arXiv:1402.3809v2 [cs.MS] 13 Mar 2014

Toward Resilient Algorithms and Applications

Michael A. Heroux, Sandia National Laboratories

. INTRODUCTION A. Skeptical Programming (SkP)

Almost all algorithm developers assume that their software
IwiII execute reliably or fail obviously by halting. Howeyef
they understand that silent data corruption is possibky th
can develop very simple and inexpensive validation tests
based on their understanding of the mathematical progertie

Since the early days of supercompun@rge—scale com-
puting platforms have been engineered to handle unratiabi
In contrast, algorithms and applications for large-scastesns
have generally assumed a fairly simplistic failure moddle T
computer is a reliable digital machine, with consistentoexe ; . .
tion times and infrequent failures. If failure occurs, reexy of their algorlthms. For exampl_e, many algorlthms hgve
can be handled by checkpoint-restart (CPR): occasiona bal properties of orthogonality, or conservation pipies,

storing a snapshot of application state and restarting tranh that are _|mpI|C|tIy assumed to_ be true during the exec_utrbn °
saved state. an algorithm. If these properties were checked occasipnall

during execution, the cost can be very low and many silent

Over t_he past decad_e, the _h|gh performance computlggta corruption events could be detected. Recovery may be
community has become increasingly concerned that preggrvi

the reliable, digital machine model will become too costty Oas S|_mple as aborting, or may |nv_oIv_e rolling baCk _to a
. : e . . previous valid state, or even continuing execution if thewer
infeasible [1], [2]. With the push toward exascale compmtin "™ . i

. will be damped by subsequent computations.
this concern has become even greater [3], and we must explore
other models and improve algorithms.

In this paper we discuss possibilities for developing ne®. Relaxed Bulk-synchronous Programming (RBSP)

algorithms that are resilient to hard and soft failures. Bo®, e of the first impacts of reduced reliability is performanc

in order to reason about such algorithms, we first negdiapility. As low-level system failure rates increasaoe
programming models that enable more sophisticated regovggtection and correction happen more frequently in the

strategies than CPR. hardware and system software layers. These events preserve
the reliable digital machine model, but introduce varidpil

in execution time. Many scalable applications are designed
under the implicit assumption that equal work implies equal
execution time, so that if we balance the work of a parallel

Algorithm-based fault tolerance has certainly been stdig?PPlication, we should scale well on a parallel computer,
going back many decades [4], and many algorithms have bé§n though we synchronize across processors during
developed([5],[[8], [7], 8], but none of these algorithms/éa execution. Perf(_)rmance v_ar|ab|I|ty, when couple_d ywth_
made it into broad practical use because we have no stand&Fguent collective operations, leads to severe limiteion
programming model support. In order to develop effective réclability, especially as we go to a million or more
silient algorithms and applications, we first need programgm P'OCESSES. _
models that permit us to reason about failure and impleméffith the introduction of MPI-3([9], we now have .
recovery. Here we present four programming models that @&ynchronous neighborhood and global collectives, emgbli
think have strong promise of being useful, ordering thef Télaxed” bulk-synchronous programming model (RBSP).
from easiest to hardest to implement in a production systefdilven RBSP capabilities, we are now able to develop new
Even though these models are not widely deployed tod&@gorithms that can potentially hide latency.
using them as abstractions for developing new algorithnfis wi
provide motivation and guidance for development of both new | ocal Failure, Local Recovery (LFLR)

Igorith dth derlyi t ftw d hard L
algorithms and the underlying system sottware and har WaIE%r parallel applications based on MPI, the current apgroac

to dealing with the loss of a single process is to kill all
Sandia National Laboratories is a multi-program labosatorremaining processes and restart the application. As we now
managed and operated by Sandia Corporation, a wholkggularly run on hundreds of thousands to more than a
owned subsidiary of Lockheed Martin Corporation, for themillion processors, this approach is not feasible. Instead
U.S. Department of Energy’s National Nuclear Security Ad{ocal failure should permit a local recovry

ministration (NNSA) under contract DE-AC04-94AL85000.

Il. FOUR RESILIENCE-ENABLING PROGRAMMING
MODELS

2By local recovery we do not mean that no communication is dortbe
detection or recovery phases. Instead we mean that recisvkrgically local

1The first Cray-1 (SN1) was delivered to Los Alamos Nationabdratory from an application developer’s perspective. All procegset have valid state
without SECDED memory. Errors were so frequent that SN2 veaapped are not involved in recovery, except to the extent that tresisa in restoring
and SN3 was delivered to NCAR with SECDED. state on the failed process, or take over its workload.

