Check for
Updates

A First Course in Programming

Doug Bell and Peter Scott
Computer Studies Department,
Sheffield City Polytechnic,

Pond St.,
Sheffield., England

Abstract

Many of us have grappled with the design of a
first course in programming - what language to
use, how to sequence topics, how to encourage
practical experience, how to assess. This paper

explains the rationale behind a course that has
matured over several years, and that we feel 1is
sucessful.

Introduection

Most computer science courses involve a first

course in programming. The topics include
systematic design, coding, testing and debugging.
(See for example the ACM recommendations in
Koffman.) In designing our course we had a

paramount objective: at the end of the course a
student should be able to demonstrate complete
competence in developing programs. The emphasis
is on good design, rather than knowlegde of a
programming language. We aim for the situation
where any one of the student group can, with
confidence, tackle a wide vrange of programming
problems drawn from information systems,
scientific programs and computer games. The key
to this objective, we believe, is to focus on the
process of design and to provide for extensive
practical work. The implication is that we aim to
minimise worries about programming language syntax
and features. We shall return to a discussion of
these issues later in the paper,

Other issues in designing a course are:

the programming language to be used
sequencing of material

assessment

the text book

We discuss these matters below,

As to the amount of time that a course takes up,
we find that our course works best at two hours
lecture and four hours practical work eack week
for ten weeks.

SIGCSE

BULLETIN Vol 19 No. 2 June 1987

Because of its critical importance we Leach the
design method first, the method we use 1is
functional decomposition - sometimes called
stepwise refinement - in conjunction with
pseudo-code. Our reasons for choosing this method
are:

The initial teaching can be carried out using
human activities as examples. e.g. crossing
the road.

It is applicable to all applicaticns areas -
information systems, numerical problems,
games, real-time,

It is widely ased in industry and commerce

The use of pseudo-code 1is like wusing a
programming language, so that there 1is no
large gulf in goilng from one to the other.

The pseudo-code notation uses sequence,
if...then...else...endif, while...do.,.endwhile
and procedures, so that, for example, the design
of a program to process a file looks like:

initialise

while not end of file do
read a record
process record

endwhile

tidy uap

where ''process record" 1is a procedure call.
Design proceeds by writing a simple statement of
the overall algorithm and then by writing down the
detail of the procedures that are employed. And
SO On.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F24728.24739&domain=pdf&date_stamp=1987-06-01

To gain proficiency, the students are asked to do
a large number of fairly small problems 1involving
human-related activities like crossing the road,
the action of a vending machine, how to play clock
patience.

The students don”t use the computer during this
stage of the course. But the fun element of
getting hands-~on can be accommodated by asking the
students to become famillar with facilities for
creating, listing, and altering files and running
exlsting programs.

The programming language

The main consideration here is to avoid getting
bogged down in the details of the syntax of any
programming langauge., To this end we use a small
subset of a language. As long as the programming
language has certain essential features, then any
of a number of languages is satisfactory. P1l/T,
Ada, Pascal, Modula-2 and even a version of BASIC
with suitable extensions are all suitable, but
Pascal is most readily obtainable on the writers”
computer system.

The subset of Pascal consists of:

data structures -

integer, char, real, arrays
control structures -
sequence, if...then, if..,.the...else,

while...do, procedures with parameters.

We simplify the syntax of Pascal by insisting that
there 1is always a begin...end pair in structured
statements.

This is indeed a severe subset of Pascal (which is

quite a small language to start with). So why
have certain features been omitted ? We do not
include Booleans because they are used less often

and can be simulated easily with single character

variables. Certain control structures - repeat
and case - are unnecessary. We don”t teach
precedence rules in arithmetic or logical
expressions because expressions are seldom

complicated and precedence rules are complex
error-prone).

(and
Instead we stipulate that students

always use parentheses to avoid ambiguity. The
two different parameter types for procedures in
Pascal often cause confusion, Since value

parameters are essentially only a convenience, we

teach only variable parameters. Type definitions
are left until any subsequent course in data
structures, The omission of type definitions

causes no problems in passing arrays as patrameters
if conformant arrays are used.

Although we have used Pascal, the same approach to

subsetting could be employed in any high-level
language.
SIGCSE Vol. 19 No. 2 June 1987

BULLETIN

49

Of course, we recognise that there are specific
drawbacks with Pascal, The syntax rules for
semi~colons are tortuous and error prone. There
is no access to random access files, no separate
compilation and no data encapsulation. But a

major strength of Pascal is that we can use it in
later courses on data structures.

