Scaling up analytical queries with column-stores

loannis Alagiannis, Manos Athanassoulis, Anastasia Ailamaki
Ecole Polytechnique Fédérale de Lausanne
)) _ _ Lausanne, VD, Switzerland
{ioannis.alagiannis, manos.athanassoulis, natassa}@epfl.ch

ABSTRACT

As data analytics is used by an increasing number of applications,
data analytics engines are required to execute workloads with in-
creased concurrency, i.e., an increasing number of clients submit-
ting queries. Data management systems designed for data analytics
- a market dominated by column-stores - however, were initially
optimized for single query execution, minimizing its response time.
Hence, they do not treat concurrency as a first class citizen.

In this paper, we experiment with one open-source and two com-
mercial column-stores using the TPC-H and SSB benchmarks in a
setup with an increasing number of concurrent clients submitting
queries, focusing on whether the tested systems can scale up in a
single node instance. The tested systems for in-memory workloads
scale up, to some degree; however, when the server is saturated they
fail to fully exploit the available parallelism. Further, we highlight
the unpredictable response times for high concurrency.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems - Concurrency, Query
processing, Relational databases

General Terms

Experimentation, Measurement, Performance

Keywords

Concurrency, Column-stores, Data analytics, Scalability

1. INTRODUCTION

In the last few years, data analytics has emerged as a very ac-
tive research and industrial topic since derived information pro-
vides added value both to experimental research and businesses.
The insight that data analysis offers to modern businesses, scien-
tists and social applications leads to growing requirements in terms
of generating, collecting, managing, and querying data. Today’s
data analytics engines have to keep up with round-the-clock opera-
tion because of the globalization of the economy [4]. Additionally,
the nature of analytical queries is expanding from offline analysis to
ubiquitous queries. For example, asking from our smartphone the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

DBtest’13, June 24 2013, New York, NY, USA

Copyright 2013 ACM 978-1-4503-2151-8/13/06 ...$15.00.

current consumption of minutes and data of our monthly plan ini-
tiates a personalized analytical query. Moreover, in recent research
it is documented that customers of data analytics products indicate
that they will have to routinely execute several hundreds of concur-
rent queries in the near future [6]. Hence, supporting an increasing
number of concurrent analytical queries is a key requirement.

A wealth of systems based on relational data management sys-
tems (DBMS) is used to execute analytical queries. While row-
stores like IBM DB2 and Oracle have been extensively used for
data analytics, column-stores have been proven a very good match
for analytical queries since they can efficiently execute queries with
small projectivity, aggregates and other specific characteristics of-
ten seen in analytical queries. Column-stores were initially devel-
oped as research prototypes like MonetDB [5] and C-Store [27]
which evolved in commercial products: Vectorwise and Vertica [19]
respectively. A variety of commercial column-stores is now avail-
able: Infobright [26], SybaselQ, AsterData, Greenplum and others.

Recent research and optimizations for column-stores focus on
single query performance in an attempt to minimize the query re-
sponse time. This approach is particularly popular in systems that
aim primarily at scaling out in a distributed environment. The
increase in concurrency requirements described above poses the
question how column-stores would perform when scaling up is -
at least - equally important as scaling out. This question is further
exacerbated by the hardware trends, such as multi-core processors
and solid-state storage, offering increased parallelism in process-
ing and accessing data respectively. In this paper we execute an
increasing number of concurrent analytical queries as a fundamen-
tal test to capture the behavior of column-stores under a heavy load
of concurrent queries on memory-resident datasets.

®

——Real behavior

Normalized Throughput - Scaleup

==l|deal behavior

#HW contexts #clients

Figure 1: Scaleup of a commercial column-store.

