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ABSTRACT
Although user access patterns on the live web are well-
understood, there has been no corresponding study of how
users, both humans and robots, access web archives. Based
on samples from the Internet Archive’s public Wayback Ma-
chine, we propose a set of basic usage patterns: Dip (a sin-
gle access), Slide (the same page at different archive times),
Dive (different pages at approximately the same archive
time), and Skim (lists of what pages are archived, i.e., Time-
Maps). Robots are limited almost exclusively to Dips and
Skims, but human accesses are more varied between all four
types. Robots outnumber humans 10:1 in terms of sessions,
5:4 in terms of raw HTTP accesses, and 4:1 in terms of
megabytes transferred. Robots almost always access Time-
Maps (95% of accesses), but humans predominately access
the archived web pages themselves (82% of accesses). In
terms of unique archived web pages, there is no overall pref-
erence for a particular time, but the recent past (within the
last year) shows significant repeat accesses.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Web Archives—Retrieval models
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1. INTRODUCTION
The web has become an integral part of our lives, shaping

how we get news, shop, and communicate. In turn, web
archives have become a significant repository of our recent
history and cultural heritage. The Internet Archive [19] is
the largest and oldest of the various web archives, holding
over 240 billion web pages with archives as far back as 1996
[13]. Access to this vast archive is available through the
Wayback Machine [30], which sees about 82 million requests
per day, based on our dataset.
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Previous work has studied how users access the live web
[31] and search engines [12], but few studies have investi-
gated how users access web archives. Understanding the
current demand for access to web archives can provide in-
sights into how to make the best use of limited archiving
and access resources.

In this paper, we provide an analysis of user accesses to
a large web archive. We examine a set of anonymized Way-
back Machine server access logs from February 2012. We in-
vestigate the differences between human and robot accesses
of the Wayback Machine, identify four major web archive ac-
cess patterns, and uncover the temporal preference for web
archive access. In particular, we find that robots (such as
crawlers and spiders) account for 91% of all sessions and 93%
of all page requests. Yet, robots only outnumber humans
5:4 in terms of raw, unfiltered requests and 4:1 in terms of
megabytes transferred. Humans download more information
per session, as they typically download embedded resources
(e.g., images and stylesheets), which robots ignore.

We introduce four basic user access patterns of web arch-
ives: Dip, Slide, Dive, and Skim. Dip is requesting for a
single URI. Slide is browsing different archived copies of the
same URI. Dive is following the hyperlinks of a page, but
staying near the same datetime. Skim is requesting only
the TimeMaps (list of all archived copies for a specific orig-
inal resource). Robots exhibit the Dip and Skim patterns
equally, both about 49% of their sessions, and almost exclu-
sively request TimeMaps. Humans exhibit the Dip (39%)
and Dive (30%) patterns the most and access archived pages
significantly more than TimeMaps.

This paper is organized as follows. Definitions of impor-
tant terms and a review of related work on web usage mining
and web archive studies are presented in Section 2. Section
3 contains the patterns for accessing web archives along with
an explanation and example for each pattern. A description
of the Wayback Machine’s web server logs, the dataset we
used in the analysis, and the methodology of this study are
presented in Section 4. Section 5 contains the results from
analyzing the Wayback Machine access logs. Future work
and conclusions are presented in Section 6.

2. RELATED WORK
Despite the significance of web archives in preserving web

heritage, the aspect of web archive usage has been over-
looked. The only previous related work is a study of the
search behavior characterization for web archives [7]. We
highlight this work, but first we define the terms for our
discussion.



2.1 Memento Terminology
Memento [33] is an HTTP protocol extension which en-

ables time travel on the web by interlinking the current re-
sources with their prior state. Memento introduces content
negotiation in the datetime dimension using a special HTTP
header, Accept-Datetime [32]. Memento defines the follow-
ing terms:

• URI-R denotes the original resource. It is the resource
as it used to appear on the live web; it may have 0 or
more mementos (URI-Ms).

• URI-M is an archived snapshot for the URI-R at a
specific datetime, which is called Memento-Datetime.
e.g., URI-Mi= URI-R@ti.

