
-33-

LAZY EVALUATION AND NONDETERMINISM MAKE BACKUS ~ FP-SYSTEMS
MORE PRACTICAL

Atanas Radensky
Center f o r Mathematics and Mechanics
1090 Sofia, P~O~Box 373~ Bulgaria

SUMMARY. Backus ~ FP-systems are made more practical by
introducing into them lazy evaluation and nondeterminism. This is done
in the framework of a concrete programming language called FP~ From
the one hand~ this language is almost as mathematical as FP-systems
area From the other hand, it gives the possibility to manage secondary
memory and to develop such applications as, for instance, interactive
and distributed file systems. Experimental versions of a compiler and
an interpreter for the FP~ language are implemented~

!. FP-SYSTEMS - SOME SHORTCOMINGS
J~ Backus, in his Turing award lecture in 1977~ introduced a

class of pure functional programming languages, referred to as
FP-systems [Bac, 78]. In FP-systems. only functions of one argument
are used. (Since the argument is just one, there is no need to
explicitely denote it, and this is the reason FP-programs do not
contain any variables.) This results in a very simple and elegant
mathematical semantic, which encourages the development of a peculiar
algebra of programs [Bac,78]. Some general theorems which characterize
l a r g e c l a s s e s of programs are proved [W i l , 8 0] . [B a t , 8 1] . [W i i . 8 2] . For
instance, some theorems concerning the representabilitv of
FP-functions in the form of "infinite conditions" are proved: the
recursion and iteration theorems [Bac~78], the linear expansion
theorem [Bac,81], the theorem of representation of some non-linear
forms [Wil,80]~ the theorem which establishes the existence of
representation of any function in the form of infinite condition
[Rad,82].

The possibility to develop relativelv simple and powerful
mathematical methods for formal study and analysis of programs is one
major advantage of FP-systems. However, t h e r e e x i s t some hard
shor tcomings of FP-systems which are o b s t a c l e s t o t h e i r w ider
sp read ing and use as a r e a l programming t o o l .

F i r s t of a l l , FP-systems do not suppor t t he development of
i n t e r a c t i v e programs and the management of secondary s to rage . Thus, i t
i s i m p o s s i b l e i n FP-systems t o implement t e x t e d i t o r s , f i l e systems
and database systems, and many o the r s i m i l a r programs.

Another group of problems w i t h FP-systems concerns t he e f f i c i e n c y
of t h e i r imp lemen ta t i on . I t i s s t i l l unc lea r how much combinators or
m u l t i p r o c e s s o r systems can he lp i n t h i s r espec t . Much e x p e r i m e n t a t i o n
ought t o be done, i n order t o develop s p e c i f i c comp i le r t echn iaues f o r
e f f i c i e n t code g e n e r a t i o n .

The above mentioned and some o t h e r shor tcomings of FP-systems can
be removed (a t l e a s t p a r t i a l l y) by means of s p e c i f i c a l l y adopted
v a r i a n t s of some we l l known methods: l a z y e v a l u a t i o n , nondetermin ism,
l o c a l d e f i n i t i o n s , t a b u l a t i o n . Such an approach t o improv ing
a p p l i c a b i l i t y and e f f i c i e n c y of FP-systems i s m a t e r i a l i z e d i n a
conc re te language c a l l e d FP~, and a co r respond ing microcomputer
programming system. From the one hand, FP* succeeds u s e f u l
mathemat ica l p r o p e r t i e s of FP-svstems. From the o t h e r hand, FP~ a l l o w s
i n t e r a c t i v e programming, secondary s t o r r a g e management, and i t can be
implemented e f f i c i e n t l y enough i n order t o be cons idered as a

SIGPLAN NOTICES V22 #4, APRIL 1987

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24714.24718&domain=pdf&date_stamp=1987-04-01

-34-

candidate f o r real programming~

2~ BASIC CUNSTRUCTS IN THE FP~ LANGUAGE

Williams [Wil,82] presents a very nice synopsis of FP-systems~
and here we use its scheme to present the FP~ language~ the more so as
many constructs in FP~ are the same as in FP-svstemso

A program in FP~ is a set of definitions of functions that map
objects to objects~ The set Ob of objects is defined in the Eollowing
way:

