
THE USE OF SKELETON PROGRAMS IN TEACHING COBO L
by

Wendell L . Pope

Department of Computer Scienc e
Utah State Universit y
Logan, Utah 8432 1

Persons teaching COBOL encounter the
problem of giving students sufficien t
practice in the use of newly introduce d
language constructs without assigning a
new program for each one . The way t o
practice COBOL is, of course, to writ e
COBOL, and we typically assign program s
for the students to write . However, i n
programming assignments, certain con-
structs, particularly in the IDENTIFICA -
TION DIVISION and the ENVIRONMENT DIVISIO N
are practiced repeatedly and become rou-
tine, while new constructs are practice d
very little . Also, there is a lot of repe -
tition of previously learned construct s
just to practice one new one each time a
program is written . This 'overhead' i n
each program means that the proportion o f
practice on new concepts in each progra m
is discouragingly low . Our experience ha s
been that students can, and do, lean o n
textbook examples, other students and con -
sultants to such an extent that the suc-
cessful completion of a programming assig -
nment is not a very good measure of th e
amount of learning that has taken place .
We also find that students tend to equat e
the benefit from programming assignment s
with the amount of time it takes them t o
complete the assignments, thus over-eva-
luating programming exercises as learnin g
experiences .

	

This results in disappoint -
ing performance on examinations . It i s
not uncommon for students to perform at o r
above the 90 percent level on homework an d
around the 70 percent level on examina -
tions . This means that they feel the y
have done work worth an A and end up wit h
a C in the course . Not a pleasant exper-
ience for them or for the teacher .

Increasing the amount of practice o n
new concepts and decreasing the amount o f
dependence on others then become worth -
while goals for the person teaching COBOL .
This should result in a more realisti c
balance between the amount of work th e
student does and the amount of learning

that is taking place .

An effort to address these goals ha s
been made through the creation of skeleto n
programs for various concepts and cons -

tructs in COBOL . The skeleton program i s
an adaptation of an idea given me by a
colleague .

A skeleton program consists of a n
almost-complete COBOL program that re -
quires the addition of a few statements ,
and enough additional code to check th e
correctness of the result of executing th e
added statements . The missing statement s
are associated with a new concept or con-
struct of the language, and providing th e
missing statements gives practice in th e
use of the new construct . Skeleton pro -
grams can be used as quizzes or as home -
work . If used as quizzes they measure a
student's understanding of a concept an d
his skill in using it . Used as homewor k
the skeleton programs provide practice o f
a construct without the necessity of writ -
ing a whole program, but almost everyon e
who does the exercise can get it righ t
after a few trials . In the quiz environ-
ment the student is given a question t o
respond to in class, the response is writ -
ten down on paper, with a carbon copy .
The original is left with the teacher an d
the student is instructed to take the cop y
with him and enter his answer in the skel -
eton program, compile and run it . Th e
student must note all changes that had t o
be made in his answer in order to get th e
skeleton program to compile, link and ru n
correctly . He then turns in the carbo n
copy with the changes noted . This become s
a measure of his success in generating th e
right answer to the question . The origi-
nal acts as a control to prevent attempt s
to circumvent the purpose of the assign-
ment .

Several advantages of using skeleto n
programs have been discovered . First, th e

student is given practice concentrated o n
the new concept or construct without th e
overhead of writing an entire COBOL prog-
rain . Second, the student gets immediat e
feedback on the value of his answer to th e
question by submitting it to the impartia l
review of the compiler and the testin g

built in to the skeleton program . Third ,
the amount of help the student may have i n
creating the answer to the question i s

SIGCSE
Vol . 19 No . 2 June 1987BULLETIN 61

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24728.24743&domain=pdf&date_stamp=1987-06-01

6 2

under control of the teacher . Fourth, th e
number of skeleton programs and thei r
frequency of use can be adapted by th e
teacher to the needs of the students .
Fifth, skeleton programs can be created t o
explore features of the language that ar e
not easy to incorporate into programming
assignments, and sixth, there need be n o
interference with the normal assignment o f
programming projects for the course . Ske-
leton programs are meant to provide prac-
tice in a controlled environment, to sup-
plement rather than to replace, the stu-
dent's experience in writing complet e
programs .

