Check for
Updates

—-33-

LAZY EVALUATION AND NONDETERMINISM MAKE BACEUS® FR-SYSTEMS
MORE PRACTICAL

Atanas Radensky
Center for Mathematics and Mechanice
10%0 Sofia, F.0.Box I73%, Bulgaria

SUMMARY . Backus” FR-systems are made more practical by
introducing into them lazy evaluation and nondeterminism. This is done
in the framework of a concrete programming language called FP¥. From
the one hand, this language is almost as mathematical as FP-systems
are. From the other hand, it gives the possibility to manage secondary
memory and to develop such applications as, for instance, interactive
and distributed file systems. Experimental versions of a compiler and
an interpreter for the FPY language are implemented.

i. FP-SYSTEME - SOME SHORTCOMINGS

J. Backus, in his Turing award lecture in 1977, introduced a
class of pure functional programming 1languages, referred to as
FP—systems [Bac, 781. In FP-systems, only functions of one argument
are used. (Since the argument is just one, there is no need to
explicitely denote it, and this 1is the reason FP-praograms do not
contain any wvariables.) This results in a very simple and elegant
mathematical semantic, which encourages the development of a peculiar
algebra of programs [Bac,781. Some general theorems which characterize
large classes of programs are proved [Wil,B801, [Bac,811, [Wil,82]1. For
instance, some theorems concerning the representability of
FP—~functions in the form of "infinite conditions" are proved: the
recursion and iteration theorems [Bac,.781, the linear expansion
theorem [Bac,811, the theorem of representation of some non~linear
forms [Wil.B0Ol, the theorem which establishes the existence of
representation of any function in the form of infinite condition
[Rad,B821.

The possibility to develop relatively simple and powerful
mathematical methaods for formal study and analvysis of programs is one
ma j;or advantage of FF-systems. However, there exist some hard
shortcomings of FP-systems which are obstacles to their wider
spreading and use as a real programming tool.

First of all, FP-systems do not support the development of
interactive programs and the management of secondary storage. Thus, it
is impossible in FP-systems to implement text editors, file systems
and database systems, and many other similar programs.

fAnother group of problems with FP-systems concerns the efficiency
of their implementation. It is still unclear how much combinators or
multiprocessor systems can help in this respect. Much experimentation
ought to be done, in order to develop specific compiler techniques for
efficient code generation.

The above mentioned and some other shortcomings of FP-systems can
be removed (at least partially} by means of specifically adopted
variants of some well known methods: lazy evaluation, nondeterminism,
local definitions, tabulation. Such an approach to improving
applicability and efficiency of FP-systems is materialized in a
concrete language called FP%, and a corresponding microcomputer
programming system. From the one hand, FFPX succeeds useful
mathematical properties of FP-systems. From the other hand, FP% allows
interactive programming, secondary storrage management, and it can be
implemented efficiently enough in order to be considered as a

SIGPLAN NOTICES V22 #4, APRIL 1987

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24714.24718&domain=pdf&date_stamp=1987-04-01

3L

candidate for real programming.

2. BASIC CUNSTRUCTS IN THE FPI LANBUARE

Williams [Wil,B821 presents a very nice synopsis of FP-asystems,
and here we use its scheme to present the FFX language, the more so as
many constructs in FPY are the same as in FP-svstems.

A program in FPE is a set of definitions of functions that map
objects to objects. The set Ob of objects is defined in the following
ways

1) 2 is in Ob (7 denotes the undefined object):

2} a set of atoms {integers, identifiers, and characters) is in
Obs

Z) any finite or infinite sequence 21 H2 ... HO owa> OF obsects
is in Ob, including the empty seguence <> {a precize definition of
infinite objects can be given in terms of infinite trees).