• URI-T denotes a TimeMap, a resource that provides
a list of mementos (URI-Ms) for a URI-R with their
Memento-Datetimes, e.g., URI−T (URI−R) = {URI−
M1, URI −M2, ..., URI −Mn}. (We will also refer to
a TimeMap as TM URI-R, to emphasize the URI-R in
later examples)

Although we use Memento terminology, the logs we analyze
are from the public access Wayback Machine and not the
Memento API.

2.2 Web Usage Mining
The breadth and depth of research in the area of web us-

age mining is massive and increasing [3, 14, 23, 5]. Web
usage mining involves discovering usage patterns from web
data using data mining [25]. The results obtained from web
usage mining can be used in different applications, such as
web traffic analysis, site modification, system improvement,
personalization, business intelligence, and usage characteri-
zation. Our study provides traffic analysis and usage char-
acterization by providing abstract models for accessing web
archives.
Adams et al. explored the usage patterns of scientific and

historical data repositories [1]. However, their study focused
on a variety of archive types (e.g., public vs. private, digi-
tal but non-web resources) and does not directly address
the issue of archiving the web. The only web usage mining
research that has been conducted on the usage of web arch-
ives is the study of search behavior characterization of web
archives based on a quantitative analysis of the Portuguese
Web Archive (PWA) search logs [7]. The authors introduced
a comparison between search patterns of web archives and
web search engines. Despite the different information needs
for web archives and web search engine users, the search
patterns for web archives had shown adoption of web search
engine technologies. They found that most web archive users
conducted short sessions. In our study, the sessions that are
composed of one request contribute the most to the num-
ber of sessions. One important finding from analyzing the
search interactions of the PWA logs is that the users prefer
older documents. This is in contrast to what we found, that
web archive users have significant repetitions for requests in
2011 (the year prior to our sample).
The challenge that faces web usage mining is detecting

the robots who camouflage their identity and pretend to be
humans. The robot detection problem has been examined
in several studies [27, 9, 15, 11]. Doran et al. characterized
robot detection techniques into four categories: syntactical

log analysis, traffic pattern analysis, analytical learning tech-
niques, and Turing test systems [10]. We used syntactical
log analysis (simple processing by finding the self-identified
robots) and traffic pattern analysis (specifying features for
contrasting robots with humans).

3. ABSTRACT MODELS FOR ACCESSING
WEB ARCHIVES

Through our analysis, we discovered four major patterns
for web archive access. We present the model for each pat-
tern along with an example from the logs in Figures 1-4.
Each example consists of three columns: the client IP, the
access time, and the requested URI. The times annotat-
ing the transition arrows in Figure 2-4 represent the inter-
request time in the given examples. Note that we use TM
URI-R to denote a TimeMap in the figures. We use Me-
mento terminology (URI-T, URI-M, and URI-R) in the def-
initions. We refer to the original resource for URI-T and
URI-M with URI-R(URI-T) and URI-R(URI-M), respec-
tively.

3.1 Pattern 1: Dip
Dip is the pattern where a user accesses only one URI.

The request can be for a URI-T (Figure 1(a) and the first
example) or a URI-M (Figure 1(b) and the second example).

Dip = {URI-Xi| i = 1 and URI-X ∈ {URI-T, URI-M}}

3.2 Pattern 2: Slide
Slide is the pattern in which a user accesses the same

URI-R at different Memento-Datetimes. In this pattern,
the user requests a URI-R and walks through time browsing
its different copies (Figure 2).

Slide = {URI-Xi| i > 1, URI-X ∈ {URI-T, URI-M}
and URI-R(URI-Xi) = URI-R(URI-Xi−1)}

Navigation between different URI-Ms can be done in many
ways, e.g., directly from URI-M1 to URI-M2 (URI-R@t1 ⇒
URI-R@t2) or from URI-M1 to URI-M2, but in the middle
the user returns to the TM URI-R to choose between the
available datetimes (URI-R@t1 ⇒ URI-T ⇒ URI-R@t2).

3.3 Pattern 3: Dive
Dive is when a user accesses different URI-Rs at nearly the

same datetime. In this pattern, the user accesses one URI-
R at a specific time, URI-R1@t0, then navigates to different
hyperlink(s) of URI-R1’s page (e.g., URI-R2@t0) and so on
(Figure 3).

Dive = {URI-Xi| i > 1, URI-X ∈ {URI-T, URI-M}
and URI-R(URI-Mi) <> URI-R(URI-Mi−1)}

3.4 Pattern 4: Skim
Skim is when a user accesses a number of different Time-

Maps for different URI-Rs (Figure 4). Skim does not include
any access for mementos.

