptical Programming (SkP)

Almost all algorithm developers assume that their software
will execute reliably or fail obviously by halting. However, if
they understand that silent data corruption is possible, they
can develop very simple and inexpensive validation tests
based on their understanding of the mathematical properties
of their algorithms. For example, many algorithms have
global properties of orthogonality, or conservation principles,
that are implicitly assumed to be true during the execution of
an algorithm. If these properties were checked occasionally
during execution, the cost can be very low and many silent
data corruption events could be detected. Recovery may be
as simple as aborting, or may involve rolling back to a
previous valid state, or even continuing execution if the error
will be damped by subsequent computations.

B. Relaxed Bulk-synchronous Programming (RBSP)

One of the first impacts of reduced reliability is performance
variability. As low-level system failure rates increase, error
detection and correction happen more frequently in the
hardware and system software layers. These events preserve
the reliable digital machine model, but introduce variability
in execution time. Many scalable applications are designed
under the implicit assumption that equal work implies equal
execution time, so that if we balance the work of a parallel
application, we should scale well on a parallel computer,
even though we synchronize across processors during
execution. Performance variability, when coupled with
frequent collective operations, leads to severe limitations in
scalability, especially as we go to a million or more
processes.
With the introduction of MPI-3 [9], we now have
asynchronous neighborhood and global collectives, enabling
a “relaxed” bulk-synchronous programming model (RBSP).
Given RBSP capabilities, we are now able to develop new
algorithms that can potentially hide latency.

C. Local Failure, Local Recovery (LFLR)

For parallel applications based on MPI, the current approach
to dealing with the loss of a single process is to kill all
remaining processes and restart the application. As we now
regularly run on hundreds of thousands to more than a
million processors, this approach is not feasible. Insteada
local failure should permit a local recovery2.

2By local recovery we do not mean that no communication is donein the
detection or recovery phases. Instead we mean that recoveryis logically local
from an application developer’s perspective. All processes that have valid state
are not involved in recovery, except to the extent that they assist in restoring
state on the failed process, or take over its workload.

http://arxiv.org/abs/1402.3809v2

2

One type of local-failure-local-recovery (LFLR) model
permits the user to store specific datapersistently for each
MPI process and allows a recovery function to be registered,
such that, if a process fails, a new process is started and
assigned to the rank of the failed process, and the user’s
recovery function is called, giving access to the persistent
data of the old process, as well as the neighbors’ persistent
data. Using LFLR, we can develop new algorithms for many
types of problems.

D. Selective Reliability Programming (SRP)

The fourth programming model we discuss is Selective
Reliability Programming (SRP), which gives the programmer
the ability to declare specific data and compute regions to be
more reliable that the “bulk” reliability of the underlying
system (or we can switch the default to be reliable and then
selectively be less reliable). By distinguishing between what
needs to be highly reliable or not, we can develop new
algorithms that store most data and do most computations
with low reliability while retaining the robustness of a fully
reliable approach.
Although the costs of high reliability will impact the
practicality of some approaches, the details of how reliability
is implemented is not fundamentally important to reasoning
about new algorithms. In some cases, even very expensive
approaches such as triple modular redundancy (TMR) can
still be much faster than a fully unreliable approach.

III. T OWARD RESILIENT ALGORITHMS

Resilient algorithms have long been a subject of research.
The above four programming models enable further research
and drive co-development of the algorithms and computing
system features that are required to realize resilient
applications. In this section we discuss some of the many
possible algorithms that can be developed under the above
programming models in order to provide resilience on future
systems.

A. Detecting and Responding to Silent Data Corruption

Skeptical programming can be used to detect silent data
corruption such as bit flips, and then determine if the
resulting error is “harmless” or not. One example of this
kind of algorithm is an implementation of GMRES [10] that
detects and, optionally, corrects single bit flips very
inexpensively as part of the Arnoldi process. Many existing
ABFT algorithms can be implemented in using a skeptical
algorithm programming approach, since the meta data used
to recover state can also be used to detect anomalous
behavior.

B. Latency-tolerant Algorithms

One of the most important and effective algorithm research
and development strategies we can explore now is latency
tolerance. Many of our scalable algorithms and applications
depend on collective operations that, when implemented in a
straightforward manner, lead to synchronous global

collectives. On emerging high end platforms, these
collectives have become severe performance limiters due to
poor scaling of collectives. The advent of asynchronous
collectives gives us new opportunities. The basic challenge
we face as algorithm developers in this situation is finding
useful work to do while a collective is completing. Recent
work in pipelining algorithms, for example the p(l)-GMRES
algorithm [11], shows that latency hiding by unrolling
iterations in a Krylov solver can help restore scalability.
Similar approaches for many algorithms can lead to
relatively minor design changes that result in better tolerance
of latency and performance variability.
The impact of successfully redesigning algorithms to be
latency tolerant is that performance variability on existing
systems can be hidden. But even more importantly, if we can
tolerate performance variability due to error detection and
correction at the system software and hardware levels,
system designers can detect and correct more errors without
impacting application scalability, permitting us to extend the
viability of the reliable digital machine model.

C. Locally Restarted PDE Computations

Given the programming features described in Section II-C,
we have the potential to develop a broad collection of
algorithm with local recovery properties. Examples for
differential equations include:

• Explicit methods: As shown in [12], an explicit
time-stepping algorithm can be easily implemented to
recover locally, given the LFLR features.

• Implicit methods: This case is more interesting. The
challenge is to restore a local state that is equivalent up
to the truncation error of the PDE. Several interesting
approaches seem promising.

• Redundant storage of coarse model: In order to recover
state from a lost process, we could explore storing a
coarse model representation on neighboring processes
that could be used to boot-strap state recovery upon
failure.