Several sample skeleton programs fol -
low . The first is on use of the arithme -
tic verbs ADD, SUBTRACT, MULTIPLY and
DIVIDE . The student is asked to write th e
statements necessary to evaluate an expre -
ssion without destroying any of the oper-
ands (which may necessitate the additio n
of extra declarations of identifiers fo r
intermediate results in the DATA DIVI-
SION), and store the result rounded in on e
storage location and truncated in another .
The skeleton program includes code tha t
checks to see that the answer was gener -
ated correctly and that none of the oper -
ands were destroyed . An alternative is to
put the code that does the checking in a
separate file and include it at compil e
time with the COPY command . One lean s
toward the COPY alternative as student s
get more sophisticated . The skeleto n
program is written for use at a terminal ,
and the results of the run are displaye d
at the terminal along with the correc t
answer so that the student may know whe n
he has successfully completed the assign -
ment . A similar skeleton program wa s
written for the COMPUTE verb, but is no t
included due to space limitations .

IDENTIFICATION DIVISION .

PROGRAM-ID . TEST-ARITHMETIC-VERBS .
AUTHOR . W . L . POPE .
* Using only ADD, SUBTRACT, MULTIPL Y
*and DIVIDE verbs, write the statement s
*necessary to evaluate :
* A A- B* C
*	

* D - E
*Store the answer rounded in X, truncated
*in Y . Do not destroy any of the operands .
*

ENVIRONMENT DIVISION .
CONFIGURATION SECTION .
SOURCE-COMPUTER . VAX-11 .
OBJECT-COMPUTER . VAX-11 .
INPUT-OUTPUT SECTION .
FILE-CONTROL .

SELECT FILE-OUT ASSIGN TO " ARITH .OU T " .
*

DATA DIVISION .

FILE SECTION .
FD FILE-OUT LABEL RECORDS ARE OMITTED .
01 RECORD-OUT

	

PIC X(50) .

SIGCS E

	

vol . 19 No . 2 June 198 7
BULLETIN

WORKING-STORAGE SECTION .
01 GIVEN-VALUES .

03 A

	

PIC S999V99 VALUE -432 .75 .
03 B

	

PIC S99V99 VALUE 29 .74 .
03 C

	

PIC S99V99 VALUE -97 .29 .
03 D

	

PIC S999V999 VALUE 498 .53 .
03 E

	

PIC S999V999 VALUE 519 .86 .

01 RESULT-VALUES .
03 X

	

PIC S99999V99 .
03 Y

	

PIC S99999V99 .
03 TEMPI

	

PIC S9(5)V9999 .
03 TEMP2

	

PIC S999V999 .

01 EDITED-RESULTS .
03 X-OUT

	

PIC ---,--9 .99BB .
03 Y-OUT

	

PIC ---,--9 .99 .
01 SAVE-VALUES .

03 ASAVE

	

PIC S9(5)V99 .
03 BSAVE

	

PIC S9(6)V99 .
03 CSAVE

	

PIC S9(5)V99 .
03 DSAVE

	

PIC S9(6)V999 .
03 ESAVE

	

PIC S9(6)V999 .

*

PROCEDURE DIVISION .
MAIN-PARA .

PERFORM SET-UP-PARA .

* Enter answer here .

PERFORM CHECK-PARA .

PERFORM DISPLAY-CORRECT-RESULTS .
CLOSE FILE-OUT .
STOP RUN .

CHECK-PARA .
DISPLAY " " .
IF A = ASAVE AND B = BSAVE AN D

C = CSAVE AND D = DSAVE AN D
E = ESAVE NEXT SENTENC E

ELSE MOV E
"One or more operands were altered . "
TO RECORD-OUT

DISPLAY RECORD-OU T
WRITE RECORD-OUT .

MOV E
"Here are the results you computed : "
TO RECORD-OUT .

DISPLAY RECORD-OUT .
WRITE RECORD-OUT .
MOVE "

	

X
TO RECORD-OUT .

DISPLAY RECORD-OUT .
WRITE RECORD-OUT .
MOVE X TO X-OUT .
MOVE Y TO Y-OUT .
DISPLAY EDITED-RESULTS .
WRITE RECORD-OUT FROM EDITED-RESULTS .

DISPLAY-CORRECT-RESULTS .
DISPLAY " " .
MOVE SPACES TO RECORD-OUT .
WRITE RECORD-OUT .
MOV E

"Here are the correct results : "
TO RECORD-OUT .

DISPLAY RECORD-OUT .
WRITE RECORD-OUT .
MOVE 155 .94 TO X-OUT .
MOVE 155 .93 TO Y-OUT .
DISPLAY EDITED-RESULTS .
WRITE RECORD-OUT FROM EDITED-RESULTS .

6 3

SET-UP-PARA .
OPEN OUTPUT FILE-OUT .
MOVE A TO ASAVE .
MOVE B TO BSAVE .
MOVE C TO CSAVE .
MOVE D TO DSAVE .
MOVE E TO ESAVE .