Skim = {URI-Xi| i > 1 and URI-X ∈ {URI-T}}

4. METHODOLOGY
In this study, we introduce an analysis of the user access

patterns of web archives. The analysis was conducted on



(a) URI-T (b) URI-M

0.100.61.20 02/Feb/2012:06:48:24 http://wayback.archive.org/web/*/http://iyasizuku.com

0.1.134.90 02/Feb/2012:07:08:28 http://web.archive.org/web/19961022174810/http://altavista.com

Figure 1: Dip: A simple access to either a TimeMap or a memento.

0.248.211.54 02/Feb/2012:07:04:52 http://wayback.archive.org/web/20000715000000*/http://google.com
0.248.211.54 02/Feb/2012:07:04:59 http://web.archive.org/web/20000301105534/http://google.com/
0.248.211.54 02/Feb/2012:07:05:12 http://web.archive.org/web/20051101145803/http://www.google.com
0.248.211.54 02/Feb/2012:07:05:27 http://web.archive.org/web/20080730200402/http://www.google.com/
0.248.211.54 02/Feb/2012:07:05:38 http://web.archive.org/web/20110215024256/http://www.google.com/

Figure 2: Slide: Accessing the same URI-R at different Memento-Datetimes.

0.106.160.155 02/Feb/2012:07:07:10 http://wayback.archive.org/web/*/http://my-ru.net
0.106.160.155 02/Feb/2012:07:07:18 http://web.archive.org/web/20100709124643/http://my-ru.net/
0.106.160.155 02/Feb/2012:07:07:24 http://web.archive.org/web/20100709124643/http://my-ru.net/home.php
0.106.160.155 02/Feb/2012:07:07:46 http://web.archive.org/web/20100706170736/http://my-ru.net/carousel.php

Figure 3: Dive: Browsing different URI-Rs at (approximately) the same Memento-Datetime.

0.10.212.177 02/Feb/2012:06:45:24 http://wayback.archive.org/web/*/laquadrature.net
0.10.212.177 02/Feb/2012:06:46:10 http://wayback.archive.org/web/*/parti-du-plaisir.com
0.10.212.177 02/Feb/2012:06:46:22 http://wayback.archive.org/web/*/humanite.fr

Figure 4: Skim: Traversing only TimeMaps for different URI-Rs.



0.247.222.86 - - [02/Feb/2012:07:03:46 +0000] "GET http://wayback.archive.org/web/*/http://www.aura.vu

HTTP/1.1" 200 96433 "http://www.archive.org/web/web.php" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)

AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77 Safari/535.7"

0.247.222.86 - - [02/Feb/2012:07:03:55 +0000]

"GET http://web.archive.org/web/20020404020224/http://www.aura.vu/ HTTP/1.1" 200 18875

"http://wayback.archive.org/web/*/http://www.aura.vu" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)

AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.77 Safari/535.7"}

Figure 5: Sample of the Wayback Machine access log.

the Internet Archive’s Wayback Machine access logs. The
first step in preparing the Wayback access logs for usage
mining was transforming the raw log file into server sessions
through web-log preprocessing, which included data clean-
ing, user identification, and session identification [6]. Then,
we performed feature extraction, robot detection, and user
access pattern detection.

4.1 Wayback Machine Access Logs
A Web server log file is a plain text file that records the ac-

tivity information of the submitted requests from the users
on the web server. The Wayback Machine access logs con-
tain the following fields: client IP, access time, HTTP re-
quest method (GET or HEAD), URI, protocol (HTTP),
HTTP status code (200, 404, etc.), bytes sent, referring URI,
and User-Agent. For privacy purposes, the Internet Archive
anonymized the client IP address. A segment from the Way-
back Machine server logs, which we will call Wayback access
logs, is shown in Figure 5. The first line shows a request for
a URI-T. The second line shows a request for a URI-M.

4.2 Dataset
The Wayback Machine allows users to browse archived

copies of web pages across time. The Wayback access logs
were sampled using two probability techniques [29]: cluster
sampling, which is choosing a cluster of data randomly, and
random sampling, where each sampling unit has an equal
chance of being included. We performed cluster sampling
by choosing a week (Feb. 2-8, 2012) and random sampling
by taking a random slice from each day of the week. Each
sample comprised a slice of 2M requests to the Wayback Ma-
chine web server. Table 1 shows the characteristics of each
dataset. It contains the following features for each sam-
ple:
• Duration: the difference between the last request time

and the first request time of each sample in HH:MM:SS
format.

