
-68-

Coping With Dee l~ Nested Control Structures

G.R. Perkins R.W~ Norman S. Danicic
Department of Mathematics, Statistics, and Computing
Polytechnic of North London
Holloway Road
London N7
U.K.

Abstract

Over the past three or four years SIGPLAN Notices has
published a number of papers on the problem of deeply nested IF-
THEN-ELSE structures. We maintain that the current editorial ban
on proposals for new control structures is correct, not only for
reasons of space in SIGPLAN Notices, but on the grounds that
programmers (like any other workers) should resist the temptation
to blame their tools when they come up with poor products.

Here, we briefly indicate a few techniques for dealing with
deeply nested structures, and suggest that working programmers
develop other such techniques and publish papers about them,
rather than merely ask the language designers for yet more
constructs.

Introduction

Several papers and letters have appeared in SIGPLAN Notices
in which the problem of the deeply nested IF-THEN-ELSE is defined
(usually by giving an abbreviated form of a worst-case nesting)
and solutions are proposed - often by introducing new control
structures or using existing ones (e.g., FOR loops) in a rather
contorted way. We argue that both solution methods are
inappropriate and that the real problem is often in the
programming technique that led to a deeply nested structure in
the first place.

New Control Structures

These suggestions are the easiest ones to deal with. Every
non-trivial problem in programming has the potential to give rise
to control and data structures not available in the target
language. If the target language is a conventional, imperative,

u~eh as Pascal, Cobol, PL/i, Algol 68, Fortran, algorithmic one (s ;

C, Basic) then there are maybe a dozen structuring mechanisms
available (e.g. records, arrays, loops, procedures) and a couple
of crude mechanisms for the simulation of unavailable structures
(usually goto for control and pointers for data). However these
languages derive their power and popularity from their simplicity
and generality: adding new structures will mitigate against these
strengths.

Obviously languages should not be fixed once and for all,

SIGPLAN Notices, V22 #2, February 1987

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24686.24692&domain=pdf&date_stamp=1987-02-01

-69-

and then allowed to fossilise over the years. But great care
should be taken by standards committees to ensure that a new
feature is added to a language because it offers additional
expressive power to all programmers, not just because someone
came up with an example program that seemed to need it.

Cobol is an interesting case in point: many extensions have
been added over the years, often with arbitrary syntax• Many of
the features are slight variations on each other, and could
easily be managed without (who needs paragraphs, sections, and
sub-programs?) The most unfortunate aspect of Cobol extensions is
that most of them could have gone in as libraries of standard
procedures/functlons if only a good procedure/function mechanism

had been introduced early on.

By contrast many of the recent extensions to Cobol add
genuine power for little extra complexity. The EVALUATE
statement introduces only two new keywords but allows programmers
to write decision tables directly into their code. The general

form is

EVALUATE exprl
WHEN matchl

WHEN matchl
END-EVALUATE

expr2 ... exprn
match2 ... matchn

match2 ... matchn

statement-list

statement-list

where each match can be a simple value (WHEN 5 X+I ..), a range
(WHEN 5 THRU X Z+I ..), or the default successful match ANY.
The single expression version gives you everything you ever
wanted from the Pascal case statement but couldn't have.

Existin_~ Control Structures

We cannot condemn the use of existing control structures to
resolve deep nesting problems since this is what we are proposing
anyway• Equally, we cannot condone the contorted use of existing
control structures: some of the published suggestions lead to
programs in which control flow is completely opaque. We actually
encourage the use of the deeply nested IF-THEN-ELSE under certain
circumstances, just as we would encourage the use of the goto.

As an aside we presume everyone realises that deep nesting
on the THEN side only is perfectly acceptable (simulates short
circuit AND evaluation) as is deep nesting on the ELSE side
(simulates the Lisp COND). If deep nesting is still considered
ugly then both of these constructs can be flattened out using

goto's.

Programming and Coding

We suspect that many programmers end up with deeply
IF-THEN-ELSE structures because they do not make a sharp
distinction between the tasks of coding and programming.
is the translation of specified algorithms into a
programming language and is only a tiny isolated sub-task of

nested
enough
Coding
target

the

-70-

whole discipline of programming~ If a programmer encounters a
deeply nested IF-THEN-ELSE during coding it is often a symptom of
unclear thinking at the analysis and design stage, and the
solution is to scrap the code and start again~

The other point we would like to make is that there is no
such thing as the "self-documenting program". Hopefully most
professional programmers are aware of this, but in education the
student is often led to believe that the use of a good clean
language, plenty of comments, and "meaningful" variable names
will automatically lead to well-structured programs that can be
understood and maintained from the source code alone° This is a
terrible fallacy: programs are unmaintainable unless external
documentation clearly describes the transformations between
problems and solutions, and between solutions and program
structures.

