"4E USE OF SKXELETON PROGRAMS IN TEACHING COBOL
by
H Wendell L. Pope
Chmes: Department of Computer Science
Utah State University

Logan, Utah 84321

Persons teaching COBOL encounter the tructs in COBOL. The skeleton program is

problem of giving students sufficient
practice in the use of newly introduced
language constructs without assigning a
new program for each one. The way to
practice COBOL is, of course, to write
COBOL, and we typically assign programs
for the students to write. However, in
programming assignments, certain con-
structs, particularly in the IDENTIFICA-
TION DIVISION and the ENVIRONMENT DIVISION
are practiced repeatedly and become rou-
tine, while new constructs are practiced
very little, Also, there is a lot of repe-
tition of previously learned constructs
just to practice one new one each time a
program is written. This 'overhead' in
each program means that the proportion of
practice on new concepts in each program
is discouragingly low. Our experience has
been that students can, and do, lean on
texthook examples, other students and con-
sultants to such an extent that the suc-
cessful completion of a programming assig-
nment is not a very good measure of the
amount of learning that has taken place.
We also find that students tend to equate
the benefit from programming assignments
with the amount of time it takes them to
complete the assignments, thus over-eva-
luating programming exercises as learning
experiences. This results in disappoint-
ing performance on examinations., It is
not uncommon for students to perform at or
above the 90 percent level on homework and
around the 70 percent level on examina-
tions. This means that they feel they
have done work worth an A and end up with
a C in the course. WNot a pleasant expar-
ience for them or for the teacher,

Increasing the amount of practice on
new concepts and decreasing the amount of
dependence on others then become worth-
while goals for the person teaching COBOL.
This should result in a more realistic
balance between the amount of work the
student does and the amount of learning

that is taking place.

An effort to address these goals has
been made through the creation of skeleton
programs for various concepts and cons-

g:_?&%i"\l Vol. 19 No. 2 June 1987

an adaptation of an idea given me by a
colleaqgue,

A skeleton program consists of an
almost-complete COBOL program that re-
quires the addition of a few statements,
and enough additional code to check the
correctness of the result of executing the
added statements., The missing statements
are assoclated with a new concept or con-
struct of the language, and providing the
missing statements gives practice in the
use of the new construct, Skeleton pro-
grams can be used as quizzes or as home-
work, If used as quizzes they measure a
student's understanding of a concept and
his skill in using it. Used as homework
the skeleton programs provide practice of
a construct without the necessity of writ-
ing a whole program, but almost everyone
who does the exercise can get it right
after a few trials. 1In the quiz environ-
ment the student is given a question to
respond to in class, the response is writ-
ten down on paper, with a carbon copy.
The original is left with the teacher and
the student is instructed to take the copy
with him and enter his answer in the skel-
eton program, compile and run it. The
student must note all changes that had to
be made in his answer in order to get the
skeleton program to compile, link and run
correctly. He then turns in the carbon
copy with the changes noted. This becomes
a measure of his success in generating the
right answer to the question. The origi-
nal acts as a control to prevent attempts

to circumvent the purpose of the assign-
ment,

Several advantages of using skeleton
programs have been discovered. First, the

student is given practice concentrated on
the new concept or construct without the
overhead of writing an entire COBOL prog-
ram., Second, the student gets immediate
feedback on the value of his answer to the
question by submitting it to the impartial
review of the compiler and the testing
built in to the skeleton program, Third,
the amount of help the student may have in
creating the answer to the question is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F24728.24743&domain=pdf&date_stamp=1987-06-01

under control of the teacher. Fourth, the
number of skeleton programs and their
frequency of use can be adapted by the
teacher to the needs of the students.
Fifth, skeleton programs can be created to
explore features of the language that are
not easy to incorporate into programming
assignments, and sixth, there need be no
interference with the normal assignment of
programming projects for the course. Ske-
leton programs are meant to provide prac-
tice in a controlled environment, to sup-
plement rather than to replace, the stu-
dent's experience in writing complete
programs.