Backus denotes the undefined object by 1 and accepts that
H1auZ2iasa9un= |} o, if for some i, 2i = 4 . Such strictness of the
list constructor in FP—avystems implies that Y...the various
computation rules, outermost, lefttmost—outermost, innermost, and
leftmost-innermost, are all safe rules for computing the least fixed
point” [Wil,B82]. This is really very nice from a theoretical point of
view but is not so important from a practical one. The price which is
paid for the strictness of the list constructor in FP-systems is the
absence of lazy evaluation, and this price is too high.

A nonstrict list constructor is used in FP%. In particular, this
means that the object <...7...> is not equivalent to the undefined
object 7. This assumption allows lazy evaluation in FPX. Note that
with nonstrict constructor it is still possible to prove laws in the
algebra of programs, use structural induction and fixpoint induction
to deduce properties of programs, and in general — reason about
programs by means of precize mathematical methods.

A set of primitive functions and a set of functionals (referred
to as "functional forms") are used. Given a functional program P, the
notion of a function {(programmable in P) is defined as follows:

— Any primitive function is a function (programmable in F).

- If f1, #2,..., fn (n »= 0) are functions (programmable in P),
and if €C is a functional Form that take n arguments, then
C1,¥f2,...,Ffn) is a function (programmable in P).

- If the program P contains a definition

lazy g = G(gQsa=al,

then g is a "lazy" function {(programmable in P). If P contains a
definition

def f = F{(f,...),

then £ is a "normal" function (programmable in F). The right
sides B(gs...) and F(f,...) are functions (programmable in P).

Further on, the exupression “programmable in P" iz omitted. By x:=
we denote the result of the application of f to x.

When a lazy +Function is +to be applied to an object «, a
pseudo-object which replaces the result «:¥ is created. In that, the
corresponding computational process is delayed, not initiated. When
the result x:g of the application of g to % is to be ocutput or used by
a primitive function, then the suppressed computational process is
automatically forced.

The set of primritive functions contains selector functions
(denoted by 1, 2, 3,...), the tail function (tl1), functions—-predicates
(=, is_empty, is_atom, eq0, etc.), arithmetic functions (+, —y %, /,
mod, plusl, minusl), the append functions (apndl, apndr), and many
others; some of them are considered later.

—35-

The following examples highlight the semantics of primitive
functions used fwther in this paper:

Seplectors: <a b cr:l = az; 4a b c>:3 =

Tail: <a b crstl = <b c>3 “<a <b crx>:tl £<h o>

Identity: <a b crsid = <a b c>3 ‘

Is_empty: <a b criis_empty = F; {>:ris_empty = Tz Tris_empty =73

Multiplication: <100 2>»:% = 2003 <100 ?>3% = P,

The append to the left function (it differs essentially from the
corresponding FP-function) is applied in the following wavys

wzapndl =

“yr, if w=dy <o s

“y z1 Z2e..2n¥, 1f x=<y “Z1lesaZlnanPannri
{y¥, if u=<y z...>» and z is not a list;
7 otherwise.

The set of functional forms includes composition {(denoted by ":",
not by "o" as in FP-systems), construction ([f1 f2...¥nl1), condititon
(if p then f else g). constant (denoted by "x, not by %), iteration. A
nease” functional form is introduced in FPX in aorder to improve both
program readability and efficiency. This form will be included in some
further examples.

According to Backus [Bac,781, functions in an FP-composition (f1
c 2 0 ... o fn) are applied from right to left, 1.2.:

(1 0 2 0 ... O fmYax = F1lz (22, .. (FfN2xd)

This is rather inconvenient, since in real programs n can be
fairly large. This definition of composition forces programmers {which
usually write from left to right) to write firstly the function which
iz to be applied the last. (Function composition is used like
statement composition in procedural languages, and we can imagine a
Fortran programmer which is persuaded to write his program starting
with the 1last statement and finishing with the first one.) In FFX%,
functions in a composition (§1:42:...:¥n) are applied in the way are
writhen, i.e. from left to right:

e {f1:$2z...24n) = (oo ({xef1Yef2).u2fn).