• GET: the percentage of requests that used the GET
method.

• Embedded: the percentage of requests that were for
embedded resources of web pages (such as images and
CSS files, etc.).

• SI Robots: the percentage of requests by self-identified
robots based on the User-Agent field.

• NullRef: the percentage of requests that had an empty
referral field.

• s2xx: the percentage of successful requests (2xx status
code).

• s3xx: the percentage of redirections (3xx status code).

• s4xx: the percentage of client errors (4xx status code).

• s5xx:: the percentage of server errors (5xx status code).

• Cleaned: the percentage of requests remaining after
removing requests for embedded resources, HEAD re-
quests, and requests that resulted in status codes other
than 200, 404, or 503.

• Sessions: the number of sessions.
The last three columns of the table show the mean, stan-
dard deviation, and corresponding standard error between
the samples. We use the Feb. 2, 2012 sample in our analysis
because as we see from Table 1, it is a representative sample.

In the Feb. 2 sample, we note that HTTP 3xx accounts for
52% of the total number of requests. This is related to the
default Wayback Machine behavior. First, the Wayback Ma-
chine rewrites all of the hyperlinks of a memento’s embedded
resources with the mementos’s timestamp. Second, in the
resolution of these URIs, the Wayback Machine will redirect
the request of the embedded resources and hyperlinks to the
nearest (timestamp) available memento. Furthermore, the
Wayback Machine responds with a 302 status first when the
requested URI-R is not available on the Wayback Machine,
and then responds with a 404 status.

4.3 Data Cleaning
The first step in preprocessing our dataset was data clean-

ing, i.e., removing log entries that were not needed for the
mining process [17, 28]. In similar studies for log analysis,
robots that identify themselves in the User-Agent field were
removed. Because robots crawl web archives intentionally,
we did not exclude their requests in the cleaning step. We
eliminated the following items which were irrelevant in terms
of user behavior:
• Requests that were generated automatically by the web

browser for embedded resources of the requested web
page (such as graphic files, page style files, etc.).

• Entries with an HTTP status code other than HTTP
200, 404, or 503. We kept only these because we consid-
ered them to be requests executed by the user.

• Requests using the HEAD request method (as suggested
by [16]).

• Static resources of the Internet Archive web site and the
URIs of the liveweb service, which the Internet Archive
introduces to redirect the user to the live web when the
copy is not found on the Wayback Machine.

• Invalid requests from web sites which included a link for
malformed URI-Rs (for example, about:blank) among
their embedded resources, so that each request on their
web sites caused automatic requests to the Wayback Ma-
chine server. Similar behavior had been detected by
Omodei [21].



Days Feb 2 Feb 3 Feb 4 Feb 5 Feb 6 Feb 7 Feb 8 Mean SD SE

Duration 0:33:12 0:31:15 0:40:34 0:42:57 0:29:35 0:25:45 0:24:33 0:32:33 0:06:29 0:02:27
GET 98.4% 99.3% 97.7% 97.9% 99.4% 99.7% 99.8% 99% 0.8% 0.3%
Embedded 47.4% 34.8% 43.7% 42.7% 41.9% 44.7% 46.8% 43.1% 3.9% 1.5%
SI Robots 6.2% 12.0% 7.7% 7.7% 2.9% 3.5% 3.8% 6.3% 3.0% 1.1%
NullRef 42.6% 56.6% 47.5% 47.0% 49.4% 42.6% 43.9% 47.1% 4.6% 1.7%
s2xx 33.7% 32.4% 34.2% 33.2% 34.1% 33.4% 33.6% 33.5% 0.6% 0.2%
s3xx 51.8% 52.3% 50.8% 52.2% 51.7% 51.9% 53.2% 52.0% 0.7% 0.3%
s4xx 11.7% 13.1% 12.0% 11.6% 11.2% 10.3% 10.1% 11.4% 0.9% 0.4%
s5xx 2.8% 2.3% 3.0% 2.9% 3.0% 4.4% 3.1% 3.1% 0.6% 0.2%
Cleaned 21.3% 23.0% 17.6% 17.7% 20.7% 18.1% 16.9% 19.3% 2.2% 0.8%
Sessions 37,634 31,731 32,159 28,750 36,087 35,848 32,117 33,475 2,896 1,094

Table 1: Features for each sample of 2M records, Feb. 2-8, 2012.
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Figure 6: The number of user requests per IP
against the number of User-Agents per IP.