I) ? is in Ob (? denotes the undefined object)~

2) a set of atoms (integers~ identifiers~ and characters) is in
Ob

3) any finite or infinite sequence <xl "~ ~ oo~ ,-,~ o~ xn > o f o b j e c t s
i s i n Ob~ i n c l u d i n g t h e empty sequence <> (a p r e c i z e d e f i n i t i o n of
i n f i n i t e o b j e c t s can be g i v e n i n te rms of i n f i n i t e t r e e s) °

Backus deno tes t h e u n d e f i n e d o b j e c t by 2 and accep t s t h a t
< x l , x 2 , . ~ , x n > = i , i f f o r some i~ x i = i ~ Such s t r i c t n e s s o f t h e
list constructor in FP-systems implies that "~.othe various
computation rules, outermost, ieftmost-outermost, innermost, and
leftmost-innermost, are all sate rules for computing the least fixed
point" [Wil,82]. This is really very nice from a theoretical point of
view but is not so important from a practical one~ The price which is
paid for the strictness of the list constructor in FP-systems is the
absence of lazy evaluation, and this price is too high.

A nonstrict list constructor is used in FP~ In particular, this
means that the object <.~.?...> is not equivalent to the undefined
object ?. This assumption allows lazy evaluation in FP~ Note that
with nonstrict constructor it is still possible to prove laws in the
algebra of programs, use structural induction and fixpoint induction
to deduce properties of programs, and in general - reason about
programs by means of precize mathematical methods.

A set of primitive functions and a set of functionals (referred
to as "functional forms") are used. Given a functional program P, the
notion of a function (programmable in P) is defined as follows:

- Any primitive function is a function (programmable in P).
- If fl, f2,..., fn (n >= 0) are functions (programmable in P),

and if C is a functional form that take n arguments, then
C(f1~f2~...~fn) is a function (programmable in P).

- If the program P contains a definition
l a z y g = G (g ~ . . .) ,
then q i s a " l a z y " f u n c t i o n (programmable i n P) . I f P c o n t a i n s a

d e f i n i t i o n
def f = F (f , . . .) ~
then f i s a " n o r m a l " f u n c t i o n (programmable i n P) . The r i q h t

s i d e s G (g , . . .) and F (f , . . .) a re f u n c t i o n s (programmable i n P) .
F u r t h e r on, t h e e x p r e s s i o n "proorammable i n P" i s o m i t t e d . By x : f

we denote t h e r e s u l t o f t h e a p p l i c a t i o n of f t o ×.
When a l a z y f u n c t i o n i s t o be a p p l i e d t o an o b j e c t x~ a

p s e u d o - o b j e c t which r e p l a c e s t h e r e s u l t x : f i s c r e a t e d . In t h a t , t h e
c o r r e s p o n d i n g c o m p u t a t i o n a l p rocess i s d e l a y e d , no t i n i t i a t e d . When
t h e r e s u l t × :g o f t h e a p p l i c a t i o n of g t o x i s t o be o u t p u t o r used by
a p r i m i t i v e f u n c t i o n , t hen t h e suppressed c o m p u t a t i o n a l p rocess i s
a u t o m a t i c a l l y f o r c e d .

The s e t of p r i m r i t i v e f u n c t i o n s c o n t a i n s s e l e c t o r f u n c t i o n s
(denoted by 1~ 2, 3 ~ . . .) , t h e t a i l f u n c t i o n (t l) , f u n c t i o n s - p r e d i c a t e s
(=, is_empty~ i s_a tom, eqO~ e t c . } , a r i t h m e t i c f u n c t i o n s (+, - , ~, / ,
mod~ p l u s 1 , m inus1) , t h e append f u n c t i o n s (a p n d l , a p n d r) , and many
o t h e r s ; some of them are c o n s i d e r e d l a t e r .