Figure 1 presents the normalized throughput (scaleup) of a com-
mercial column-store based on experiments with a query mix of
the TPC-H benchmark. This experiment is conducted on the setup
described in Section 4, and measures throughput when running a

query mix from an increasing number of clients submitting queries.
The y-axis depicts aggregate throughput, showing the scaleup that
the system can sustain. We observe that a state-of-the-art commer-
cial column-store cannot sustain peak performance when increas-
ing number of clients, thus suffering from performance degradation
in terms of throughput. Section 2 discusses more details about the
ideal performance and the implication of increasing concurrency.
In the rest of the paper we present different metrics and experiments
to understand globally the behavior of column-stores for workloads
executed with high concurrency.

Contributions. Our experimental study with three different column-

stores (one open-source and two commercial systems) and two bench-

marks (TPC-H and SSB) for in-memory datasets makes the follow-
ing observations:

e Executing queries concurrently leads to linear increase in re-
sponse time. Even when the server is not saturated, the tested
systems fail to fully exploit the available parallelism.

e For large numbers of concurrent queries the systems show large
variability in response times. We observe three different cases:
(i) System-A shows dual behavior (clients that complete exe-
cution early or late), (ii) System-B manages to have balanced
progress for most of the outstanding queries leading to relatively
lower variation, and (iii) System-C uses admission control to re-
strain the number of outstanding queries. For all three systems
the variation leads to high unpredictability in response times.

e Throughput experiments with a query mix show: (i) when run-
ning TPC-H and the server saturates, high concurrency hurts
overall performance (32% to 48% decrease depending on the
system), and (ii) when running SSB only System-B manages to
scale up because it allows concurrent queries to share scans.

2. SCALING UP WITH COLUMN-STORES

Figure 1 shows the real and the ideal behavior of a column-store
when an increasing number of clients submit analytical queries.
This experiment is conducted with a commercial column-store (de-
scribed as System-B in Section 4) using a query mix of the TPC-H
benchmark. In addition to the discussion of Section 1, in part A of
Figure 1 we observe that the throughput of the system scales with
the number of clients until point B, at which all hardware contexts
are fully utilized and the server is saturated. Ideally, if the database
engine has no inefficiencies, for higher number of clients, through-
put would plateau at the same level as point B, as the part E of
the line shows. The performance of System-B, however, decreases
(part C) before it plateaus at a lower rate, about 50% of the peak
throughput (part D). There are several messages to be taken from
this experiment.

Part A. In the first part of the graph we observe that performance
scales up. The actual performance in the saturation point (point
B) depends on the database engine used and the exact shape of the
curve until point B depends on the capability of the database engine
to exploit parallelism for the specific workload. Amdahl’s law for
scaleup [17] states:

scaleup < [

N

where e is the serial fraction of the database engine, hence 1 — e the
parallel fraction, and N the available hardware parallelism. Using
the Karp-Flatt [18] metric we can estimate the serial fraction e of
every tested system assuming that we know the level of parallelism
p (which is equal to V) and the speedup, v, achieved when the
maximum level of parallelism is utilized.

Table 1: Serial fraction based on Karp-Flatt metric

Metric | System-A | System-B | System-C

Single-client perf. (Q/h) 304 1683 778
Peak perf. (Q/h) 2575 14567 3693
Speedup 8.47 8.66 4.75
Serial factor 0.09 0.087 0.185

11

e= % — f)
p

In fact, for the three tested systems running the query mix of the
TPC-H benchmark we can infer their serial fraction when executed
in our server with 32 hardware contexts (p = 32), as shown in Ta-
ble 1. System-A has 9% serial factor, while System-B has 8.7%
and System-C has 18.5%. Notice that the serial factor dictates the
relevant scaleup of each system with respect to its single-client per-
formance, hence, it cannot be used for performance comparisons
directly. By plugging the serial factor for each system in Amdahl’s
law for scaleup, and multiplying each curve with the single-thread
performance of each system, we predict the ideal performance, as
shown in Figure 2.

Estimated ideal performance
15 . T

—8.7% System-B
---9% System-A
- —-18.5% System-C

Throughput (kQueries/h)

clients

Figure 2: Ideal performance.