4.4 User Identification
To identify the users, the log files were first sorted by the

IP, then by the request time. At first, we identified users
by the 2-tuple (IP, User-Agent), but we found instances of
malicious robots who not only did not self-identify, but who
also changed their User-Agent with every request. There
are some legitimate cases for humans to have different User-
Agents and the same IP, for instance, two simultaneous users
coming from behind a firewall. So, we needed to determine
a reasonable threshold for the number of User-Agents per
IP to detect malicious robots.
Figure 6 shows the relationship between the number of

User-Agents per IP and the number of requests per IP (for
those IPs with more than one User-Agent). We excluded
self-identified robots from the graph to avoid biasing the re-
sults. We found only 24 users who had changed their User-
Agent field more than 20 times. The median value for the
number of User-Agents per IP for the dataset is 3 (exclud-
ing users who had one User-Agent only). We concluded
that 20 different User-Agents per IP is a good threshold for
this dataset. For IPs with at most 20 different User-Agents,
we used the 2-tuple (IP, User-Agent) to identify individual
users. The 24 IPs with more than 20 different User-Agents
were classified as 24 separate robots.

4.5 Session Identification
A session is the set of web pages that are requested by

particular user [17]. Session identification is performed by
dividing a web server log file into web server sessions. First,
we group all the requests based on the IP and User-Agent
(as described in Section 4.4). Second, we apply a threshold
timeout, so that if the time elapsed between two consecutive
requests is longer than this threshold, the second request is
considered to be the first request of the new session. There
have been several suggested timeout thresholds including
25.5 minutes [5], 30 minutes [27, 14], and 60 minutes [2].
Others proposed 10 minutes as a conservative threshold to
capture the time for staying on one page [16, 24]. In our
study, we divided the requests of each user into individual
sessions based on a 10 minute timeout threshold. Future
research is required to verify that searching and browsing
models for the current web are valid for browsing the past
web (i.e., web archives).

After identifying the sessions, we extracted features for
each session to be used further in the analysis. A session, S,
is 7-tuple.

S = ⟨URI, Sl, Sd, BS, S̄rt, stdev(Srt), IH⟩

The following is the description of each item:
• URI is the set of URIs that the user visited in the session.

The set of URIs are defined as:

URI = {URIi| i is an integer, 1 ≤ i ≤ Sl

and URI ∈ {URI-T, URI-M}}

• Sl, session length, is the number of webpages the user
requested during the session.

• Sd, session duration, is calculated by subtracting the
timestamp of the first request of the session from the
timestamp of the last request of the session.

• BS is the browsing speed of each session in requests/second.
BS = Sl/Sd.

• S̄rt is the mean inter-request time of the session.

• stdev(Srt) is the standard deviation of the inter-request
time of the session.

• IH, image-to-HTML, is the ratio between the number of
image files and the number of HTML files per session.

4.6 Robot Detection
Because of the increasing numbers of web crawlers that

are engaged in web harvesting, many studies have been con-



# Detected Robots
Heuristics out of 37,634 sessions out of 426,317 requests
SI Robots 1,410 68,967
#UA per IP 24 2,747
Robots.txt 55 90
Browsing Speed 1,601 47,320
Image-to-HTML 33,244 326,019
Total Robots 34,203 (90.9%) 396,627 (93.9%)

Table 2: The number of detected robots from applying each heuristic independently and the number of the
records after applying all the filters together.

Filters % Excluded Requests
(out of 2M)

Status Code 51.8%
Embedded Resources 47.4%
Static and Liveweb 10.0%
Invalid Requests 3.7%
HEAD 1.6%
All Filters 78.7%

Table 3: The characteristics of data cleaning filters.
Some of requests fell into multiple categories, so the
percentages add up to more than 100%.

ducted for investigating the robot detection problem [27,
15]. In this study, we used different types of robot detection
techniques [10]. First, we applied syntactical log analysis by
checking the User-Agent field to identify the self-identified
robots. Second, we applied traffic pattern analysis tech-
niques to distinguish humans from robots based on their
navigational behavior. In this section, we describe heuris-
tics we used for distinguishing robots from humans.