-35-

The f o l l o w i n g examples h i g h l i Q h t t he semant ics of p r i m i t i v e
functions used further in this paper:

Selectors: <a b c>:l = a; <a b c>:3 = c~
Tail: <a b c>~ti = <b c>~ <a <b c>>:tl = <<b c>>:
Identity: <a b c>:id = <a b c>~
Is empty: <a b c>:is_empty = F~ <>:is_empty = T: ?:is_empty =?~

Multiplication: <100 2>:~ = 200; <100 ?>:~ = ?.
The append to the left function (it differs essentially from the

corresponding FP-function) is applied in the following way:

× : apndl =
<y>, if x=<y <>.~.>~
<y zl z2...zn>, if x=<y <zl...zn...>...>;
<y>~ if x=<y z...> and z is not a lists

? otherwise.
The set of functional forms includes composition (denoted by ":"~

not by "o" as in FP-systems), construction ([fl f2...fn]), condititon
(if p then f else g)~ constant (denoted by "x~ not by ~)~ iteration. A
"case" functional form is introduced in FP~ in order to improve both
program readability and efficiency. This form will be included in some

further examples.
According to Backus [Bac,78]~ functions in an FP-composition (fl

o f2 o ... o {n) are applied from right to left, i.e.:

(fl o f2 o ... o fn):x = fl:(f2:...(fn:x)..,).
This is rather inconvenient, since in real pro0rams n can be

fairly large. This definition of composition forces programmers (which
usually write from left to right) to write firstly the function which
is to be applied the last. (Function composition is used like
statement composition in procedural lan0uaQes, and we can imaqine a
Fortran programmer which is persuaded to write his program startin0
with the last statement and finishino with the first one.) In FP~,
functions in a composition (fl:f2:...:fn) are applied in the way are

writhen, i.e. from left to right:
x : (f l : f 2 : . . . : f n) = (. . . ((x : f l) : f 2) . . . : f n) .
Some examples concern ing f u n c t i o n a l forms f o l l o w .

Compos i t i on : <a b c > : (t l : l) = b :
C o n s t r u c t i o n : <5 2 > : [+ - ~ /] = <7 3 10 2>;
Cons tan t : 5: ([i d " 2] : ~) = <5 2>:~ = 10;
C o n d i t i o n : <5 6>: (i f empty then i d e l s e [1 " 2] : ~) = <5 2>:~ = 10.

3. INPUT - OUTPUT IN FP~
Suppose, a f u n c t i o n f i s a p p l i e d t o an o b j e c t x . The a p p l i c a t i o n

of f s t a r t s (i f poss ib le> even be fo re any p a r t of x i s i n p u t . The
a p p l i c a t i o n of f i s suspended in a case some nessessary p a r t s of x are
not i n p u t y e t . I t i s resumed immed ia te l y a f t e r one or more l i n e s
c o n t a i n i n g t h e nessessary data are i n p u t . In t h a t , any component of
the r e s u l t x : f i s o u t p u t immed ia te l y a f t e r i t has been computed.

S i m i l a r l y t o [Hen ,82] , a f u n c t i o n which doub les an i n f i n i t e l i s t

of numbers can be i n t r o d u c e d :
l a z y doub le = [[1 " 2] : $ t l : d o u b l e] : a p n d l -
Du r ing i t s a p p l i c a t i o n , the f o l l o w i n g d i a l o o u e can be seen on the

sc reen :
<1 3 2 - - i n p u t
<2 6 4 - - o u t p u t

5 7 10 - - i n p u t
10 14 20 - - o u t p u t
6 - - i n p u t
12 - - o u t p u t

-36-

A primitive function "write" is introduced in FP~o It extends the
primary memory onto the secondary one~

We present here a simplified variant of this function° By means
of it~ an object can be output onto a disk° Formallv~ the function is
applied according to the following rule:

x:write = y~ if x=<y n ~ else ?
If n is a number of a disk devices then the object v is output

onto the corresponding disk~ In that~ the piece of primary storaqe
occupied by y is released° Instead~ a pseudo-object which contains
some nessessary disk addresses is created~ In this manners the object
y remains accessible f o r further user and when nessessary~ is
automatically loaded by the system into the primary storage.

Henderson [Hens82] described a simple filer in a Lisp-like
notation. We did the same in the FP~ language using the primitive
function write~ A function "filer" is described in the FP~ ianquaqe~
By means of this function~ the user can create~ update~ and
interrogate a database~ which is actually a list of files. A file is
an object in the form <file_name file_value>~ A file_name is an
identifier~ and a file_value is an object.