http://arxiv.org/abs/1402.3809v2

One type of local-failure-local-recovery (LFLR) model collectives. On emerging high end platforms, these

permits the user to store specific da&sistently for each collectives have become severe performance limiters due to
MPI process and allows a recovery function to be registereplpor scaling of collectives. The advent of asynchronous
such that, if a process fails, a new process is started and collectives gives us new opportunities. The basic chalteng
assigned to the rank of the failed process, and the user's we face as algorithm developers in this situation is finding
recovery function is called, giving access to the perststen useful work to do while a collective is completing. Recent
data of the old process, as well as the neighbors’ persistentork in pipelining algorithms, for example the/p-GMRES
data. Using LFLR, we can develop new algorithms for manglgorithm [11], shows that latency hiding by unrolling

types of problems. iterations in a Krylov solver can help restore scalability.
Similar approaches for many algorithms can lead to
D. Sdective Reliability Programming (SRP) relatively minor design changes that result in better tolee

The fourth . del di is Selecti of latency and performance variability.
€ fourth programming MOCE! We TISCUSS 1S SEIeCtVe 1o impact of successfully redesigning algorithms to be

Reliability Programming (SRP), which gives the programm ffuency tolerant is that performance variability on exigti

the ability to declare specific data and compute regions to be . . ;
’ v o . Systems can be hidden. But even more importantly, if we can
more reliable that the “bulk” reliability of the underlying

system (or we can switch the default to be reliable and thetoleratg performance variability due to error detectiod an

selectively be less reliable). By distinguishing betwedratv orrection a.t the system software and hardware levels, .

needs to be highly reliable 'or not, we can develop new _system_ deS|gn(_ers can detec? _and corr_ec_:t more errors without
. ' .___impacting application scalability, permitting us to exdethe

algorithms that store most data and do most computations_

. L . . viability of the reliable digital machine model.

with low reliability while retaining the robustness of a lful

reliable approach.

Although the costs of high reliability will impact the C. Locally Restarted PDE Computations

practicality of some approaches, the details of how rdligbi Given the programming features described in Sedtiod II-C,

is implemented is not fundamentally important to reasoningve have the potential to develop a broad collection of

about new algorithms. In some cases, even very expensivealgorithm with local recovery properties. Examples for

approaches such as triple modular redundancy (TMR) candifferential equations include:

still be much faster than a fully unreliable approach. « Explicit methods: As shown i [12], an explicit
time-stepping algorithm can be easily implemented to
I1l. TOWARD RESILIENT ALGORITHMS recover locally, given the LFLR features.

Resilient algorithms have long been a subject of research. « Implicit methods: This case is more interesting. The
The above four programming models enable further research challenge is to restore a local state that is equivalent up
and drive co-development of the algorithms and computing to the truncation error of the PDE. Several interesting
system features that are required to realize resilient approaches seem promising.
applications. In this section we discuss some of the many « Redundant storage of coarse model: In order to recover
possible algorithms that can be developed under the above state from a lost process, we could explore storing a
programming models in order to provide resilience on future coarse model representation on neighboring processes
systems. that could be used to boot-strap state recovery upon
failure.

A. Detecting and Responding to Slent Data Corruption

Skeptical programming can be used to detect silent data D- Reliable Outer Iterations

corruption such as bit flips, and then determine if the Many algorithms can be cast in an outer-inner formulation.
resulting error is “harmless” or not. One example of this For example, a fault-tolerant GMRES variant, as described
kind of algorithm is an implementation of GMRES [10] thatin [13], uses reliable computation and storage in the outer
detects and, optionally, corrects single bit flips very iteration and an “unreliable” GMRES in the inner iteration.
inexpensively as part of the Arnoldi process. Many existingThe result is that most computation and data are in

ABFT algorithms can be implemented in using a skeptical low-reliability mode, leading to presumably cheaper
algorithm programming approach, since the meta data usedomputations. Because the outer iterations are relialhée, t
to recover state can also be used to detect anomalous solution returned by the inner solve (if it comes back at all)

behavior. can be analyzed and used or discarded. Even if the inner
solve answer is not correct, it can still be used with some
B. Latency-tolerant Algorithms effect.

One of the most important and effective algorithm research
and development strategies we can explore now is latency
tolerance. Many of our scalable algorithms and application Resilience is a critical requirement for future high-end
depend on collective operations that, when implemented incamputing. In order to effectively develop resilient
straightforward manner, lead to synchronous global algorithms and applications, we need robust and usable

IV. CONCLUSIONS

resilient computing models. In this paper we have identifieghi2] D. Wong and M. Gokhale, “A memory-mapped approach to

four specific models that allow us to reason about and

develop new algorithms. SkP requires nothing more than

change in attitude on the part of the programmer, from

trusting that a machine is reliable digital device to being
aware that an incorrect computation may occur. RBSP is

already possible with the introduction of MPI 3.0. LFLR

requires more support from the underlying system layers,

and requires some kind of support from programming

languages and libraries. The ULFM library [14], [15] alrgad
provides one approach to supporting LFLR. SRP is the most

challenging model, but also firmly addresses one of the

biggest challenges we face: silent errors.