Part C. After point B the real behavior of the system differs from
the optimal (part E) because the saturation of the processors of
the systems allow potential inefficiencies of the engines to kick in
and reduce performance. We argue that this performance degrada-
tion should be the target of future research on data analytics using
column-stores, since the importance of scaling up has increased
with new workload and hardware trends.

Part D. While the tested systems cannot sustain maximal perfor-
mance when the system is saturated we observe that performance
plateaus relatively early. This indicates that there is no major bottle-
neck taking over the execution time, hence, the performance degra-
dation could be addressed with appropriate algorithm redesign, dy-
namic resource reallocation or admission control aware of the ac-
tual CPU utilization. An example of algorithm redesign for ana-
lytical queries is the CJOIN [6] operator which departs from the
paradigm thread-(or pool-of-threads)-per-query and executes the
union of the outstanding queries with a fixed number of threads
and distributes the results to the clients in the end.

3. RELATED WORK

This paper focuses on analyzing and presenting the behavior of
three column-stores when concurrent analytical queries are submit-
ted by an increasing number of clients. The goal of this analysis
is to highlight that column-stores are built with optimizing the re-
sponse time of a single query as the prime optimization goal, lead-
ing to performance degradation and performance unpredictability
for high concurrency.

In prior research there is a wealth of techniques to address the
concurrency problem: in the optimization phase with multi-query

optimization, in the query engine layer with work sharing, ma-
terialized views and query caching and in the storage layer with
shared scans. Orthogonally to these families of techniques, the
data reorganization performed by column-stores during query exe-
cution (for example by database cracking [15]) generates both reads
and writes, but with an appropriate concurrency control mecha-
nism [12] it shows the desired behavior.

Concurrency in the optimization phase. Multi-Query Optimiza-
tion (MQO) techniques identify common sub-expressions and gen-
erate physical plans that share the common computation [10, 23,
24]. Such approaches require queries to be submitted in batches
which makes it difficult to respect response time guarantees'. More-
over, MQO does not take into account queries that are already in the
system - which are potentially long-running. Classic MQO oper-
ates on batches of queries only during optimization, and it depends
on costly materialization of the common intermediate results.

Concurrency in the query engine. When the executed workload
is comprised of a large number of analytical queries over the same
data, different queries may share accesses and repeat the same com-
putations. Apart from detecting them in the optimization phase
there are techniques to avoid repetition in the execution phase. Any
traditional DBMS typically implements both materialized views [22]
and query caching [25]. Such techniques help avoiding recomput-
ing identical queries but cannot be predicted by the optimizer nor
used in a canonical way. Another option, implemented in Mon-
etDB, is to recycle intermediate results and share them with sub-
sequent queries [16]. Recent research on work sharing, however,
offers ad-hoc "collaboration" of the concurrent queries minimiz-
ing the overall work done and the number of data accesses. The
paradigm of staged databases [13] which is implemented in the
QPipe [14] query engine detects common sub-plans during query
execution and pipelines the intermediate results avoiding completely
re-executing the sub-plan. DataPath [2], SharedDB [11] and the
CJOIN [6] operator follow a different approach for work sharing.
They create a common global query plan with operators capable of
handling tuples of multiple queries and they distribute the tuples in
their respective query at the end of the execution phase.

Concurrency in the storage layer. A common technique for the
systems using the global query plan approach is the use of shared
scans. DataPath [2] uses an array of disks and stores relations in a
columnar fashion by hashing and distributing pages to the disks.
During query execution, it reads pages from the disks in order,
but asynchronously, hence aggregating the throughput of the lin-
ear scan of each disk. SharedDB [11] utilizes the Crescando [28]
storage manager which uses a circular scan of in-memory table par-
titions, interleaving reads and writes of a batch of queries. Each
Crescando scan applies the updates generated by the current batch
of queries for each scanned tuple following the queries’ arrival or-
der, and then executes the read requests. CJOIN [6] uses a circular
scan as well. Since CJOIN is designed for a star schema (in par-
ticular it is evaluated using the Star Schema Benchmark [20]) it is
assumed that the dimension tables fit in memory and the fact table
is constantly read using a circular scan. Circular scans are imple-
mented in a variety of systems [7, 8, 9, 14] and they can sustain a
large number of concurrent tablescans by reducing contention for
the buffer pool and the number of accesses to the underlying storage
devices. More elaborate techniques for shared scans with coordi-
nation are developed for column-stores [29] and for main-memory
shared scans [21].