The filer accepts some commands from the keyboard~ executes them
and returns corresponding answers on the screen. We consider here only
two commands: put and get. The put command has the form:

<put file_name file_value>.
The result of the execution of this command is that the file is

stored in the database~ and answer "ready" is displayed on the screen~

d i s p l a y e d
d i sp layed~
database.

The
commands,

The ge t command has t h e form:
<get T i le_name>.
As a r e s u l t ~ t h e c o r r e s p o n d i n g f i l e v a l u e f rom t h e da tabase i s

on t h e sc reen . A l t e r n a t i v e l y , t h e answer " n o t _ f o u n d " i s
i f a f i l e w i t h t h e s p e c i f i e d name i s m i s s i n g from t h e

f i l e r i s a f u n c t i o n which i s a p p l i e d t o an i n f i n i t e l i s t o f
e x e c u t e s them, and r e t u r n s c o r r e s p o n d i n g answers. As an

e f f e c t o f l a z y e v a l u a t i o n ~ t h e f i l e r execu tes and answers e v e r y
command i m m e d i a t e l y a f t e r i t has been i n p u t . Thus, t h e r e i s a d i a l o g u e
between t h e use r and t h e f i l e r .

Example. A t y p i c a l d i a l o g u e l o o k s l i k e t h i s :
<<put f i l e l <A B C>>
<ready

<get f i l e 1 >
<A B C>
<put f i l e 1 <x y>>
ready
<get f i l e l >
no t found
<get f i l e 1 >
<x y>
w l w

Note t h a t t h e FP~ programming system can save t h e s t a t e o f t h e
execu ted f u n c t i o n a l program b e f o r e any s w i t c h i n g o f f t h e computer ; i t
can r e c o v e r i t i m m e d i a t e l y a f t e r t h e computer i s s w i t c h e d on a g a i n . In
t h a t , t he database i s saved on t h e d i s k , and i s f u r t h e r used and
de lopped a f t e r t h e s w i t c h i n g on.

There i s no p l a c e enough t o p r e s e n t t h e d e f i n i t i o n o f t h e f i l e r
he re , bu t t h i s f u n c t i o n w i l l be used i n f u r t h e r examples.

-37-

4o NONDETERMINISM IN FP~
A primitive function-predicate named "is_ready" can be used in

order to test whether its argument is a pseudo-object~ or it is an
actual (i~e~ already computed) one~ The value of the function can be
T or F~ and it depends on the status of the argument in the moment of
application~ If the argument is a pseudo-object~ then the function
is ready returns F~ else it returns T~

This function is nondeterministic since it can return different
results when applied twice to the same argument. For instance~ the
result of application may depend on the speed with which the argument

is input.
Formally~ it can be accepted that the value of the function

is_ready is produced in an absolutely random manner:

x:is_ready = T or F~
One more primitive function named "await" is introduced. Its

application is tightly connected to the use of the function is_ready.
Formally~ the function await 8ives ~ust the same result as the

identity function:
x~await = ×~
In practicer the implementation of await is different from the

implementation of the identity~ since the former function forces its
arguments Thus~ the application of await to a pseudo-object resumes

some delayed computational process.
Further~ some definitions of lazy functions are considered. They

illustrate the use of the functions is_ready and await.

A NONDETERMINISTIC MERGE OF TWO LISTS
A n o n d e t e r m i n i s t i c f u n c t i o n "merqe" i s de f ined~ which when

a p p l i e d t o an o b j e c t i n t he form
<<xl x2 x3 ...> <yl y2 y3 ...> .-->~
merges <xl x2 x3 ...> and <vl y2 v3 ...> in the same list:

lazy merge =
if l:is_ready then

[I:I [l:tl 2]:merge]:apndl
else if 2:is_ready then

[2:1 [I 2:tl]:merge]:apndl
else If:await 2:await]:merge;

Henderson [Hen ,82] proposes as a p r i m i t i v e f u n c t i o n i n a
L i s p - l i k e language a f u n c t i o n c a l l e d " i n t e r l e a v e " which i s a p p l i e d
a n a l o g o u s l y (but not e q u i v a l e n t l y) t o t he f u n c t i o n merge. The use of
the p r i m i t i v e f u n c t i o n s i s _ r e a d y and awa i t i n s t e a d o f i n t e r l e a v e
however gives the possibility to describe various useful variants of
interleaving functions which fit better to different particular tasks.