Much of the focus of extreme-scale computing is on massive

concurrency, which is appropriate. However, without resil
computing models we face a very real risk of application

failure rates that are too high to realize the benefits ofréutu

systems. In addition, any progress we make in resilient
algorithms and applications permits us to utilize lowertcos

systems in general, systems with lower quality intercotinec

networks, higher bit failure rates and increased node loss.
Resilient algorithms and applications will enable effeeti

extreme scale computing and reduce system costs at other

levels.

(1]

(2]

(31

(4]

(5]

(6]

[7]
(8]

El
[10]

[11]

REFERENCES

N. Miskov-Zivanov and D. Marculescu, “Soft error rateadysis for
sequential circuits,” irProceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE '07. San Jose, CA, USA:
EDA Consortium, 2007, pp. 1436-1441. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1266366.12866

T. Karnik, P. Hazucha, and J. Patel, “Characterizatiérsait errors
caused by single event upsets in CMOS process$EEE Trans.
Dependable Secur. Comput., vol. 1, pp. 128-143, April 2004. [Online].
Available: | http://dx.doi.org/10.1109/TDSC.2004.14

e. a. John Daly, “Inter-agency workshop on hpc resilent extreme
scale.” [Online]. Available:
http://institute.lanl.gov/resilience/docs/Inter- AggResilienceReport. pdf
K.-H. Huang and J. A. Abraham, “Algorithm-based faultei@nce for
matrix operations,1EEE Transactions on Computers, vol. C-33, no. 6,
June 1984.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and Bwubust,
“Swift: Software implemented fault tolerance,” Proceedings of the
international symposium on Code generation and optimization, ser.
CGO '05. Washington, DC, USA: IEEE Computer Society, 2005, p
243-254. [Online]. Available: http://dx.doi.org/10.2¥CG0.2005.34
J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Regoypatterns
for iterative methods in a parallel unstable environmeStAM J. Sci.
Comput., vol. 30, pp. 102-116, November 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1350656.13506

T. Wilfredo, “Software fault tolerance: A tutorial,” Th. Rep., 2000.
X. Yang, Y. Du, P. Wang, H. Fu, J. Jia, Z. Wang, and G. SudheéT
fault tolerant parallel algorithm: the parallel recompgtibased failure
recovery,” in Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, ser. PACT '07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 192-2
[Online]. Available:| http://dx.doi.org/10.1109/PACDQ7.73

MPI Forum, “MPI: A Message-Passing Interface Standard. Version
3.0,” 2012, available al: http://www.mpi-forum.org (Se&012).

J. N. C. S. U. Elliott, M. F. S. N. L. Hoemmen, and Muel, “kKag
GMRES Resilient to Single Bit Flips,” 2013. [Online]. Avablle:

checkpointing.”

P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoentme
“Fault-tolerant linear solvers via selective reliabilityArXiv e-prints,
Jun. 2012.

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and Jolparra,
“Post-failure recovery of MPI communication capabilitye§ign and
rationale,” International Journal of High Performance Computing
Applications, vol. 27, no. 3, pp. 244-254, Jun. 2013. [Online].
Available:|http://hpc.sagepub.com/content/27/3/244

“User Level Failure Mitigation — ICL Fault Tolerance[Online].
Available: | http://fault-tolerance.org/ulfrn/

http://sc13.supercomputing.org/sites/default/filestBrsArchive/techposters/post219s2-file2.pdf

P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanrotidiling
global communication latency in the GMRES algorithm on riveeg
parallel machines,” Submitted to SIAM J. Sci. Comp. Avditabnline at

http://www.ua.ac.be/download.aspx?c=pieter.ghysefs¥953&ct=84288&e=292475

[last accessed 29 April 2013].

http://portal.acm.org/citation.cfm?id=1266366.1266680
http://dx.doi.org/10.1109/TDSC.2004.14
http://institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf
http://dx.doi.org/10.1109/CGO.2005.34
http://portal.acm.org/citation.cfm?id=1350656.1350657
http://dx.doi.org/10.1109/PACT.2007.73
http://www.mpi-forum.org
http://sc13.supercomputing.org/sites/default/files/PostersArchive/tech_posters/post219s2-file2.pdf
http://www.ua.ac.be/download.aspx?c=pieter.ghysels&n=92953&ct=84288&e=292475
http://hpc.sagepub.com/content/27/3/244
http://fault-tolerance.org/ulfm/

	I Introduction
	II Four Resilience-Enabling Programming Models
	II-A Skeptical Programming (SkP)
	II-B Relaxed Bulk-synchronous Programming (RBSP)
	II-C Local Failure, Local Recovery (LFLR)
	II-D Selective Reliability Programming (SRP)

	III Toward Resilient Algorithms
	III-A Detecting and Responding to Silent Data Corruption
	III-B Latency-tolerant Algorithms
	III-C Locally Restarted PDE Computations
	III-D Reliable Outer Iterations

	IV Conclusions
	References

