
A First Course in Programming

Doug Bell and Peter Scot t

Computer Studies Department ,

Sheffield City Polytechnic ,

Pond St . ,

Sheffield . Englan d

4 8

Abstrac t

Many of us have grappled with the design of a

first course in programming - what language t o

use, how to sequence topics, how to encourag e

practical experience, how to assess . This pape r

explains the rationale behind a course that ha s

matured over several years, and that we feel i s

sucessful .

Introductio n

Most computer science courses involve a firs t

course in programming . The topics include

systematic design, coding, testing and debugging .

(See for example the ACM recommendations

	

i n

Koffman .) In designing our course we had a

paramount objective : at the end of the course a

student should be able to demonstrate complet e

competence in developing programs .

	

The emphasi s

is on good design, rather than knowlegde of a

programming language . We aim for the situatio n
where any one of the student group can, wit h
confidence, tackle a wide range of programmin g

problems

	

drawn

	

from

	

information

	

systems ,
scientific programs and computer games . The key
to this objective, we believe, is to focus on th e

process of design and to provide for extensiv e

practical work . The implication is that we aim to
minimise worries about programming language synta x

and features . We shall return to a discussion o f
these issues later in the paper .

Other issues in designing a course are :

the programming language to be used

sequencing of materia l
assessment

the text book

We discuss these matters below .

As to the amount of time that a course takes up ,

we find that our course works best at two hour s

lecture and four hours practical work eack week

for ten weeks .

SSGOS E

	

Vol . 19 No . 2 June 198 7
BULLETIN

The Design method

Because of its critical importance we teach th e

design method first .

	

the method we use i s

functional

	

decomposition

	

-

	

sometimes calle d

stepwise refinement - in conjunction wit h

pseudo-code . Our reasons for choosing this metho d

are :

The initial teaching can be carried out usin g

human activities as examples . e .g . crossin g

the road .

It is applicable to all applications areas -
information systems, numerical problems ,

games, real-time .

It is widely used in industry and commerc e

The use of pseudo-code is like using a

programming language, so that there is n o

large gulf in going from one to the other .

The

	

pseudo-code

	

notation

	

uses

	

sequence ,

if . . .then . . .else . . .endif, while . . .do . . .endwhile

and procedures, so that, for example, the design

of a program to process a file looks like :

initialise
while not end of file d o

read a recor d
process recor d

endwhil e
tidy up

where "process record" is a procedure call .

Design proceeds by writing a simple statement of

the overall algorithm and then by writing down th e

detail of the procedures that are employed .

	

An d

so on .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24728.24739&domain=pdf&date_stamp=1987-06-01

4 9

To gain proficiency, the students are asked to d o
a large number of fairly small problems involvin g

human-related activities like crossing the road ,

the action of a vending machine, how to play clock

patience .

The students don " t use the computer during thi s

stage of the course . But the fun element o f
getting hands-on can be accommodated by asking th e

students to become familiar with facilities for
creating, listing, and altering files and runnin g

existing programs .

The programming languag e

The main consideration here is to avoid gettin g
bogged down in the details of the syntax of an y

programming langauge . To this end we use a smal l
subset of a language . As long as the programmin g

language has certain essential features, then an y

of a number of languages is satisfactory . P1/I ,

Ada, Pascal, Modula-2 and even a version of BASI C
with suitable extensions are all suitable, bu t

Pascal is most readily obtainable on the writers '

computer system .

The subset of Pascal consists of :

data structures -

integer, char, real, array s

control structures -
sequence, if . . .then, if . . .the . . .else ,
while . . .do, procedures with parameters .

We simplify the syntax of Pascal by insisting tha t

there is always a begin . . .end pair in structure d
statements .

This is indeed a severe subset of Pascal (which i s
quite a small language to start with) . So why
have certain features been omitted ? We do no t
include Booleans because they are used less often
and can be simulated easily with single characte r
variables .

	

Certain control structures - repea t
and case - are unnecessary .

	

We don ' t teach
precedence rules

	

in

	

arithmetic

	

or

	

logica l
expressions

	

because

	

expressions

	

are

	

seldom
complicated and precedence rules are complex (an d

error-prone) .

	

Instead we stipulate that student s
always use parentheses to avoid ambiguity .

	

The
two different parameter types for procedures in
Pascal often cause confusion . Since valu e
parameters are essentially only a convenience, w e
teach only variable parameters . Type definition s
are left until any subsequent course in dat a
structures . The omission of type definition s
causes no problems in passing arrays as parameter s

if conformant arrays are used .

Although we have used Pascal, the same approach t o

subsetting could be employed in any high-leve l
language .