F u r t h e r , l i s t s in t he form:
x = < < i l x l > < i 2 x2> < i 3 x3> . - - >
a re c o n s i d e r e d , where i l , i 2 , i3~ . . . a re i n t e g e r s and x l , x2,

x3, ... are arbitrary objects. The integers il, i2, i3~ ... are

referred to as labels, and x is referred to as labeled list.
Some functions which filter labeled lists can be defined. These

functions filter a list, letting pass only elements with particular
labels. In that, filters remove labels from all screened elements.

In further examples,only two filters named filterOl and filter02
are used. FilterOl (respectively filter02) lets pass only elements
labeled by 0 or I (respectively by 0 or 2). The filter functions are
lazy, and are defined by means of the "case" functional form:

lazy filterOl =
case I:I is

-38-

w..>~

~0~ ~I --> [1:2 tl:filterOl]:apndl~
else tl:filterOl~

end~
Filter02 is defined analogously°
Example~ Denote by W the following list:
<<0 100> <0 200> <2 300> <I 400> <0 500> <i 600> <2 700> <I 800>

Then:
W : f i l t e r O l = <I00 200 400 500 600 800.~.>~
W : f i l t e r 0 2 = <i00 200 300 500 7 0 0 . ~ > .

SPLITTING~ PROCESSING, AND MERGING
Suppose, the f o l l o w i n 8 process (see f i g . l) i s t o be pro0rammed:
1) Elements of a labeled l i s t are i npu t one bv one from the

keyboard;
2) The i npu t data are f i l t e r e d and s p l i t up on two separate

lists;

3) Every element of the first (respectively - the second) list is
processed by means of a f u n c t i o n 81 (r e s p e c t i v e l y - 82);

4) The both processed l i s t s are merged and the r e s u l t i n g l i s t i s
ou tput on the screen.

F ig . 1.
Th is process i s implemented by means of a f u n c t i o n def ined as

f o l l o w s :
l azy p = [f i l t e r O l : q l f i l t e r O 2 : g 2 } : m e r q e .
C l e a r l y , va r i ous processing f u n c t i o n s g l and 82 can be used. For

i n s t a n t e r g l and q2 can be def ined in the f o l l o w i n g way:
l azy g l =

awai t :
(i f i s_ready then [1 :p lus1 t l : q l] : a p n d l
e lse gl);

l azy g2 =
awa i t :
(i f i s_ready then [1:minus1 t l : q 2] : a p n d l
e l se g2).

Thus, g l adds 1 t o (and q2 s u b t r a c t s 1 from) every element of an
i n f i n i t e l i s t of i n t e g e r s .

Note t h a t the f unc t i on merge demands (by means of the p r i m i t i v e
f u n c t i o n awai t) the r e s u l t of the a p p l i c a t i o n of g l and g2 (see
f i g . l) . Ac tua l l y~ the f u n c t i o n merge fo rces g l and g2. From i t s p a r t ,
g l (r e s p e c t i v e l y g2) demands the r e s u l t of a p p l i c a t i o n of f i l t e r 0 1
(r e s p e c t i v e l y f i l t e r 0 2) . Thus, every f unc t i on which i s on the path
from the keyboard t o the screen demands the r e s u l t of i t s predecessor.

A DISTRIBUTED FILER
We are going to de f ine a d i s t r i b u t e d f i l e r which c rea tes and

manages some databases in p a r a l l e l . The d i s t r i b u t e d f i l e r w i l l be ab le
t o execute the f o l l o w i n g commands:

-39-

I) <i <put f x>>o

If i>O, then this command has the effect of adding the file <f x>
to the i-th data base° In case of i being O, the same is done with all
data bases~ If a Tile with name f already exists, then it is replaced
by the new file~

2) <i <get f>>~

If i>0, then this command extracts from the i-th database the
value of the file with name f~ In case of i being O, file values with
name f are extracted simultaneously from all databases°

In fact, the above commands are labeled variants of the commands
put and get, considered in section 3. Label 0 means that the command
is to be executed on all databases, and label i, i>0, means that the
command is to be executed on the i-th database~

Fig~ 2~
A f u n c t i o n n a m e d d i s t r i b u t e d f i l e r i s d e f i n e d

s i m p l i c i t y , i t s u p p o r t s o n l y two databases (see f i g . 2) :
l a z y d i s t r i b u t e d _ f i l e r =

[filter01 : filer filter02 : filer] : merqe

below. For

In t h e above d e f i n i t i o n , t he f i l e r t h a t s u p p o r t s one database
(see s e c t i o n 3) i s used.