'Such guarantees are very important in order to deliver the service-
level agreements (SLAs) that a data analytics company typically
makes with its clients.

4. METHODOLOGY

In this section, we describe the experimental setup, the work-
loads employed to study the behavior of the different DBMS, and
the applied methodology.

4.1 Experimental Setup

The experiments are conducted in a Sandy Bridge server with a
dual socket Intel(R) Xeon(R) CPU E5-2660 (8 cores per socket, 2
logical cores per physical when hyper-threading is on, 32 hardware
contexts in total, clocked at 2.20 GHz) equipped with 64 KB L1
cache per core, 256 KB L2 cache per core, 20 MB L3 cache shared,
and 128 GB RAM running Red Hat Enterprise Linux 6.3 (Santiago
- 64bit) with kernel version 2.6.32. The server is equipped with a
RAID-0 of 7 250 GB 7500 RPM SATA disks.

The performed analysis uses two commercial column-stores and
a state-of-the-art open-source column-store. To preserve anonymity
due to legal restrictions the names of the commercial database sys-
tems are not disclosed but instead we refer to them throughout the
paper as System-A and System-B respectively. Similarly, the open-
source database system is referred as System-C. To enhance query
processing performance we have manually generated statistics (for
the systems supporting such a feature). All systems are tuned to
use all the available hardware contexts from our server and to al-
low multiple concurrent clients.

4.2 Workloads

We use two benchmarks designed for evaluating data warehouses
and decision support systems, the TPC-H decision support bench-
mark [1] and the Star Schema Benchmark (SSB) [20]. SSB is a
modified version of TPC-H in which tables have been altered to
represent a star schema and a smaller set of similar queries is used.

For both benchmarks we perform experiments using databases
with scale factor 30 (dataset size 32GB for TPC-H and 18GB for
SSB). The TPC-H benchmark typically consists of 22 queries, but
we use a subset of 10 queries Qiper, = {Q1, Q2, @3, Q4, @5, Q6,
Q7,Q8, Q11, Q12}. In the case of SSB, we perform experiments
using all the provided queries Qs = {Q1.1, Q1.2, Q1.3, Q2.1,
Q2.2, Q2.3, Q3.1, 3.2, Q3.3, 3.4, Q4.1, Q4.2, Q4.3}. To
enforce variability in our experiments, all the queries are generated
based on query templates in which the values of specific predicates
vary randomly, though creating queries with similar selectivity. For
the TPC-H benchmark the QGen tool is used, while for the SSB a
custom SSB-QGen is implemented [3].

To study the throughput as the number of concurrent clients in-
creases in the systems, we generate two types of synthetic work-
loads Wipcn and W, Both workloads contain 25 randomly gen-
erated queries selected with the same probability from Q¢pc, and
Qssp respectively. Each client submits one query from the work-
load, waits for it to finish and submits the next.

4.3 Design of experiments

The goal of our experiments is not to compare the systems in
terms of performance for individual queries but to examine their be-
havior as the number of concurrent queries significantly increases.
Thus, we vary the number of concurrent queries, the complexity of
the queries (e.g. from simple table scans to n-way joins) and the
query selectivity space.