Several sample skeleton programs fol-
low. The first is on use of the arithme-
tic verbs ADD, SUBTRACT, MULTIPLY and
DIVIDE. The student is asked to write the
statements necessary to evaluate an expre-
ssion without destroying any of the oper-
ands (which may necessitate the addition
of extra declarations of identifiers for
intermediate results in the DATA DIVI-
SION), and store the result rounded in one
storage location and truncated in another.
The skeleton program includes code that
checks to see that the answer was gener-
ated correctly and that none of the oper-
ands were destroyed. An alternative is to
put the code that does the checking in a
separate file and include it at compile
time with the COPY command. One leans
toward the COPY alternative as students
get more sophisticated. The skeleton
program is written for use at a terminal,
and the results of the run are displayed
at the terminal along with the correct
answer so that the student may know when
he has successfully completed the assign-
ment, A similar skeleton program was
written for the COMPUTE verb, but is not
included due to space limitations.

IDENTIFICATION DIVISION.

PROGRAM-ID, TEST-ARITHMETIC-VERBS.
AUTHOR. W. L. POPE.
* Using only ADD, SUBTRACT, MULTIPLY

*and DIVIDE verbs, write the statements
*necessary to evaluate:

* A + B*C
* e ———
* D - FE
*Store the answer rounded in X, truncated

*in Y.
*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-OUT ASSIGN TO

Do not destroy any of the operands.

"ARITH.OUT".
*

DATA DIVISION.

FILE SECTION.

FD FILE-OUT LABEL RECORDS ARE OMITTED.

01 RECORD-OUT PIC X(50).

SIGCSE

BULLETIN Vol. 1% No. 2

June 1987

62

WORKING-STORAGE SECTION,
01 GIVEN-VALUES.

03 A PIC 5999Vv99 VALUE -~-432.75.
03 B PIC S99V99 VALUE 29.74.
03 ¢C PIC S99v99 VALUE -97.29.
03 D PIC 5999v999 VALUE 498.53.
03 E PIC $5999V999 VALUE 519.86.
01 RESULT-VALUES.
03 X PIC 599999v99.
03 ¥ PIC S599999Vv99.
03 TEMPI PIC S9(5)V9999.
03 TEMP2 PIC S999Vv999.
01 EDITED-RESULTS.
03 X-0ouT PIC ---,--9.99BB
03 Y-ouT PIC ---,--9.99.
01 SAVE-VALUES.
03 ASAVE PIC S9(5)V99
03 BSAVE PIC S53(5)V39.
03 CSAVE PIC S9(5)Va9
03 DSAVE PIC S9(5)V999
03 ESAVE PIC S9(6)V999.

*
PROCEDURE DIVISION.
MAIN-PARA.

PERFORM SET-UP-PARA.
* Enter answer here,

PERFORM CHECK-~PARA.
PERFORM DISPLAY-CORRECT-RESULTS.
CLOSE FILE-OQUT.

STOP RUN.
CHECK-PARA.
DISPLAY ™ ".
IF A = ASAVE AND B = BSAVE AND
C = CSAVE AND D = DSAVE AND
E = ESAVE NEXT SENTENCE

ELSE MOVE
"One or more operands were
TO RECORD-OUT
DISPLAY RECORD-OUT
WRITE RECORD-O0OUT.

altered."

MOVE

"Here are the results you computed:"

TO RECORD-OQUT.
DISPLAY RECORD-OUT.
WRITE RECORD-OUT.
MOVE " X Y
TO RECORD-0QUT.

DISPLAY RECORD-OQUT.
WRITE RECORD-OUT.
MOVE X TO X-OUT.
MOVE Y TO Y-OUT,.
DISPLAY EDITED-RESULTS.
WRITE RECORD-OUT FROM EDITED-RESULTS.

DISPLAY-CORRECT-RESULTS.
DISPLAY " ",
MOVE SPACES TO RECORD-OUT.
WRITE RECORD-0OUT.
MOVE
"Here are the correct results:"
TO RECORD-0OUT.
DISPLAY RECORD-OQUT.
WRITE RECORD-0QUT.
MOVE 155.94 TO X-0UT.
MOVE 155.93 TO ¥Y-OQUT.
DISPLAY EDITED-RESULTS.
WRITE RECORD-QUT FROM EDITED-RESULTS.

SET-UP-PARA.
OPEN OUTPUT FILE-QUT.