Another skeleton program involves th e
use of condition names . The student i s
asked to create some condition names an d

then use them in an IF statement . A simi-
lar program could be written for othe r

conditions and their corresponding I F

statements .

IDENTIFICATION DIVISION .
PROGRAM-ID . TEST-COND-NAMES .

AUTHOR . W . L . POPE .

* This program tests for the use o f

*condition names . The user must suppl y
*some condition names and an IF statement .
*

* The identifier RESPONSE contains a

*single character . Use condition name s
*and an IF statement to perform TRUE-PAR A

*if RESPONSE contains a T, FALSE-PARA if i t

*contains F, and ERROR-IN-RESPONSE if i t
*contains any other character or is blank .
*

* a . Write the condition names needed .

* b . Write the IF statement(s) t o
* PERFORM the correct paragraphs .
*

* If all is done correctly you shoul d

*see messages on the screen indicatin g

*which paragraphs have been performed .

*The TRUE paragraph should show as the
*first performed, the FALSE second, ERROR -

*IN-RESPONSE third and fourth .
*

ENVIRONMENT DIVISION .
CONFIGURATION SECTION .
SOURCE-COMPUTER . VAX-11 .
OBJECT-COMPUTER . VAX-11 .
INPUT-OUTPUT SECTION .
FILE-CONTROL .

SELECT RESULT-DISPLA Y
ASSIGN TO " CONDNAME .OUT " .

*

DATA DIVISION .
FILE SECTION .
FD RESULT-DISPLAY .
01 RESULT-LINE

	

PIC X(70) .

WORKING-STORAGE SECTION .

01 OUTLINE .
03

	

FILLER

	

PIC X(17)
VALUE "YOU HAVE ENTERED " .

03 PARA-NAME PIC X(17) .

03

	

FILLER

	

PIC X(20)
VALUE ", RESPONSE CONTAINS " .

03 RESPONSE-OUT PIC X .

01 OUTLINE-ERROR PIC X(25)
VALUE " WRONG PARAGRAPH ENTERED!! " .

SI C E

	

Vol . 19 No . 2 June 1987
BULLETIN

01 GIVEN-VALUE .
03 RESPONSE

	

PIC X .

***** enter answer to part a here **** *
01 TEST-VALUES .

03 TRUE-VALUE

	

PIC X VALUE " T " .
03 FALSE-VALUE PIC X VALUE " F " .
03 BLANK-VALUE PIC X VALUE SPACE .
03 WRONG-VALUE PIC X VALUE "G" .
03 RESULT-VALUE PIC X .

*

PROCEDURE DIVISION .
MAIN-PARA .

OPEN OUTPUT RESULT-DISPLAY .
MOVE TRUE-VALUE TO RESPONSE .
MOVE SPACE TO RESULT-VALUE .
PERFORM ANSWER-PARA .
IF RESULT-VALUE NOT = "T "

PERFORM WRONG-PARA-MSG .
MOVE FALSE-VALUE TO RESPONSE .
MOVE SPACE TO RESULT-VALUE .
PERFORM ANSWER-PARA .
IF RESULT-VALUE NOT = " F "

PERFORM WRONG-PARA-MSG .
MOVE BLANK-VALUE TO RESPONSE .
MOVE SPACE TO RESULT-VALUE .
PERFORM ANSWER-PARA .
IF RESULT-VALUE NOT = "E "

PERFORM WRONG-PARA-MSG .
MOVE WRONG-VALUE TO RESPONSE .
MOVE SPACE TO RESULT-VALUE .
PERFORM ANSWER-PARA .
IF RESULT-VALUE NOT = "E "

PERFORM WRONG-PARA-MSG .
CLOSE RESULT-DISPLAY .
STOP RUN .

ANSWER-PARA .

***** enter answer to part b here **** *

TRUE-PARA .
MOVE " T " TO RESULT-VALUE .
MOVE " TRUE-PARA " TO PARA-NAME .
PERFORM OUTPUT-PARA .

FALSE-PARA .
MOVE " F " TO RESULT-VALUE .
MOVE " FALSE-PARA " TO PARA-NAME .
PERFORM OUTPUT-PARA .

ERROR-IN-RESPONSE .
MOVE " E " TO RESULT-VALUE .
MOVE " ERROR-IN-RESPONSE" TO PARA-NAME .
PERFORM OUTPUT-PARA .

WRONG-PARA-MSG .

DISPLAY OUTLINE-ERROR .
WRITE RESULT-LINE FROM OUTLINE-ERROR .