For all experiments, the input relations and any intermediate re-
sults generated during query processing fit easily in the main mem-
ory. We report execution times from hot runs in order to focus
on the in-memory query execution part and avoid any interference
with I/O operations. In each of the measurements we follow the
same sequence of steps. Initially, we warm up the bufferpool of

=o=System-A

N
o
=]

===System-A

S ‘g =a=System-A "g «e=System-A E 250
£ 400 { = System-C A 0 | - System-C 2 1o | SystemC = + & System-C
g 300 System-B - g System-B g System-B g 200 System-B
= - = 40 = 100 = 150
- -3 a d -
& 200 2 2 & 100 -
2 20 ¢ 50 <
- 100 = R Py | . 50
2 z L - P -)
< 0 4 T T T T T < 0 4 T T T < 0 == T T T T < 0+ T T T T T
0 50 100 150 200 250 0 50 100 150 250 0 50 100 150 200 250 0 50 100 150 200 250
concurrent queries # concurrent queries # concurrent queries # concurrent queries
(a) TPC-H - Q1 (b) TPC-H - Q11 (c) SSB - Q2.1 (d) SSB - Q4.1

Figure 3: Average query response time as the number of concurrent queries increases.

CDF for System-A TPCH (64 clients)

CDF for System-B TPCH (64 clients)

CDF for System-C TPCH (64 clients)

1 ; 1
Q1 ; Q1 H .
----- Q4 === Q4
0.8 — 05 08 — 05
------ Q11 ----Q11
06 0.6F o4
3 = S8
[[: H [
0.4 0.4+ = i
0.2 0.2
0 : wat i 0 i oL I ; .
0 0.2 04 06 0.8 1 0 02 1 0 02 0.4 06 08 1
Normalized response time Normalized response time Normalized response time
(a) (b) ©
Figure 4: Cumulative distribution function of normalized response time for 64 clients
System-A TPCH (64 clients) System-B TPCH (64 clients) System-C TPCH (64 clients)
04

Q1 — Median

02l Q1 — Median I |

0.1 HEQ1 — Median J
0

4‘_-_-_‘44
Il 04 — Median

02| HEQ4 — Median I |
0

e |

PDF(x)

0.2/ Il 05 — Median

0.1} I Q4 — Median]
0
1

0.
oo HIEQ5 — Median i
0

0.1} I Q5 — Mediap I i
0
1

0
04 _ .
0.2} Q11 — Median oo, HO11 — Median J 0.1} HEQ11 — Median I I
0 0 : : - 0
0 02 04 0.6 0.8 1 0 0.2 0.4 06 08 1 0 02 0.4 06 0.8 1
Normalized response time Normalized response time Normalized response time
(@ (b) ©

Figure 5: Probability distribution function of normalized response time for 64 clients

each system. Then, we initiate multiple connections from clients to
the database server and we submit all the queries at the same time
for concurrent evaluation. We examine the behavior of all queries
in Q¢pen and Qssp, varying the number of concurrent clients from 1
to 256. Due to space restriction, in the following section we report
a representative subset of the performed experiments.

5. EXPERIMENTAL ANALYSIS

In this section we evaluate the three column-stores in terms of
scalability, predictability of query response and throughput.

5.1 Scaling up queries

In the following experiment we investigate the behavior of System-

A, System-B and System-C as the number of concurrently execut-
ing queries increases. We use two memory-resident databases gen-
erated from the TPC-H and SSB benchmarks (with scale factor 30).
Each client executes one query based on the same query template.
The predicates of the input queries have been randomly generated
as we describe in Section 4. We present results for two queries of
TPC-H (Q1 - simple table scan and @11 - 3-way join) and SSB
(Q2.1 and Q4.1 - joins between the fact and a number of dimen-
sion tables). Figure 3 plots the average query response time on
the y-axis while varying the number of concurrent queries along

the x-axis. For these queries, System-B and System-C outperform
System-A when it comes to response time. Nevertheless, as the
number of concurrent queries we submit increases, we observe a
linear increase in response time for all the systems. These results
suggest that even for low concurrency the tested DBMS fail to fully
exploit the available CPU resources.

Discussion. In an ideal system, we would like the query response
time to be independent of the number of queries running concur-
rently, and the contention for CPU resources to be minimized when
the system is saturated.