4.6.1 User-Agent Check
The User-Agent check is applied for requests from crawlers

and robots which declared their identity to the web server
through the User-Agent field (SI robots). We excluded these
robots by applying this heuristic before the calculations of
the session features to avoid biasing the results.

4.6.2 Number of User-Agent per IP
As explained earlier (Section 4.4), we used 20 as a thresh-

old for the maximum number of different User-Agents for
each IP. Users with more than 20 different User-Agents were
classified as robots.

4.6.3 Robots.txt file
Web site administrators put a list of access restrictions to

specify which parts of their web site are not allowed to be
visited by robots. We labeled the sessions in which users
downloaded the robots.txt file for the Wayback Machine
(http://web.archive.org/robots.txt) as robots.

4.6.4 Browsing Speed (BS)
The importance and the effect of BS has been discussed

and used for detecting robots many times [20, 28, 22]. We
use BS ≤ 0.5 (i.e., no faster than one request every two
seconds) as a threshold for human browsing speed [4]. We
observed that this threshold is appropriate for our dataset,
so we classify the sessions with BS > 0.5 as robots.

4.6.5 Image-to-HTML Ratio (IH)
Human sessions should have more images than robot ses-

sions because of the embedded images present in most HTML
pages. Robots tend to retrieve only HTML pages, while ig-
noring image formats. We used the IH metric calculated
previously for each session to detect robots. In [26], 1:10
IH had been suggested as a good threshold for distinguish-
ing robots from humans. We label a session with less than
one image file for every 10 HTML files as a robot. IH is the
only heuristic that does not require a session have at least
two requests. This heuristic is the best predictor for robots
[27, 26], and it has a strong effect on our dataset.

5. RESULTS AND ANALYSIS
In this section, we explain the results of preprocessing the

dataset (described in Sections 4.3-4.5) and of applying the
heuristics for robot detection (described in Section 4.6). We
analyze the resulting data and contrast the behavior and
access patterns of humans and robots. We conclude with an
analysis of the temporal preference of human users.

5.1 Traffic Analysis
To extract the user access patterns for web archives from

the Wayback access logs, we first applied data preprocessing
techniques (data cleaning, user identification, session identi-
fication) to convert the log file into web server sessions. The
raw log file contains 2M requests from which we determined
21,932 unique IPs. Because of the stateless nature of the
log files, we identified the users based on the IP and User-
Agent to identify 33,841 users who created 37,634 different
sessions.

The characteristics of each filter (3xx status code, embed-
ded resources, static resources and liveweb, invalid requests,
HEAD) and the total number of excluded requests after ap-
plying all the filters together are shown in Table 3. The
number of records in the Feb. 2 sample was decreased from
2M to 426,317 (21.3% of the requests in the raw file).

5.2 Robots vs Humans
Table 2 contains the results of applying the heuristics for

detecting robots. The rules are not mutually exclusive, but
we calculated the number of requests which had been labeled
as robots from each filter separately. IH had the largest
effect on detecting robots. We used a 1:10 IH as a thresh-
old for distinguishing robots from humans. We found that
99.93% of the sessions which were detected by this heuristic
had 0 images. BS is also important, because it classified a
significant number of robots who had a BS (more than 0.5
requests/second) impossible for humans.



Users # Requests
(Filtered)

# Requests
(Raw)

# Sessions # Transferred
MB

# URI-Ts # URI-Ms

Robots 396,627 (93.0%) 1,002,573 (50.1%) 34,203 (90.9%) 20,010 378,201 (95.4%) 18,426 (4.6%)
Humans 29,690 (7.0%) 810,049 (40.5%) 3,431 (9.1%) 4,459 5,505 (18.5%) 24,185 (81.5%)

Table 4: HTTP activity of robots and humans.

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

Session Length

Fr
eq

ue
nc

y

Robots
Humans

Figure 7: The frequency of session lengths (# of
requests) for humans and robots.