Programming Techniques

Obviously we are being fairly critical of programmers who
end up with deep nesting problems (or any other opaque data and
control structures) at the coding stage. However we are not
unsympathetic and would like to suggest a number of useful
techniques, all of which are already in use and well understood
but unfairly restricted to particular languages or methodologies
that utilise them directly.

The first technique to try when confronted with any nasty
data or control structure is to go back to analysis and design.
Colleagues can often be very helpful here but it is important to
communicate the problem to them without constraining their
thinking by explaining bits of the failed strategy. We refer
readers to the excellent paper by Rosenbloom.

If it does appear that some complicated decisions have to be
made by the program then it is important to find a clear way of
expressing this in external documentation. There are several
powerful notations that can be used:

- EVALUATE statements
language)

(even if unavailable in the target

- decision tables

- boolean expressions with implicit short-circuiting

- finite state machines

- statement and unit level exits

- recursion and pattern matching

The reader can probably think of more. If an expressive external
notational form cannot be found then there is no point in writing
the code since it will be unmaintainable: the programmer must
return to analysis.

-71-

Coding Techniques: EVALUATE and Decision Tables

The first two notations above can be implemented directly in
Cobol via EVALUATE and/or level 88"s. In other languages the
original table should remain as the external documentation and a
standard transformation technique (possibly automated) be used to
produce source codeo It doesn't matter if deep nesting or
excessive goto's result since programmers will treat the original
table as the source code, and the actual source code as if it
were object code. It may be sensible to retain the original
table as comments, though installation standards must be
developed to keep external documentation, macro source code,
actual source code, and comments in step.

Actually we have used VAX extensions to Pascal to write
EVAL, WHEN, and END-EVAL procedures/functions which simulate the
simple decision table version of the Cobol EVALUATE, e.g.,

eval3 ((x+l)<y, n>2, p and not q);
if when(' T F F ") then STMTi;
if when(" T F T ') then STMT2;
if when(' T - - ") then STMT3;
if when(" F T - ") then STMT4;
if when(" F - - ") then STMT5;

end eval;

The extensions used are local static variables and default
parameter values, though standard Pascal could be used with a
little ingenuity. A stack is maintained to allow nested eval's.

Coding Techniques: Short-Circuit Booleans

Short circuit booleans are easily implemented:

IF (a and b) THEN cl ELSE c2
becomes
IF a THEN IF b THEN cl ELSE c2 ELSE c2

IF (a or b) THEN cl ELSE c2
becomes
IF a THEN cl ELSE IF b THEN cl ELSE c2

If the ci's are large statement groups rather than single
statements or procedure calls, then goto's can be used to avoid
excessive source code repetition. Compound expressions merely
require recursive applications of the same rule, which is easy
with a macro-processor. Again the resulting code should never be
read or maintained - the programmer should maintain the external
notation and then re-generate the code. Many awkward control
structures arising from the need to avoid array, pointer, or file
access violations can be modelled as short-circuit booleans.

Codin~ Techniques: Finite State Machines

We have discovered that Finite State Machines offer an
extremely powerful method of coping with all sorts of problems.
They almost always eliminate structures which would have

-72-

contained IF's and WHILE's nested four or five deep° So far we
have used FSM's in three major application areas, which we will

describe briefly.

Many text processing problems can be reduced to some form of
lexical analysis. In these cases it is convenient to express
input strings as regular expressions, then convert to FSM's and
associate program actions with transitions° As an example our
first year students used a 2-state 4-transition FSM to split a
text file into its component words° The resulting program was
extremely simple and short, with virtually no nesting of control
structures. It was then used as the first filter in a series of
simple programs and O.S. commands that together provided some

quite powerful text processing.