5.2 Variability of query response times

In our next experiment, we demonstrate the predictability of the
three DBMS in terms of query response time as multiple queries are
submitted. To achieve that, we examine the cumulative distribution
function (CDF) of response time for queries with different com-
plexity in TPC-H and SSB. This metric can be used as an indicator
of the expected behavior of the tested systems if a new query is
submitted. We use the same databases as in the experiment above;
however, we additionally include queries (4 and @5 in the case
of TPC-H and queries Q1.1 and Q3.1 in the case of SSB. As be-
fore, the queries are randomly generated based on the appropriate
query templates of each benchmark. Again, all the clients submit

CDF for System-A SSB (64 clients)

CDF for System-B SSB (64 clients)

CDF for System-C SSB (64 clients)

Q1A ;
o8|
06
= =
ing ing
04 04t
02 02

Q1A

F(x)

py — —— AE
0 i i It 0 g ef i i 0 Eull] i L i L
0 0.2 0.4 06 0.8 1 0.4 05 06 0.7 08 09 1 0 02 0.4 0.6 08 1
Normalized response time Normalized response time Normalized response time
(a) (b) (©

Figure 6: Cumulative distribution function of normalized response time for 64 clients

System-A SSB (64 clients)

System-B SSB (64 clients)

System-C SSB (64 clients)

02

B Q1.1 — Median I I gf B Q1.1 — Median]
0 - {1t 0

0.1
0.05

Q1 1 — Median I I I

0
2| HElQ2.1 — Median I 1

0.1

Il 02.1 — Median I

02" B2 1 — Median 1
= 01 1
LDL o]

o

g 0 5 04]
T oo| EEQ3.1 — Median] 8?’_(}3.1 —— Median I 1 T B O3 1 — Median I I |
0 3 ! 0.1
0.2/ E Q4.1 — Median g-f’-om —— Median | oe M1 — Meds 1
O0 02 04 06 08 1 00 0.2 0.4 0.6 0.8 1 02 0.4 06 08
Normalized response time Normalized response time Normalized response time
(a) (b) (©

Figure 7: Probability distribution function of normalized response time for 64 clients

different versions of the same template query concurrently.

The three graphs in Figure 4 show the CDF of normalized re-
sponse time for System-A, System-B and System-C, while the three
graphs in Figure 5 plot the probability distribution function (PDF)
along with the median for the same queries. In the above graphs
we observe high variability in response times when 64 queries are
executed concurrently even though the queries are based on the
same template. For example, in System-A the fastest query is com-
puted after 67.9 sec, the slowest after 216.97 sec with an average
of 157.67 sec and a median of 180.24 for the 64 clients. On the
other hand, System-B not only shows better performance when it
comes to response time but a better behavior in terms of variabil-
ity. The fastest client finishes execution after 4.74 sec while the
slowest after 24.9 sec with an average of 20.4 sec and a median of
23.22 sec for the 64 clients. Finally, the response time for Q1 in
System-C varies from 6.02 sec (fastest) to 180.6 sec (slowest) with
an average of 95.24 sec and a median of 94.9.

Overall, we observe different patterns in the strategies for as-
signing resources to query requests. Figures 4(a) and 5(a) plot the
CDF and PDF, respectively, for System-A for 4 TPC-H queries.
‘We observe groups of short, medium and long running queries. For
example, in Figure 5(a) response times of ()4 are clearly organized
into two groups while for Q11 we additionally observe a group
of short running queries. System-A does not show a specific pat-
tern on how queries are scheduled for execution. System-B shows
lower variation among query execution times and follows a more
balanced approach when it comes to resource allocation as shown
in Figure 5(b). We observe that some queries might complete their
execution early but the response time for the majority of queries
lays close to the median. On the contrary, System-C shows a dif-
ferent behavior. The observed response times are evenly distributed
between the minimum and the maximum. This observation implies
that System-C uses an admission control mechanism to restrain the
number of queries actually admitted for concurrent execution and

limit potential contention allowing for higher throughput.