Table 4 contains the summary of the activity of humans
and robots. From the table, we notice that the sum of
the percentage of raw requests from humans and robots did
not equal 2M requests. The reason is that there are many
accesses that were created by invalid requests to the web
server. Furthermore, there are many requests to embedded
resources only, which were filtered. The percentage of hu-
man requests after cleaning and separating robot requests is
only 1.5% of the 2M requests.
The significant discovery here is the 10:1 ratio of robot

sessions to human sessions. This ratio is a strong motiva-
tion for building an API interface that serves robot accesses
in order to decrease the load of robots on the Wayback Ma-
chine. A typical human session costs more than a robot
session as humans average 1.30 MB/session and robots av-
erage 0.58 MB/session. Human requests include automatic
downloads of the embedded resources of the web pages they
access, and robots usually ignore downloading these embed-
ded resources.
We discovered that most of the robots had a breadth

search strategy in downloading the web pages from the Way-
back Machine; more than 95% of the robots downloaded
TimeMaps only, as shown in Table 4. On the other hand, of
all human requests, only 18.5% were for TimeMaps.

5.2.1 Session Length (Sl)

After detecting the robots, we separated them from hu-
mans and analyzed their behaviors individually. Figure 7
shows the session length frequency for robots in red and
for humans in blue. We notice from the figure that many
more robots have longer sessions than humans. The S̄l for
robots is 10 requests/session, while humans have an S̄l of 9
requests/session.
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Figure 8: The percentage of sessions for each in-
terval. The number of humans and robots sessions
are 2024 and 17019 (excluding the sessions with one
request), respectively.

5.2.2 Session Duration (Sd)

We computed session duration by subtracting the time of
the first request from the time of the last request for each
session. Session duration requires at least two requests. Fig-
ure 8 shows the percentage of sessions with different session
durations for robots and humans. We can see that the ma-
jority of the sessions were short, taking into consideration
that we did not count the time spent on the last requested
web page. The S̄d is 10 minutes for robots and 5 minutes
for humans.

5.2.3 Inter-Request Time
We also calculated S̄rt and stdev(Srt) for each session. We

found that the median values of S̄rt for human and robot
sessions are 19 seconds and 40 seconds, respectively. The
median of stdev(Srt) values is 37 seconds for robots and
11 seconds for humans. This indicates that robots tend to
have more irregular periods between HTML requests than
humans, and this matches the finding by Tan et al. [27].

5.3 Web Archive User Access Patterns
How do users go through web archives? Do they go in

deeply from URI-R1 to URI-R2, do they browse broadly
from URI-M1 to URI-M2 for the same URI-R, or do they
use a combination of these two patterns? Are robot accesses
similar to human accesses?

In this section, we answer the previous questions by ex-
tracting the user access patterns for web archives from our
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Figure 9: Robots and humans exhibit different access patterns.

filtered dataset. The requested URIs for each session were
extracted and then identified based on their type, URI-M
or URI-T. We also extracted the URI-R of each requested
URI to compare it with the other URI-Rs from the same
session. Because of the existence of different forms of URIs
which refer to the same website [18], we applied URI canon-
icalization for the URI-Rs to normalize them under one host
[8].
We discovered four basic building blocks (Dip, Slide, Dive,

Skim) of the user access patterns for web archives. Figures 1-
4 show the models along with examples of the four patterns.
The percentages of each pattern exhibited in robot and hu-
man sessions are shown in Figures 9(a) and 9(b) along with
the percentages of requests to TimeMaps and mementos for
each pattern.

Dip
Dip is the pattern where the user requests a single URI.
This URI can be a URI-M or a URI-T. It represents the
most repeated pattern for humans (33% of all sessions) and
robots (49% of all sessions). URI-Ms contribute to 83% of
human sessions that exhibit the Dip pattern, although 94%
of the robot Dips are requests for URI-Ts.

Slide
The user who is interested in travelling through time, brows-
ing different copies of the same URI-R, creates the Slide
pattern. There are only a few humans who access the web
archives broadly then navigate away (4.2% of all sessions).
Robot sessions do not have this pattern with a noticeable
percentage (0.1% of all sessions).

Dive
Dive represents the second highest percentage of human ses-
sions, 29.7%. In this pattern, the user goes deeply for brows-
ing hyperlinks of URI-Ms. The robot sessions which were

composed of this pattern crawl the web sites deeply, but
they are not a significant number of sessions.

Skim
Skim is the pattern for which the users access different num-
bers of TimeMaps. Robot sessions exhibit this pattern 48.7%
of the time. Investigating the relationship between the top-
ics of the URI-Rs of the requested TimeMaps during a single
session is one of our goals for upcoming research.