One major issue that we emphasize in our course is
the local vs global data debate. We teach the
avoidance of global wvariables and recommend
instead the use of local variables and parameters.
On occasion, of course, global variables do have

to be wused (in Pascal). But we can make the
decision to use them a conscious one by insisting
that every student program has the following

structure for its main program:

begin
main
end,

This causes compilation errors if the student does
not pass parameters explicitly. Similarly, we do
not teach nested procedure declarations as they
also encourage implicit data sharing.

Sequencing

We have already mentioned thal the
is treated first. The next objective is to ensure
that procedures are introduced early, This is
helped by the fact that they will already have
been understood and used during pseudo-code
design.

design method

The programme is as follows. Each week, two
topics are introduced, making a ten week course
overall:

Algorithm Design
More on algorithm design
Some algorithm design case studies
Computers, algorithms and
the programming language
Grammar
Calculations with integers
Local variables and parameler passing
Selection and repetition
Processing character data
A case study in design and coding
Readability
Debugging and testing
Systematic working
Arrays
More on arrays
Real numbers
Top-down implementaion
File handling

Notice firstly that, (in the programming language)
local varlables and parameter passing are taught
before selection and repetition. This reflects
their importance.



Secondly, notice how, after the basics of the
programming language have been dealt with, there
is an intermission in the introduction of new
langauge features to enable the student to apply
and understand what he or she has learned. Some
of the sequencing of topies 1is arbitrary, and
determined by local needs. For example, reals are
left until late in our programme because
scientific and mathematical programming is not the
first priority.

Practical work

Needless to say, we belleve that people can only
become good at programming by extensive practice.
We take the view that it is better to develop
many, small programs than a few, large ones. They
supply a greater variety of problem areas, more
design experience and avoid getting lost in

developing elephantine programs. It also
encourages the view that large programs are merely
collections of small ones (procedures). Besides,

the problems specific to very large programs are
the material for any subsequent course in, say,
software engineering.

Typical of the program specifications are:
Develop a program to display a box like this

on the vdu screen:

KKk EAAKRKRK KKK

* *
* *
* *

kkkkkkokk ik

Develop a program to find the largest,
smallest and sum of a set of numbers keyed
in at the terminal. The numbers end with
the number - 10,000,

Develop a program to look up the train fare
between two towns whose names are entered as
data from the keyboard.

We have already mentioned that in the initial
weeks of the course design exercises on paper are
accompanied by familiarisation with the available
computer facility. Thereafter the principal
practical activity consists of the development of
programs (design, coding, testing and debugging).
But practical work can involve other activities.
We have found that studying other people’s
programs is instructive. This can be done in
several ways. On way is to have prepared model
solutions to problems. Another approach is to ask
students to pass arround their solution for
scrutiny., A fun method is to jointly solve a
problem as a group using a chalk board.

SIGCSE vol. 19
BULLETIN ol. No. 2 June 1987

Assessment

The problems of assessing programming skill are
well known. Program development takes a long time
and a computer facility. Thus it cannot easily be
assessed in a 3 hour exam, An alternative is Lo
issue assignments that are done by a deadline, in
the students own time. But here it is impossible
to measure how much time a student has spent, so
that the trial and error, experimental approach of
the slow student equals that of the proficient
student. It is also difficult to avoid the worry
of collusion. In such a situation students tend
to concentrate exclusively on the assessed work,
ignoring all other work. Further, they typically
take it easy until a week before the deadline,

Then they go mad, ignore all other work and
saturate the computer facility.

Our approach is novel and aims to overcome most of
these difficulties. At the end of the course we
conduct a 3 hour unseen exam to assess the
paramount skill of algorithm design. During 3
hours, 5 or 6 small algorithms can be completed,
The second component of assessment is continuous.
Students are presented with a continuous
succession of programs to develop throughout the
course, They are told nothing about which
programs will be assessed, nor when the deadlines
will Dbe. We encourage them to work smoothly and
calmly an all the programs in the programme and to
save design, listing and input and output in a
work Dbook. Periodically we announce a deadline
for selected items. The deadline is a mere 3
hours ahead, which allows them time to remove
their work from their work book in an orderly way,
but is insufficient time for a last minute
big-bang approach.