OUTPUT-PARA .
DISPLAY SPACE .
MOVE RESPONSE TO RESPONSE-OUT .
DISPLAY OUTLINE .
MOVE SPACES TO RESULT-LINE .
WRITE RESULT-LINE .
WRITE RESULT-LINE FROM OUTLINE .

The following skeleton program is to
demonstrate skills in handling a one -
dimensional table . It also involves th e
ACCEPT statement and some editing .

IDENTIFICATION DIVISION .

PROGRAM-ID . DATE-TABLE .

AUTHOR . W . L . POPE .
* It is required to get the date fro m
*the system and print it in the form : MA Y
*20, 1986 ; with the correct date printe d
*each time the program is run .
* a . Write DATA DIVISION entries t o
* declare the fields to receive the date .
* b . Write DATA DIVISION entries neces -
* sary to edit the date as required .
* c . Write DATA DIVISION entries t o
* declare a table of month names .
* d . Write the PROCEDURE DIVISION state -
* ments to get the date from the sys -
* tem and to fill the fields declare d
* in b . above .
*

ENVIRONMENT DIVISION .
CONFIGURATION SECTION .
SOURCE-COMPUTER . VAX-11 .
OBJECT-COMPUTER . VAX-11 .
*

DATA DIVISION .
WORKING-STORAGE SECTION .
01 TODAYS-DATE .

01 DATE-OUT .

*

PROCEDURE DIVISION .

MAIN-PARA .

DISPLAY
"This is the date from the system :" .

DISPLAY " YYMMDD " .
DISPLAY TODAYS-DATE .
DISPLAY " " .
DISPLAY

"This is the way the date was converted :" .

DISPLAY DATE-OUT .

STOP RUN .

The last example is a skeleto n

program demonstrating the use of the SOR T

verb with the USING and GIVING options .

We have used a similar skeleton program

for the SORT verb with INPUT and OUTPU T
procedures, but it is not included due t o
space considerations .

	

Students must b e
supplied with an unsorted file .

	

Enoug h
information about the format of the fil e
to sort it is given in the comments in th e
skeleton program .

IDENTIFICATION DIVISION .
PROGRAM-ID . SORT-USING-GIVING .
AUTHOR . W . L . POPE .
*This is a test of SORT/USING/GIVING . Th e
*output can be written to your terminal .
* a . Write the SELECT statements that wil l
* be needed . The data to be sorted ar e
* in a file named PAGE1S4 .DAT, record s
* are 35 characters long .
* b .Write the FD/01 pairs for the inpu t

* and outpt files, and the SD/01 pai r
* needed . The two keys are custome r
* number in positions 1-7, and quant -
* ity in positions 23-25 .
* c .Write the SORT statement to sort th e
* file in ascending order by custome r
* number and descending order by quant -
* ity .
*

ENVIRONMENT DIVISION .
CONFIGURATION SECTION .
SOURCE-COMPUTER . VAX-11 .
OBJECT-COMPUTER . VAX-11 .
INPUT-OUTPUT SECTION .
FILE-CONTROL .
*

DATA DIVISION .
FILE SECTION .
*

PROCEDURE DIVISION .
MAIN-PARA .

SORT
STOP RUN .

We have used skeleton programs in ou r
COBOL class several times, and differen t
instructors have used them . Both student s
and instructors have responded favorabl y
to them .

*** *

COMMUNICATION-- continued from page 60

[8] W .J .Taffe, "Teaching Computer Scienc e
Through Writing", SIGCSE	 Bu .11_etin, Vol 18 ,

No 2, Juin 198 6

[5]

	

T .R .

	

Lewis ,
Santa Ana, CA :
1969 .

.
"Listening To Learn" ,

I

	

-r . .'• .1

6 4

[6]

	

R .G .

	

Nichols

	

and L .A .

	

Stevens ,
"Listening to people",

	

Harvard Busines s

Review, pp . 112-119, Sep .-Oct . 1957 .

[7J

	

C .D . Sigwart and G .L . Van Meer,

	

"The
art of the user interview",

	

in Proc, 17t h
I

	

E T- hni .1

	

n

	

om
Science Education, Feb . 1986 pp . 127-130 .

SIGCSE
Vol . 19 No . 2 June 198 7

BULLETIN

[9] Toastmaster International, "Speaking
to inform", in Advanced Communication an d

Leadership Program, Toastmaster s

International, 1978 .

[10] Toastmaster International, "Technica l

Presentations" in Advanced Communicatio n

and Leadership Program, Toastmaster s
International, 1984,