User Pattern Median Mean SD
Slide 3 3 1.4

Robots Dive 3 15 53.2
Skim 3 21 267.0
Slide 3 4 3.4

Humans Dive 4 8 14.3
Skim 3 6 7.2

Table 5: Statistics for the length of all Slides, Dives,
and Skims

Slide and Dive
A large number of human sessions consist of at least two
occurrences of the Dive and Slide patterns. In these ses-
sions, the users request URI-R1 and browse its different
copies at different times (URI-R1@t1 ⇒ URI-R1@t2 ⇒ URI-
R1@t3), then dive through a hyperlink (URI-R2@t3) from
URI-R1@t3, then repeat Dive or Slide. In contrast, users
may start by going deeply through different mementos for
different URI-Rs (Dive pattern), then go broadly through
one of these mementos to browse other captures at different
times (Slide pattern) (e.g., URI-R1@t1 ⇒ URI-R2@t1 ⇒
URI-R3@t1 ⇒ URI-R3@t2, etc.). The percentage of hu-
man sessions that were composed of a combination of these
two patterns is 17.2%. We calculated the number of Slides
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Figure 10: Distributions of the years for the unique
and requested mementos by humans.

and Dives for these sessions and found 1167 Slides and 1942
Dives. For robot sessions that were composed of Slide and
Dive, we found 328 Slides and 571 Dives.

Pattern Length
Each pattern is made up of a number of requests, which we
call the pattern length. We calculated the pattern length
for all sessions. The median, mean, and standard deviation
of the lengths of each pattern for robots and humans are
summarized in Table 5. For humans, the longest mean pat-
tern length is an 8-request Dive, while for robots the longest
mean pattern length is 21 requests in a Skim.

5.4 Temporal Analysis
Figure 10 shows both the unique and total number of me-

mentos referenced grouped by the year of their Memento-
Datetime. Although there is no clear temporal preference
for any one year of the unique mementos, there were a signif-
icant number of repeated requests for mementos from 2011.
This locality of reference suggests that there is an impor-
tant benefit to be gained by caching the mementos from the
recent past. Figure 11 shows that the total number of me-
mentos available for 2011 was similar to previous years. In
both Figures 11 and 10, pre-2001 data is included although
in those years the archives are too sparse for meaningful
comparison with later years.

6. CONCLUSIONS AND FUTURE WORK
We introduced the basic building blocks (Dip, Slide, Dive,

and Skim) for user access patterns for web archives through
an analysis of the Internet Archive’s Wayback Machine ac-
cess logs. We applied heuristics for detecting robots and
found that robot sessions outnumber human sessions 10:1.
This suggests that there is utility in building an API inter-
face that serves robot accesses. Robots account for 91% of
sessions and 93% of requests to the Wayback Machine, yet
robots outnumber humans 5:4 only in terms of raw, unfil-
tered requests and 4:1 in terms of megabytes transferred.
We found that humans download more information per ses-
sion due to embedded resources, which robots ignore. We
also analyzed human and robot access patterns to empha-
size the similarities and the differences between them. We
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Figure 11: The proportion of unique URI-Ms re-
quested out of the potential requested for each year.

found that robots mainly exhibit the Dip and Skim patterns,
with about 49% of their sessions for each pattern, and that
they access TimeMaps almost exclusively. Humans exhibit
the Dip and Dive patterns the most with 39% and 30% of
their sessions, respectively. Unlike robots, humans mainly
access archived pages rather than TimeMaps. Finally, we
provide an analysis for the temporal preferences of humans
based on the Memento-Datetime (by year) of their requests
and discovered significant repetitions for requests in 2011.
This suggests that there is a benefit to be gained by caching
mementos from the recent past.

Web server logs are a rich source for information about
web archives. We are planning to extend our analysis to
serve other applications of web usage mining, such as per-
sonalization for making dynamic recommendations to web
archive users based on their navigational behavior patterns
by using data mining techniques. Further, we will study the
validity of applying searching and browsing models for the
current web to web archives. We also expect that Slides and
Dives that users create on web archives may create stories
around a particular event. We plan to extend our study on
a large data set to detect stories that humans might create
from their access patterns, which will be integrated into the
live web to produce automatic stories about specific event
for the users.
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