The d i s r i b u t e d f i l e r i s a p p l i e d t o an i n f i n i t e seauence of
commands, execu tes them, and r e t u r n s an i n f i n i t e sequence of answers.
Due t o l a z y e v a l u a t i o n , eve ry command i s executed and answered
i m m e d i a t e l y a f t e r i t has been i n p u t . A t y p i c a l i n t e r a c t i o n w i t h t h e
d i s t r i b u t e d f i l e r l o o k s l i k e t h a t :

<<i <put f 100>>
<ready
<o ~ <put f 200>>

ready
<0 <get fx~,..
100 200
.~ ~get f ~
200
s m a

In t h e b e g i n i n g , a f i l e <f 100> i s s t o r e d i n t h e f i r s t da tabase ,
and a f i l e <f 200> - i n t h e second one. A c t u a l l y , f can be c o n s i d e r e d
as t h e same f i l e , d i s t r i b u t e d i n t h e both da tabases . By means of t h e
command <0 <get f>> , t h e f i l e f i s e x t r a c t e d s i m u l t a n e o u s l y from t h e
both da tabases .

In p r a c t i c e , a d i s t r i b u t e d f i l e r which s u p p o r t s much more than
two da tabases can be used. I t i s c o n v e n i e n t t o implement such a
f u n c t i o n (and many o t h e r s) by means of m u l t i p r o c e s s o r , m u l t i d r i v e
sys tems, i n which merging i s done by hardware. In p a r t i c u l a r , i t i s
c o n v e n i e n t t o a l l o c a t e eve ry database on a s e p a r a t e i n t e l l i q e n t u n i t
which compr i ses a d i s k d r i v e , a p rocesso r , and some p r i m a r y memory.

5. CONCLUDING REMARKS
An e x p e r i m e n t a l programming system

B u l g a r i a n microcomputer " P r a v e t s - 8 2 " . I

FP* i s implemented on t h e
i s e s a c o m p i l e r wh ich

-40-

translates functional programs into abstract machine language
programs~ and an interpreter of such abstract programs~ A number of
functional programs are tested and executed~ including all programs
considered in this paper°

Let us finally note that management of text databases is
considered as a major application of the FP~ language° It can be
efficiently supported by means of a multiprecesser multidrive computer
system.

6~ REFERENCES

[Bac~ 78]
J~Backus~ Can Programming Be Liberated from the Von Neumann

Style? A Functional Style and its Algebra of Programs~ Communo ACM~ v~
21~Aug. 1978~ pp. 613-641~

[Bac~ 81]
J.Backus~ The Algebra of Functional Programs: Function Level

Reasoning~ Linear Equations~ and Extended Definitions. In "Proc~ Into
Coilog~ on Formalisation of Programming Concepts"~ Peniscola~ Spain~
Lecture Notes in Computer Science~ volo107 (Springer Verlag~
Heidelberg~ 1981).

[Hen~ 82]
P. Henderson. Purely Functional Operating Systems. In

"Functional Programming and I t s Appl icat ions"~ ed~ by J. Darlington~
P. Henderson~ and D. Turner~ Cambridge Univ. Press~ 1982.

[Rad, 82]
A. Radensky~ An I n f i n i t e Expansion in I t e r a t i v e Combinatory

Spaces and in Functional Proqramming Systems. Comptes rendus de
l'Academie Bulgare des sciences~ Tome 35~ N 5~ 1982~ pp.569-571.

[Wi l , 80]
J .Wi l l iams. On the Development of the Algebra of Functional

Programs. Tech. repor t RJ 2983~ IBM Research laboratory~ San Jose~ CAr
1980.

[Wil~ 82]
J .Wi l l iams. Notes on the FP s t y l e of func t iona l programming.

In "Funct ional Programming and I t s appl icat ions"~ ed. by Oi
Darlington~ P. Henderson~ and D. Turner~ Cambridge Univ~ Press~ 1982.