D. Reliable Outer Iterations

Many algorithms can be cast in an outer-inner formulation.
For example, a fault-tolerant GMRES variant, as described
in [13], uses reliable computation and storage in the outer
iteration and an “unreliable” GMRES in the inner iteration.
The result is that most computation and data are in
low-reliability mode, leading to presumably cheaper
computations. Because the outer iterations are reliable, the
solution returned by the inner solve (if it comes back at all)
can be analyzed and used or discarded. Even if the inner
solve answer is not correct, it can still be used with some
effect.

IV. CONCLUSIONS

Resilience is a critical requirement for future high-end
computing. In order to effectively develop resilient
algorithms and applications, we need robust and usable

3

resilient computing models. In this paper we have identified
four specific models that allow us to reason about and
develop new algorithms. SkP requires nothing more than a
change in attitude on the part of the programmer, from
trusting that a machine is reliable digital device to being
aware that an incorrect computation may occur. RBSP is
already possible with the introduction of MPI 3.0. LFLR
requires more support from the underlying system layers,
and requires some kind of support from programming
languages and libraries. The ULFM library [14], [15] already
provides one approach to supporting LFLR. SRP is the most
challenging model, but also firmly addresses one of the
biggest challenges we face: silent errors.
Much of the focus of extreme-scale computing is on massive
concurrency, which is appropriate. However, without resilient
computing models we face a very real risk of application
failure rates that are too high to realize the benefits of future
systems. In addition, any progress we make in resilient
algorithms and applications permits us to utilize lower cost
systems in general, systems with lower quality interconnect
networks, higher bit failure rates and increased node loss.
Resilient algorithms and applications will enable effective
extreme scale computing and reduce system costs at other
levels.

REFERENCES

[1] N. Miskov-Zivanov and D. Marculescu, “Soft error rate analysis for
sequential circuits,” inProceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’07. San Jose, CA, USA:
EDA Consortium, 2007, pp. 1436–1441. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1266366.1266680

[2] T. Karnik, P. Hazucha, and J. Patel, “Characterization of soft errors
caused by single event upsets in CMOS processes,”IEEE Trans.
Dependable Secur. Comput., vol. 1, pp. 128–143, April 2004. [Online].
Available: http://dx.doi.org/10.1109/TDSC.2004.14

[3] e. a. John Daly, “Inter-agency workshop on hpc resilience at extreme
scale.” [Online]. Available:
http://institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,”IEEE Transactions on Computers, vol. C-33, no. 6,
June 1984.

[5] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.August,
“Swift: Software implemented fault tolerance,” inProceedings of the
international symposium on Code generation and optimization, ser.
CGO ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
243–254. [Online]. Available: http://dx.doi.org/10.1109/CGO.2005.34

[6] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery patterns
for iterative methods in a parallel unstable environment,”SIAM J. Sci.
Comput., vol. 30, pp. 102–116, November 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1350656.1350657

[7] T. Wilfredo, “Software fault tolerance: A tutorial,” Tech. Rep., 2000.
[8] X. Yang, Y. Du, P. Wang, H. Fu, J. Jia, Z. Wang, and G. Suo, “The

fault tolerant parallel algorithm: the parallel recomputing based failure
recovery,” inProceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, ser. PACT ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 199–212.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2007.73

[9] MPI Forum, “MPI: A Message-Passing Interface Standard. Version
3.0,” 2012, available at: http://www.mpi-forum.org (Sep.2012).

[10] J. N. C. S. U. Elliott, M. F. S. N. L. Hoemmen, and Muel, “Making
GMRES Resilient to Single Bit Flips,” 2013. [Online]. Available:
http://sc13.supercomputing.org/sites/default/files/PostersArchive/techposters/post219s2-file2.pdf

[11] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose,“Hiding
global communication latency in the GMRES algorithm on massively
parallel machines,” Submitted to SIAM J. Sci. Comp. Available online at
http://www.ua.ac.be/download.aspx?c=pieter.ghysels&n=92953&ct=84288&e=292475
[last accessed 29 April 2013].

[12] D. Wong and M. Gokhale, “A memory-mapped approach to
checkpointing.”

[13] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen,
“Fault-tolerant linear solvers via selective reliability,” ArXiv e-prints,
Jun. 2012.

[14] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” International Journal of High Performance Computing
Applications, vol. 27, no. 3, pp. 244–254, Jun. 2013. [Online].
Available: http://hpc.sagepub.com/content/27/3/244

[15] “User Level Failure Mitigation — ICL Fault Tolerance.”[Online].
Available: http://fault-tolerance.org/ulfm/

http://portal.acm.org/citation.cfm?id=1266366.1266680
http://dx.doi.org/10.1109/TDSC.2004.14
http://institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf
http://dx.doi.org/10.1109/CGO.2005.34
http://portal.acm.org/citation.cfm?id=1350656.1350657
http://dx.doi.org/10.1109/PACT.2007.73
http://www.mpi-forum.org
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post219s2-file2.pdf
http://www.ua.ac.be/download.aspx?c=pieter.ghysels&n=92953&ct=84288&e=292475
http://hpc.sagepub.com/content/27/3/244
http://fault-tolerance.org/ulfm/

	I Introduction
	II Four Resilience-Enabling Programming Models
	II-A Skeptical Programming (SkP)
	II-B Relaxed Bulk-synchronous Programming (RBSP)
	II-C Local Failure, Local Recovery (LFLR)
	II-D Selective Reliability Programming (SRP)

	III Toward Resilient Algorithms
	III-A Detecting and Responding to Silent Data Corruption
	III-B Latency-tolerant Algorithms
	III-C Locally Restarted PDE Computations
	III-D Reliable Outer Iterations

	IV Conclusions
	References