SIGCSE

	

Vol . 19 No . 2 June 1987
BULLETIN

Of course, we recognise that there are specifi c
drawbacks with Pascal .

	

The syntax rules fo r
semi-colons are tortuous and error prone .

	

Ther e
is no access to random access files, no separat e
compilation and no data encapsulation . But a
major strength of Pascal is that we can use it i n
later courses on data structures .

One major issue that we emphasize in our course i s

the local vs global data debate .

	

We teach th e
avoidance of global variables and recommen d

instead the use of local variables and parameters .
On occasion, of course, global variables do have
to be used (in Pascal) . But we can make th e
decision to use them a conscious one by insistin g
that every student program has the followin g
structure for its main program :

begi n

main
end .

This causes compilation errors if the student doe s
not pass parameters explicitly . Similarly, we d o

not teach nested procedure declarations as the y
also encourage implicit data sharing .

Sequencin g

We have already mentioned that the design metho d

is treated first . The next objective is to ensur e
that procedures are introduced early . This i s
helped by the fact that they will already hav e

been

	

understood

	

and used during pseudo-cod e

design .

The programme is as follows . Each week, two
topics are introduced, making a ten week cours e
overall :

Algorithm Design

More on algorithm desig n
Some algorithm design case studie s
Computers, algorithms and

the programming languag e
Gramma r
Calculations with integer s

Local variables and parameter passing
Selection and repetitio n

Processing character dat a
A case study in design and codin g

Readabilit y
Debugging and testin g

Systematic workin g
Arrays
More on array s

Real number s
Top-down implementaion

File handling

Notice firstly that, (in the programming language)

local variables and parameter passing are taugh t

before selection and repetition . This reflect s
their importance .

Secondly, notice how, after the basics of the

programming language have been dealt with, there

is an intermission in the introduction of new

langauge features to enable the student to apply

and understand what he or she has learned . Some

of the sequencing of topics is arbitrary, and

determined by local needs . For example, reals ar e

left until late in our programme because

scientific and mathematical programming is not th e

first priority .

Practical wor k

Needless to say, we believe that people can onl y

become good at programming by extensive practice .

We take the view that it is better to develop

many, small programs than a few, large ones . The y

supply a greater variety of problem areas, more

design

	

experience and avoid getting lost in

developing elephantine programs . It also

encourages the view that large programs are merel y

collections of small ones (procedures) . Besides ,

the problems specific to very large programs ar e

the material for any subsequent course in, say ,

software engineering .

Typical of the program specifications are :

Develop a program to display a box like thi s

on the vdu screen :

Develop a program to find the largest ,

smallest and sum of a set of numbers keye d

in at the terminal . The numbers end wit h

the number - 10,000 .

Develop a program to look up the train far e

between two towns whose names are entered a s

data from the keyboard .

We have already mentioned that in the initia l

weeks of the course design exercises on paper are

accompanied by familiarisation with the available

computer facility . Thereafter the principal

practical activity consists of the development o f

programs (design, coding, testing and debugging) .

But practical work can involve other activities .

We

	

have

	

found that studying other people ' s

programs is instructive .

	

This can be done in

several ways .

	

On way is to have prepared mode l

solutions to problems . Another approach is to as k

students to pass arround their solution

	

fo r

scrutiny .

	

A fun method is to jointly solve a

problem as a group using a chalk board .

Assessment

The problems of assessing programming skill ar e

well known . Program development takes a long tim e

and a computer facility . Thus it cannot easily he

assessed in a 3 hour exam . An alternative is t o

issue assignments that are done by a deadline, i n
the students own time . But here it is impossibl e

to measure how much time a student has spent, so

that the trial and error, experimental approach o f
the slow student equals that of the proficien t

student . It is also difficult to avoid the worr y

of collusion . In such a situation students ten d
to concentrate exclusively on the assessed work ,

ignoring all other work . Further, they typically

take it easy until a week before the deadline .
Then they go mad, ignore all other work an d
saturate the computer facility .

Our approach is novel and aims to overcome most o f

these difficulties . At the end of the course w e

conduct a 3 hour unseen exam to assess th e

paramount skill of algorithm design . During 3

hours, 5 or 6 small algorithms can be completed .

The second component of assessment is continuous .

Students

	

are

	

presented

	

with

	

a

	

continuou s

succession of programs to develop throughout th e
course .

	

They are told nothing about whic h

programs will be assessed, nor when the deadlines
will be . We encourage them to work smoothly an d

calmly an all the programs in the programme and t o

save design, listing and input and output in a
work book .