Some examples concerning functional forms follow.

Composition: <a b c>:{tl:z1) = b :

Construction: <5 2>+ — % /1 = <7 Z 10 2>

Constant: S:(Lid *21:%) = <5 2% = 10;

Condition: <5 &x:(if empty then id else [1 "21rx) = <5 2r:% = 10.

Z. INPUT - OUTPUT IN FPX

Suppose, & function f is applied to an object x. The application
af £ starts tif possible}) even before any part of % 1s input. The
application of f is suspended in a case some nessessary parts of x are
not input vet. It is resumed immediately after one or more lines
containing the nessessary data are input. In that, any component of
the resylt x:f is output immediately after it has been computed.

Similarly to [Hen,821, a function which doubles an infinite list
of numbers can be introduced:

lazy double = [[1 "23:X +tl:doublel:apndl.

During its application, the following dialogue can be sesen on the
SCreen:
2 ——input
& 4 ——putput
7 10 ——input
4 20 ——gutput

~—=input

2 -—putput

m36_

A primitive function "write” iz introduced in FFP¥. It sxtends the
primary memory onto the secondary ong.

We present here a simplified variant of this function. By means
of it, an obiect can bhe output onto a disk. Formally, the function is
applied according to the following rule:

Hriwrite = v, 1f 2=y N ...y, Blss 7

If n i= a number of a disk device, then the obhijsect v iz output
onto the corresponding disk. In that, the piece of primarv storage
occupied by v is released. Instead., a pseudo-obiject which contains
some nessessary disk addresses is created. In this manner, the obiect
y remains accessible for further use, and when nessessary, 1%
automatically loaded by the svstem into the primary storage.

Henderson [Hen,B821 described a simple Filer in a Lisp-like
notation. We did the same in the FPY language using the primitive
function write. A function “filer” is described in the FFY language.
By means of this +function, the user can create, update, and
interrogate a database, which is actually a list of files. A file is
an ohiject in the form <file_name File_value>. A file_name is an
identifier, and a file_wvalue is an object.

The filer accepts some commands from the kevhoard, executes them
and returns corresponding answers on the screen. We consider here only
two commands: put and get. The put command has the form:

<put file_name file_value>,.

The result of the execution of this command is that the file is
stored in the database, and answer "ready” is displaved on the screen.

The get command has the form:

<get file_name>.

As a result, the corresponding file_value from the database is
displayed on the screen. Alternatively, the answer "not_{found” is
displaved, if a Ffile with the specified name is missing from the
database.

The filer is a function which is applied to an infinite list of
commands, executes them, and returns corresponding answers. A5 an
effect of lazy evaluation, the filer executes and answers every
command immediately after it has been input. Thus, there is a dialogue
between the user and the filer.

Example. & typical dialogus looks like this:

<<put filel <A B C>>

<ready

<get filel>

<A B C>

<put filel <x yr>
ready

<get filel>
not_found

<get filel>

LH YF

Note that the FFX programming system can save the state of the
executed functional program before any switching off the computer; it
can recover it immediately after the computer is switched on again. In
that, the database is saved on the disk, and is further used and
delopped after the switching on.

There is no place enough to present the definition of the filer
here, but this function will be used in further examples.

-3T

4. MNONDETERMINISHM IN FPx

i primitive function—-predicate named "is_ready" can be used in
order to test whether its argument is a pseudo-object, or it is an
actual {i.2., alresady computed) one. The value of the function can be
T or F, and it depends on the status of the argument in the moment of
application. If the argument is a pseudo-objiect, then the function
is_ready returns F, else it returns T.

This function is nondeterministic since it can return different
results when applied twice to the same argument. For instance, the
result of application may depend on the speed with which the argument
is input.

Formally, it can be accepted that the value of the function
is_ready is produced in an absolutely random manner:

vris ready = T or F.