FSM's can also be used to model the sequencing aspects of
interactive dialogues. The following FSM models the legal
command sequences during a simple master-file update session:

Upd Get

~ Get

St° ellKi /
Change

This simple machine expresses a number of rules about the
in which commands are applicable:

order

- Exit from system is only possible when it is in the
configuration as when it was entered

same

- A record can only be changed if it has been Got
working buffer area

into

- A record cannot be deleted if it has been changed

- A record cannot be stored unless it has been changed

- Once a record has been changed, the user must explicitly
Kill or Store it before dealing with another record

A programmer reading the above rules would probably end up
writing a program which contained a number of status variables
and a complicated IF/WHILE structure to ensure that the rules
weren't broken. With luck, the program would be a precise
simulation of the FSM we defined above. However, it is more
likely that the value space for the status variables would be
much larger than the three states required by the FSM model, thus
making condition evaluation much more complicated than is
necessary.

The other application for FSM's is in the area of process-

-73-

oriented systems analysis, of which the Jackson System Design
methodology is an example. Here one is concerned with the
sequential behaviour of objects in a system, rather than static
relationships between data objects as in more conventional
database or file processing oriented methodologies. Every object
in the system (including interfacing objects such as users) is
modelled as a sequential process with the ability to send and
receive messages in order to report or update its current status.
The above example of interactive dialogue control is a special
case of this modelling technique in which only one aspect of a
system (namely user interaction with master-file) has been
modelled as a sequential process.

We have found that the JSD "entity structure diagrams" can
be dispensed with since the FSM is easier to construct and read;
the following machine describes the life-cycle of a library book:

lend

lose
buy

In all three applications of FSM's discussed above,
implementation can be effected without resorting to complex
control structures. Each FSM can be represented by its
corresponding transition table, which can be kept on file and
loaded into run-time data structures at the start of each program
run. A simple interpreter can be written which merely obtains
the next message and looks in the table to fire the appropriate
transition and select the appropriate action code with a CASE
construct. The interpreter (or FSM simulator) looks something
like:

state := startstate
repeat

getmessage(mcode)
<action, state> := transtable[state, mcode]
service(action) (* procedure to select service code *)

until state in haltstates

-74-

where

procedure service(action:integer)
case action of

i:
2:
o e

a ~

end
end service

Note the paucity of control structure nesting! In the library
book example above each book would be represented by a record
which contained its current state as well as its usual data. If
a system contains several FSM's then a global message handler is
needed to select the correct transition table for the simulator
to use. The complicated "inversion" technique of the
implementation stage of JSD does not use transition tables, but
leaves all the sequencing control in the actual code. Using
FSM's at this stage is much easier, and keeps all sequencing
control in the transition table on a data file (thus simplifying
program maintenance).

Coding Techniques: Exits

Both statement level and unit level exits can be extremely
useful ways of simplifying control structures• Many programmers
are reluctant to use such exits as they have misinterpreted (or
more likely, have been instructed by people who have
misinterpreted) the "goto considered harmful" arguments. But
since many languages provide both types of exit there is no
reason why programmers should not use such structures in their
program specifications, so long as they have the discipline to
use or design installation standards for their simulation.

Typical statement level exits provided directly in various
languages are: Cobol's SEARCH verb with its WHEN conditions, DEC-
I0 Pascal's LOOP - EXIT IF structure, C's BREAK and CONTINUE
statements, and Ada's EXIT WHEN statement• These, and variations
on them, can be cleanly simulated with the goto statement (the
single-entry single-exit rule does not need to be broken).

The most common unit level exit is the RETURN statement
provided by many langauges, with the notable exception of Pascal.
We have shown students RETURN can easily be simulated:

function f(x:real) : real;
label 99;

procedure return(ret:real);
begin f:=ret; goto 99 end;

begin
o •

if .. then return(sqrt(x));

99: end;

-75-

More sophisticated unit level exits can be utilised to
handle errors detected by the program at run-time. The EXCEPTION
raising and handling facility of Ada can easily be simulated in
Pascal:

procedure p~

type exception = (null, overflow, underflow, zerodiv);
var cond : exception;

procedure raise(raisecond:exception);
begin cond:=raisecond; got. 90 end;

begin
cond := null;

if n=O then raise(zerodiv)
e .

90: case cond of
null:;
overflow: ..
underflow: ..
zerodiv: ..
end

end; (* procedure p *)

Actually this particular strategy only allows an exception to be
trapped by the closest enclosing block containing exception
declarations, since "raise" refers to the closest enclosing
declaration of a "raise" procedure. As part of a Pascal course
for postgraduate students we have discussed more useful error
trapping strategies which, for example, have all error codes,
messages, and trapping information stored in an easily modifiable
text file.