MOVE A TO ASAVE.
MOVE B TO BSAVE.
MOVE C TO CSAVE.
MOVE D TO DSAVE.
MOVE E TO ESAVE.

Another skeleton program involves the
use of condition names. The student is
asked to create some condition names and
then use them inan IF statement, A simi-
lar program could be written for other

conditions and their corresponding IF
statements,

IDENTIFICATION DIVISION.

PROGRAM~ID. TEST-COND-NAMES.

AUTHOR. W. L. POPE.

* This program tests for the use of
*condition names, The user must supply
*gsome condition names and an IF statement.
*

* The identifier RESPONSE contains a
*single character. Use condition names
*and an IF statement to perform TRUE-PARA

*if RESPONSE contains a T, FALSE-PARA if it

*contains F, and ERROR-IN-RESPONSE if it

*contains any other character or is blank,
*

* a, Write the condition names needed.
* b, Write the IF statement(s) to

* PERFORM the correct paragraphs.

*

* If all is done correctly you should

*see messages on the screen indicating
*which paragraphs have been performed.
*The TRUE paragraph should show as the
*first performed, the FALSE second, ERROR-
*IN-RESPONSE third and fourth,
*
ENVIRONMENT DIVISION,
CONFIGURATION SECTION.,
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE~CONTROL.
SELECT RESULT-DISPLAY
ASSIGN TO "CONDNAME.OUT",.
*
DATA DIVISION.
FILE SECTION.
FD RESULT-DISPLAY.
01 RESULT-LINE PIC X (70).
WORKING-STORAGE SECTION.
01 OUTLINE,
03 FILLER PIC X(17)
VALUE "YOU HAVE ENTERED ".
03 PARA-NAME PIC X(17).
03 FILLER PIC X(20)
VALUE ", RESPONSE CONTAINS ".
03 RESPONSE-OUT PIC X.

01 OUTLINE-ERROR PIC X(25)
VALUE "WRONG PARAGRAPH ENTERED!!".

SIGCSE

BULLETIN Vol. 139 No. 2 June 1987

01 GIVEN-VALUE.
03 RESPONGSE PIC X.

*k**k% enter answer to part a here **k#*
01 TEST-VALUES.
03 TRUE-VALUE PIC X VALUE "T".
03 FALSE-VALUE PIC X VALUE "pr",
03 BLANK-VALUE PIC X VALUE SPACE.
03 WRONG-VALUE PIC X VALUE "G".
03 RESULT-VALUE PIC X.

*

PROCEDURE DIVISION.
MAIN-PARA.

OPEN OUTPUT RESULT-DISPLAY.

MOVE TRUE-VALUE TO RESPONSE.,

MOVE SPACE TO RESULT-VALUE.

PERFORM ANSWER~PARA.

IF RESULT-VALUE NOT = "T"
PERFORM WRONG-PARA-MSG.

MOVE FALSE-VALUE TO RESPONSE.

MOVE SPACE TO RESULT-VALUE.

PERFORM ANSWER-PARA.

IF RESULT-VALUE NOT = "P"
PERFORM WRONG-PARA-MSG.

MOVE BLANK-VALUE TO RESPONSE,

MOVE SPACE TO RESULT-VALUE.

PERFORM ANSWER-PARA.

IF RESULT-VALUE NQT = "E"
PERFORM WRONG-~PARA-MSG.

MOVE WRONG-VALUE TO RESPONSE.

MOVE SPACE TO RESULT-VALUE,

PERFORM ANSWER-PARA,

IF RESULT~VALUE NOT = "E"
PERFORM WRONG-PARA-MSG.

CLOSE RESULT-DISPLAY.

STOP RUN.

ANSWER~PARA,
k&k enter answer to part b here *%¥k%

TRUE-PARA,

MOVE "T" TO RESULT-VALUE,

MOVE "TRUE-PARA" TO PARA-NAME,

PERFORM OUTPUT-PARA.
FALSE~PARA,

MOVE "F" TO RESULT-VALUE.

MOVE "FALSE-PARA" TO PARA-NAME,

PERFORM OUTPUT-PARA.
ERROR-IN-RESPONSE.

MOVE "E" TO RESULT-VALUE,

MOVE "ERROR-IN-RESPONSE" TO PARA~NAME.