Our scheme works. The students address many more
of the assigments, and they do so in a systematic
fashion., Peaks and troughs are avoided.

Bookg

Many books on programming are very thick because
they go into the extensive detail about the
features of a programming language. We feel that
this diverts attention from the central tasks of
programming and 1is our reason for using only a
language subset. Very few books adopt our
approach. Notable is McGregor, though it is weak
on parameter passing. Books like these are cheap,
easy Lo read and do not put readers off with their
excessive bulk.

Summary and conclusion

The essence of this course is a concentration on
design, the use of a subset of a programming
language and extensive practical work.

HHEEKEEREAAAAAAKAAKRKKERKRKKRARKRANKAKRRK KRR KRR KRk
FIRST COURSE-- continued on page 57



error detection and correction techniques
to the &existing software such as Hamming
code and observe how this allows errors to
be corrected successfully,

Conclusions

The students were mnot required to
write software for these practicals, but
were asked to make simple edits to the
programs supplied. This gave them an
introduction to the UCSD system, The
values chosen for the simulated lines are
the same as those used by British Telecom
and nearest preferred values were used.
The noise circuit board was designed to
run at 110 baud in order that the line
could be observed clearly on an
oscilloscope. This was inconvenient since
all the comms cards have printers attached
running at 9600 baud, and had, therefore,
to be set and reset before each session.
I intend adding an interface chip onto the
noise boards to overcome this.

References

1. W.A. Coey and D.Q.M. Fay.
"Practical Computer Logic Classes
for Computer Science Students: The
Use of Logic Analysers". SIGCSE
BULLETIN Vol. 14, No. 3, September
1982.

2, BS 6317 : 1982. Simple Extension
telephones for connection to the
B.T. public switched telephone
network.

HRKEKIIEKARKKRKAKRKEKRAAKRANKKXAKRAARI AR A IR AR KRR RNk

FIRST COURSE~-- continued from page 50

We have succesfully run this course over a number
of years for a variety of students - school
leavers, and mature students. The course has been
successful in enabling the students to become
completely confident and competent at programming.
Just as important, the courses have been fun,

There are, of course, casualties but those who
pass the course are certain of a firm base of
skill which they can use just as it is, or they
can build upon the skill in later courses.

Most students nowadays have experience of
programming before starting our course. But even
though this course starts from scratch, these
students find the different approach enjoyable and
rewarding.

References

Koffman E B, Miller P L, Wardle C Recommended
Curriculum for CS1, 1984, Commun. ACM 27, 10 (Oct
1984). 998-1001.,

SIGCSE

BULLETIN vol. 19 No. 2 June 1987

57

Moffat, D,

An objective comparison.

, and Moffat,

1982), 2-10.

Mcgregor J
1981

J, Watt A H,

P. Eighteen Pascal texts:

SIGCSE

"Simple

Bull., 14,

Pascal'',

2(June

Pitman

TR R E TP EREER LTSS EEEEEEEEEE RS EEEE SRS 0N & &
DATABASE-- continued from page 54

15.

the Best

LLanguage,

Husnian, David, "Wh

Number 2, May 1983,
16. Salton, G.,
of Future
FORUM,s Volume 18,
p. 28
17. Kleinrock,
Systems,"

Volume 29, Number 111,

1201.

18.
Database

General-~
" SIGSMALL/PC NOQTES,

Purpose

p. 23-26

y dBASE

1

IT is

Applications

Vo lume

11,

"Some Characteristics

Information Sy

Issues 2

Leonard

Communications

Byerss; Robert A
Primer Featuring

Ashton-Tate, Culver

19.

for Introducing Schemas,"”

Mugridge,

Volume 17, Number 4,

20. Sacca, Domenico,
Gio, "Database Partitioning
of Processors, " ACM

Database

March 1985, p. 30.

21.

R/DBMS Beats

Volume 7,

Polilli,

Number 23,

stems, "
-4y Fal

1

1985,

sy "Distributed

of the

ACHM,

November 1985, p.

+» Everyman’s

City, California,

Warwick

Decembe

Stevey

IBM to Market,"

June 9,

1982,

B., "A Method

r 1985,

p.

and Wiederhold,
in a Cluster
Transactions

on

O, Number 1,

"‘Distributed’

1986,

p.

MIS Weeks

44,