Coding Techniques: Recursion and Pattern Matching

Recursion is an extremely powerful programming technique but
is commonly thought to be inefficient in comparison with
iteration. Nevertheless several languages (Lisp, Hope, Miranda)
provide recursion as the principal structuring mechanism and
programmers using these languages are quite happy to write all
their programs in terms of mutually recursive functions. The
run-time inefficiency of such programs is due to inappropriate
computer architectures, garbage collection overhead, and the use
of interpreters or non-optimising compilers. The recursive
functional style itself is not at fault.

Our experience with this technique has been in the teaching
of a BSc Data Structures unit which, as in many other educational
establishments, forms the core of the Computer Science curriculum
(after the very introductory programming and information
representation units). Lack of space prohibits a full discussion
here, suffice it to say that we made liberal use of a simplified
version of Z, the data type specification method developed by
Bernard Sufrin and others in the Oxford Programming Research

Group.

-76-

We found in general that specifications and implementations
of data types were extremely short and simple, and that standard
methods could be used to transform specifications into Pascal
type declarations and functions~ Pattern matching, such as

length(emptylist) = 0
length(a :: alist) = I + length(alist)

turned out to be a nice specification technique that could be
implemented by using an extra IF in the function definition~
Pointers (and the use of NEW) practically disappeared. For
example, the function to insert an item into a sorted list has no
pointer references at all and consists of an IF statement nested
two deep on the else side only. By contrast, the "insert"
procedure found in standard textbooks has two local pointer
variables, contains numerous pointer references, is about twenty
lines long, and usually contains IF's and WHILE's nested five
deep (some of the IF's nested on both sides). The same
elimination of deeply nested control structures was encountered
with all our data structures.

The power of these techniques allowed us to cover
applications involving list of trees of records with no more
dificulty than lists of characters. Some students had trouble
understanding recursion early on in the unit, but nobody got
tangled up with deeply nested control or data structures.

For those concerned with space-time efficiency we would
point out that most of our functions involved tail recursion
only, which can easily be flattened out. Even the need for
garbage collection can be reduced by using "replace" functions
(e.g., the Lisp rplaea and rplacd) which have side-effects but do
not spoil the functional style too much. The "mark" stage of
garbage collection can also be eliminated by careful recording of
information in the "cons" functions.

Conclusions

Programming is clearly a difficult task but the stream of
papers on the deep nesting problem seems to indicate that many
people are pushing their difficulties down into the coding phase
without realising that they have only partially solved a
difficult problem at a higher level. The way in which Structured
Programming is covered in many books is partly to blame for
giving people a false sense of security. We have discovered that
many students can get full marks on an exam question which says
"Describe what is meant by structured programming and explain how
it eases the tasks of program writers and maintainers" and yet
very few can apply structure to a design before turning it into
code. We have yet to find a text book that even explains how to
develop a structured naming scheme for variables, though they all
exhort us to use meaningful variable names!

There is also an unrealistic expectation that programming
languages should provide solutions to everyone's coding problems
in a "stand-alone" fashion. This cannot be the case (witness
Cobol and PL/I) and it must be accepted that external
documentation and standard transformation schemes form an

-77-

integral part of any program, as well disciplined programmers in
good installations know full well.

Our improvement over deeply nested "improvement over..."
papers is that we should stop trying to define, generalise, and
"solve ~ awkward lumps of syntax. Instead we should publish
papers on the problem spaces we find and the modelling techniques
and transformation methods we develop. Language designers should
look carefully at the notational structures that arise from these
developments and see if any of them are required often enough to
warrant them being turned into new languages or upgrades to
existing languages. In other words language design should be
"problem driven" rather than "code driven".

Bibliosraphy

The titles get longer and longer so we just give the authors and
SIGPLAN Notices references (in date order).

Hill, G.P.

Lau, D.

Marks, R.E.

den Hertog, E.H.
Gerbscheid, H.J.C.
Kersten, M.L.

Hill, G.P.

Lakhotia, A.

Taylor, D.

Rosenbloom, M.H.

Amit, N.

Nelson, D.F.

Amit, N.

Baldwin, R.R.

Baldwin, R.R.

VI7 #8, August 1982

Vi8 #3, March 1983

Vi8 #3, March 1983

VI8 #3, March 1983

(correspondence)

(correspondence)

(correspondence)

Vi8 #4, April 1983

VI8 #5, May 1983

VI8 #I0, October 1983

VI8 #i0, October 1983

VI9 #i, January 1984

VI9 #2, February 1984

VI9 #4, April 1984

V20 #i0, October 1985

V21 #9, September 1986

(correspondence)

(correspondence)

(erratum to above)