PERFORM OUTPUT-PARA.
WRONG-PARA-MSG .,

DISPLAY OUTLINE-ERROR.

WRITE RESULT-LINE FROM CUTLINE-ERROR.
OUTPUT-PARA,

DISPLAY SPACE.

MOVE RESPONSE TO RESPONSE-OUT.

DISPLAY OUTLINE.

MOVE SPACES TO RESULT-LINE.

WRITE RESULT-LINE.

WRITE RESULT-LINE FROM OUTLINE.

The following skeleton program is to
demonstrate skills in handling a one-
dimensional table, It also involves the
ACCEPT statement and some editing.

 IDENTIFICATION DIVISION,

PROGRAM-ID. DATE~TABLE.

AUTHOR. W. L. POPE.

* It is required to get the date from

*the system and print it in the form: MAY

*20, 1986; with the correct date printed

*each time the program is run.

* a, Write DATA DIVISION

* declare the fields to receive the date.

* b, Write DATA DIVISION entries neces-

* sary to edit the date as required.

* ¢, Write DATA DIVISION entries to
* declare a table of month names,
*
*
*
*

entries to

d. Write the PROCEDURE DIVISION state-
ments to get the date from the sys-
tem and to fill the fields declared

in b. above.

*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE~COMPUTER., VAX~11,

OBJECT-COMPUTER. VAX-11.

*

DATA DIVISION,.

WORKING-STORAGE SECTION.

01 TODAYS-DATE.

0]l DATE-OUT.

*

PROCEDURE DIVISION.
MAIN~PARA,

DISPLAY
"Tfhis is the date from the system:".
DISPLAY "YYMMDD",.
DISPLAY TODAYS-DATE.
DISPLAY " ",
DISPLAY
"This is the way the date was converted:".
DISPLAY DATE-OUT.
STOP RUN.

The last example is a skeleton
program demonstrating the use of the SORT
verb with the USING and GIVING options.
We have used a similar skeleton program

for the SORT verb with INPUT and QUTPUT
procedures, but it is not included due to
space considerations, Students must be
supplied with an unsorted file. Enough
information about the format of the file
to sort it is given in the comments in the
skeleton program.

IDENTIFICATION DIVISION,

PROGRAM-1ID, SORT~USING-GIVING.

AUTHOR. W. L. POPE,

*This is a test of SORT/USING/GIVING. The

*output can be written to your terminal,

* a, Write the SELECT statements that will
be needed., The data to be sorted are
in a file named PAGE154.DAT, records
are 35 characters long,

b.Write the FD/01l pairs for the input
and outpt files, and the 8D/01 pair
needed. The two Keys are customer

number in positions 1-7, and quant-
ity in positions 23-25,

cWrite the SORT statement to sort the
file in ascending order by customer
number and descending order by quant-
ity.

X o o M 3 O % X % % % X

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-~COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
*
DATA DIVISION.
FILE SECTION,
*
PROCEDURE DIVISION.
MAIN~PARA.

SORT

STOP RUN.,

We have used skeleton programs in our
COBOL class several times, and different
instructors have used them, Both students
and instructors have responded favorably
to them,

**

COMMUNICATION~- continued from page 60

(5] T.R. Lewis, "Listening To Learn",
Santa Ana, CA: Toastmasters Internatiopal,
1969.

[6] R.G. Nichols and L.A. Stevens,

"Listening to people", Harvard Busines
Review, pp. 112-119, Sep.-Oct. 1857,

[7) C.D. Sigwart and G.L. Van Meer, "The
art of the user interview", in Proc, 17th
SIGCSE Technical Symposium on Computer

Science Education, Feb. 1986, pp. 127-130.
SIGCSE

BULLETIN Vol. 19 No. 2 June 1987

[8] W.J.Taffe, "Teaching Computer Science
Through Writing", SIGCSE Bulletin, Vol 18,
No 2, Juin 1986

[9] Toastmaster International, "Speaking
to inform", in Advanced Communication and
Leadership Program, Toastmaster
Inter ional, 1978.

{10] Toastmaster International, "Technical
Presentations™” in Advanced Communication

and Leadership Program, Toastmasters
International, 1984.