One more primitive function named "await” is introduced. Its
application is tightly connected to the use of the function is_ready.
Formally, the function await gives just the same result as the
identity functions

®rawalt = x.

in practice, the implementation of await is different from the
implementation of the identity, since the former function forces its
argument. Thus, the application of await to a pseudo—obiect resumes
some delayed computational process.

Further, some definitions of lazy functions are considered. They
illustrate the use of the functions is_ready and await.

A NONDETERMINISTIC MERGE OF TWO LISTS

A nondeterministic function “merge" is defined, which when
applied to an object in the form

LUl K2 M3 wear <yl Y2 Y3 san? e

merges <x1 x2 %3 ...> and <vl v2 ¥3 ...r in the same list:

lazy merge =

if l:is_ready then

[i1=21 [1:t1 ZJ1:mergel:apndl
else if 2:is_ready then

[P=1 [1 2:tl1l:mergel:apndl
else [izawait 2zawaitl:merge;

Henderson [Hen,B821 proposes as & primitive function in a
Lisp~-like language a function called "interleave" which is applied
analogously f(but not equivalently) to the function merge. The use of
the primitive functions is_ready and await instead of interleave
however gives the possibility to describe various useful variants of
interleaving functions which fit better to different particular tasks.

Further, lists in the form:

w = €411 1> €i2 u2» i3 x3¥ ...7

are considered, where 1il, i2, i3, «... are integers and x1, %2,
%%, ... are arbitrary ob jects. The integers i1, i2, i3, ... are
referred to as labels, and x is referred to as labeled list.

Some functions which filter labeled lists can be defined. These
functions filter a 1list, letting pass only elements with particular
labels. In that, filters remove labels from all screened elements.

In furthef examples,only two filters named filterOl and filteroO2
are used. Filter0Ol {(respectively filter0} lets pass only elements
labeled by © or 1 (respectively by O or 2). The filter functions are
lazy, and are defined by means of the vease" functional form:

lazy filterOl = ' ' '

case 1:1 is

38

PO, 1 ——>x [1:2 tl:filterOildzapndls
else tl:FfilteroOls
ends

Filter(02 is defined analogouslv.
Example. Denote by W the following list:
<20 100> 0 200> {2 200> <1 400> <0 500> 21 &00> <42 700> <1 BOO>

Then:
WifilterOil = <100 200 400 500 400 800... 5>,
WifilterO2 = <100 200 300 500 700... 7.

SPLITTING, PROCESSING, AND MERGING

Suppose, the following process (see fig.1l) is to be programmed:

1) Elements of a 1labeled 1list are input one by one from the
keyboards

2 The input data are filtered and split up on two separate
ligts:

3) Every element of the first (respectively — the second) list is
praocessed by means of a function gt {respectively — g2):

4) The both processed lists are merged and the resulting list is
output on the screen.

{ibter0f —>{ 91

ugéoaz.d | merge Screem

fibterdé a8

Fig. 1.

This process is implemented by means of a function defined as
follows:

lazy p = [filterOl:gl filterQ2:q92}:merge.

Clearly, various processing functions gl and g2 can be used. For
instance, gl and g2 can be defined in the following way:

lazy g1 =

await:
{(if is_ready then [1l:plusl tl:g13:apndl
else gl);

lazy g2 =

await:
(if is_ready then [il:minusl tl:g23:apndl
else g2).

Thus, gl adds 1 to (and g2 subtracts 1 from) every element of an
infinite list of integers.

Note that the function merge demands (by means of the primitive
function await) the result of the application of gl and g2 (see
fig.1). Actually, the function merge forces gl and g2. From its part,
al (respectively g2) demands the result of application af filteroOl
(respectively +Ffilter02). Thus, every function which is on the path
from the keyboard to the screen demands the result of its predecessor.