	

Periodically we announce a deadlin e
for selected items . The deadline is a mere 3

hours ahead, which allows them time to remove
their work from their work book in an orderly way ,
but is insufficient time for a last

	

minut e

big-bang approach .

Our scheme works . The students address many mor e
of the assigments, and they do so in a systematic

fashion . Peaks and troughs are avoided .

Book s

Many books on programming are very thick becaus e

they go into the extensive detail about the

features of a programming language . We feel that

this diverts attention from the central tasks o f

programming and is our reason for using only a
language subset .

	

Very few books adopt

	

our

approach . Notable is McGregor, though it is wea k

on parameter passing . Books like these are cheap ,
easy to read and do not put readers off with thei r
excessive bulk .

Summary and conclusion

The essence of this course is a concentration o n

design, the use of a subset of a programmin g

language and extensive practical work .

****************fir******fit***************** *

FIRST COURSE-- continued on page 5 7

SIGCSE Vol . 19 No . 2 June 198 7BULLETIN
50

5 7

error detection and correction technique s
to the existing software such as Hammin g
code and observe how this allows errors t o
be corrected successfully .

Conclusions

The students were not required t o
write software for these practicals, bu t

were asked to make simple edits to th e
programs supplied .

	

This gave them a n
introduction to the UCSD system . Th e

values chosen for the simulated lines ar e
the same as those used by British Telecom
and nearest preferred values were used .

The noise circuit board was designed t o
run at 110 baud in order that the lin e

could

	

be

	

observed

	

clearly

	

on

	

a n

oscilloscope .

	

This was inconvenient sinc e
all the comms cards have printers attache d

running at 9600 baud, and had,

	

therefore ,
to be

	

set and reset before each session .

I intend adding an interface chip onto th e
noise boards to overcome this .

Reference s

1. W . A . Coey and D .Q .M . Fay .
"Practical Computer Logic Classe s
for Computer Science Students : The
Use of Logic Analysers" . SIGCS E
BULLETIN Vol . 14, No. 3, Septembe r
1982 .

2. BS 6317 : 1982 . Simple Extension
telephones for connection to the
B .T . public switched telephon e
network .

* *

FIRST COURSE-- continued from page 5 0

We have succesfully run this course over a number
of years for a variety of students schoo l
leavers, and mature students . The course has bee n
successful in enabling the students to become
completely confident and competent at programming .
Just as important, the courses have been fun .

There are, of course, casualties but those wh o
pass the course are certain of a firm base o f
skill which they can use just as it is, or the y
can build upon the skill in later courses .

Most students nowadays have experience o f
programming before starting our course . But eve n
though this course starts from scratch, these

students find the different approach enjoyable an d
rewarding .

Reference s

Koffman E B, Miller P L, Wardle C Recommende d
Curriculum for CS1, 1984 . Commun . ACM 27, 10 (Oc t
1984) .

	

998-1001 .

SIGCSE

	

Vol . 19 No . 2 June 1987BULLETIN

Moffat, D ., and Moffat, P . Eighteen Pascal texts :
An objective comparison . SIGCSE Bull . 14, 2(June
1982), 2-10 .

Mcgregor J J, Watt A H, "Simple Pascal", Pitma n

198 1

********Ye**it***** Mir, ******it********fie***** *

DATABASE-- continued from page 5 4

15. Husnian, David, "Why dBASE III i s
the Best General-Purpose Application s
Language," IGSMALL/PC NOTES, Volume 11 ,
Number 2, May 1985, p . 23-26 .

16. Salton, G .,

	

Some Characteristic s
of

	

Future Information Systems," SIGIR_
FORUM, Volume 18,

	

Issues 2-4, Fall 1985 ,
p . 28 .

17.

	

Kleinrock, Leonard, "Distributed
Systems," Com_m_u_n_icatinn_s_ o_f the A_C_M_ ,
Volume 28, Number 11, November 1985, p .
1201 .

18.

	

Byers, Robert A ., Everyman' s
Database

	

Primer_ F_eat_ur_ing

	

dBASE

	

II ,
Ashton-Tate, Culver City, California, 1982 .

19. Mugridge, Warwick B ., "A Metho d
for Introducing Schemas," SIGCSE BULLETIN ,
Volume 17, Number 4, December 1985, p . 76 .

20. Sacca, Domenico, and Wiederhold ,
Gio,

	

"Database Partitioning in a Cluste r
of

	

Processors," ACM

	

Transactions

	

o n

- -Database Systems, Volume 10, Number 1 ,
March 1985, p . 30 .

21.

	

Polilli,

	

Steve,

	

"`Distributed '
R/DBMS Beats IBM to Market," MIS_ Week ,
Volume 7, Number 23, June 9, 1986, p . 44 .