Figure 6 and Figure 7 summarize the results from the similar
experiment with the SSB workload using Q1.1, 2.1, @3.1 and
@Q4.1. System-B and System-C show the same behavior as in the
case of TPC-H. System-A, similarly, does not show a specific pat-
tern for scheduling query execution and allocating resources among
queries.

Discussion. When a single client submits queries in a system, all
the available resources can be used to achieve the highest possible
performance. Nevertheless, in scenaria where several concurrent
queries are expected the database architects should focus on scal-
ability and computing multiple queries within a reasonable time.
Submitting a new query to the system should not lead to unpre-
dictable behavior and/or increased response time. Ideally, the query
response time should be independent from the current query load in
the system and the complexity of the running queries (a similar ap-
proach is proposed for row-stores [6]). In practice, a system should
provide performance guarantees that each query will eventually be
executed in a timely and predictable manner.

5.3 Workload performance analysis

In this experiment, we examine the throughput while varying the
number of concurrent clients. We use the same databases as before,
and each client executes an instance of Wy, and W, presented
in Section 4. Figure 8 and Figure 9 plot the throughput on the y-
axis (thousand queries per hour) while progressively increasing the
number of clients submitting queries concurrently on the x-axis.

For the TPC-H workload (Figure 8), System-B achieves higher
throughput in comparison with System-A and System-C, and the
peak throughput is achieved for 32 concurrent clients. Regard-
less of the actual throughput, we observe the same behavior for
the three systems. Initially, throughput increases but after the sat-
uration point we observe a considerable performance degradation
(35% for System-A, 48% for System-B and 32% for System-C).

i
@

System-B
-m System-C
=@ System-A

TN
o N &

Throughput (kQueries/h)
o

4 .

L_‘._.. :'_""'-I--.-.........-..-..--.....-l..-...........
2 e e e e = = o+ = = B
o B

0 50 100 150 200 250

concurrent clients
Figure 8: Throughput for TPC-H concurrent queries

As we explain in Section 2, the performance drop is a consequence
of increased resource contention and query engine inefficiencies.
Figure 9 plots the throughput as more clients submit queries for
the workload based on the SSB benchmark. Again, System-B sig-
nificantly outperforms System-A and System-C. In this experiment,
System-A achieves the highest throughput for only 4 clients and
then throughput decreases up to 39%. On the other hand, System-C
achieves the highest throughput for 16 clients and then we observe
a degradation in throughput up to 29%. For the SSB workload
System-B shows a different behavior. We do not observe any sig-
nificant drop in throughput. On the contrary, throughput scales up
to the saturation point and then remains almost stable regardless
of the number of clients. This behavior implies that System-B can
exploit data sharing opportunities when multiple queries run con-
currently. SSB consists of a big table (lineorder) and 4 small tables.
In this case the scan sharing mechanism can efficiently identify data
sharing opportunities. On the other hand, TPC-H is more complex
(few big tables e.g. lineitem, order, partsupp and more complex
queries) which makes finding sharing opportunities harder.

Discussion. In this experiment, apart from the throughput we cal-
culate the CPU utilization as well. We observe that the three tested
systems manage to fully utilize the available hardware contexts of
our server during their peak performance. Nevertheless, System-A
and System-C mainly, and System-B to a lesser extent, fail to main-
tain this level of performance for the whole duration of the experi-
ment. Ideally, the systems designed for the multicore era should be
able to efficiently exploit the massively available parallelism both
for static and dynamic workloads.

6. DISCUSSION

The emergence of analytical workloads with high query concur-
rency as a first class citizen poses the question whether DBMS de-
signed for analytical queries can scale up in addition to scale out. In
this paper, we experiment with three column-stores using the TPC-
H and SSB benchmarks so as to understand their behavior for high
concurrency and highlight opportunities for further optimizations.