A DISTRIBUTED FILER

We are going to define a distributed filer which creates and
manages some databases in parallel. The distributed filer will he able
to execute the following commands:

-3G

1y <1 <put £ x>>,

If 1»0, then this command has the effect of adding the file <+ x>
to the i-th data base. In case of i being 0, the same is done with all
data bases. If a file with name f already exists, then it is replaced
by the new file.

2y <i <get Frr.

If i>0, then +this command extracts from the i—th database the
value of the file with name f. In case of i being 0, file values with
name ¥ are extracted simultaneously from all databases.

In Fact, the ahove commands are labeled variants of the commands
put and get, considered in section 3. Label O means that the command
is to be executed on all databases, and label i, i>0, means that the
command is to be executed on the i—th databaszse.

Vetter Of —s filer
kﬁyﬁmbd . >rmecge — ScZeent

»#Zfex X4 f e

Fig. 2.

A function named distributed filer is defined below. For
simplicity, it supports only two databases (see fiq.2):

lazy distributed_filer =

[filter0l : filer filterQ2 : filerl : merge ;3

In the above definition, the filer that supports one database
(see section 3) is used.

The disributed_filer is applied to an infinite sequence of
commands, executes them, and returns an infinite sequence of answers.
Due to lazy evaluation, every command is ¥ecuted and answered
immediately after it has been input. A typical interaction with the
distributed_filer looks like that:

<1 <put £ 100>>

<ready

<2 <put § 200x>
ready

<O Zget 5>

100 200

{2 <get £>>

200

In the begining., a file <f 100> is stored in the first database,
and a file <f 200> - in the second one. Actually, ¥ can be considered
as the same file, distributed in the both databases. By means of the
command <O <get f>>, the file f is extracted simultaneously from the
both databases.

In practice, a distributed filer which supports much more than
two databases can be used. It is convenient to implement such a
function (and many others) by means of multiprocessor, multidrive
systems, in which merging is done by hardware. In particular, it is
convenient to allocate every database on a separate intelligent unit
which comprises a disk drive, a processor, and some primary memory.

5. CONCLUDING REMARKS
An experimental programming
Bulgarian microcomputer "Pravets-82".

system FF¥X is implemented on the
It comprises a compiler which

ol (Yo

translates functional programns into abstract machine 1language
programns, and an interpreter of such abstract programs. & number of
functional programs are tested and executed, including all programs
considered in this paper.

Let wus Ffinally note that management of text databases 1is
considered az a major application of the FFPE language. It can be
efficiently supported by means of a multiprocessor multidrive computer
system.

b. REFERENLCES

LBac, 7813
J.Backus, Can Frogramming Be Liberated from the Yon Neumann
Style? A Functional Style and its Algebra of Programs. Commun. ACM, v.

21,Aug. 1978, ppr. 613641,

LBac, 811
J.Backus, The Algebra of Functional Programs: Function Level
Reasoning, Linear Equations, and Extended Definitions. In "Proc. Int.
Collog. on Formalisation of Programming Concepts”, Feniscola, Spaing
Lecture Motes in Computer Science, vol.107 (Springer Verlag,
Heidelberg, 17813.

{Hen, B21
F. Henderson. Furely Functional Operating Gystems. In
"Functional Programming and Its Applications', ed. by J. Darlington,
F. Henderson, and D. Turner, Cambridge Univ. Fress, 1982.

[Rad, 821
A.Radensky, An Infinite Expansion in Iterative Combinatory
Spaces and in Functional Programming Svystems. Comptes rendus de
1’ Academie Bulgare des sciences, Tome Z5, N 5, 1982, pp.5&69-571.

[Wil, 801
J.Williams, On the Development of the Algebra of Functional
FPrograms. Tech. report RJ 2983, IBM Research laboratory, San Jose, CA,

1980.

[Wil, 821
J.Williams. Notes on the FP style of functional programming.
In "Functional Programming and Its applications", ed. by J.

Parlington, PF. Henderson, and D. Turner, Cambridge Univ. Press, 1982.