A common trend is that when the systems get saturated they can-
not sustain stable performance. For increasing concurrency the
throughput decreases drastically but the available processors are
not always fully utilized. Inefficiencies of the query engines and
the lack of aggressive dynamic resource reallocation or of CPU-
aware admission control leads to queries underutilizing available
resources that cannot exploit idle processors. In recent research
on executing analytical workloads with row-stores work sharing
is proposed in various forms to enhance performance by locating
and exploiting the inherent work sharing opportunities of analyti-
cal workloads. While work sharing is no stranger to column-stores,
we argue that query evaluation operators in column-stores can be
redesigned in order to facilitate ad-hoc and planned sharing in or-

[N
o

18

16 System-B
14 -® System-C
12 -m System-A

i
o

B
T = =l - P e) e e = = = @

Throughput (kQueries/h)

o N A~ O

?_ :

0 50 100 150 200 250
concurrent clients

Figure 9: Throughput for SSB concurrent queries

der to use every available opportunity for better scalability when
scaling up is the immediate goal.

Acknowledgments. This work was supported by the FP7 project
BIGFOOT (grant n. 317858).

7. REFERENCES

[1] TPC-H Benchmark: Standard Specification, Revision 2.15.0.

[2] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez. The
DataPath system: a data-centric analytic processing engine for large data
warehouses. SIGMOD 2010.

[3] M. Athanassoulis and I. Alagiannis. A custom QGen for SSB with randomized
parameters. https://bitbucket.org/manathan/ssb-qgen/overview, 2013.

[4] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica. MaSM:
efficient online updates in data warehouses. SIGMOD, 2011.

[5]1 P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. (CIDR), 2005.

[6] G. Candea, N. Polyzotis, and R. Vingralek. A scalable, predictable join operator
for highly concurrent data warehouses. VLDB, 2009.

[7]1 L.S. Colby et al. Redbrick Vista: Aggregate Computation and Management.
ICDE, 1998.

[8] C. Cook. Database Architecture: The Storage Engine, 2001.

[9] N. Corporation. Teradata Multi-Value Compression V2R5.0, 2002.

[10] S. Finkelstein. Common expression analysis in database applications.
SIGMOD, 1982.

[11] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: killing one thousand
queries with one stone. VLDB 2012.

[12] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and S. Manegold. Concurrency
Control for Adaptive Indexing. PVLDB, 5(7), 2012.

[13] S. Harizopoulos and A. Ailamaki. A case for staged database systems. CIDR,
2003.

[14] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A Simultaneously
Pipelined Relational Query Engine. In SIGMOD, 2005.

[15] S.Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In CIDR, 2007.

[16] M. G.Ivanova, M. L. Kersten, N. J. Nes, and R. A. Gongalves. An architecture
for recycling intermediates in a column-store. In SIGMOD, 2009.

[17] R.Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT: a
scalable storage manager for the multicore era. In EDBT, 2009.

[18] A.H. Karp and H. P. Flatt. Measuring Parallel Processor Performance.
Commun. ACM, 33(5), 1990.

[19] A.Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier, L. Doshi, and C. Bear.
The Vertica Analytic Database: C-Store 7 Years Later . PVLDB, 2012.

[20] P. O. Neil, B. O. Neil, and X. Chen. Star Schema Benchmark. 2009.

[21] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman. Main-memory scan
sharing for multi-core CPUs. PVLDB, 2008.

[22] N. Roussopoulos. View indexing in relational databases. ACM Trans. Database
Syst., 7, June 1982.

[23] P.Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Extensible
Algorithms for Multi Query Optimization. SIGMOD, 2000.

[24] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13,
March 1988.

[25] J. Shim, P. Scheuermann, and R. Vingralek. Dynamic caching of query results
for decision support systems. SSDBM, 1999.

[26] D. Slezak and V. Eastwood. Data warehouse technology by Infobright.
SIGMOD, 2009.

[27] M. Stonebraker et al. C-store: A column-oriented DBMS. VLDB, 2005.

[28] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann.
Predictable performance for unpredictable workloads. VLDB 2009.

[29] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Cooperative scans: dynamic
bandwidth sharing in a DBMS. VLDB, 2007.

