
Towards a Framework for Iteratively Signing Graph Data

Andreas Kasten
University of Koblenz-Landau

Universitätsstraße 1
56070 Koblenz, Germany

andreas.kasten@uni-koblenz.de

Ansgar Scherp
University of Mannheim

B6, 26
68131 Mannheim, Germany

ansgar@informatik.uni-mannheim.de

ABSTRACT
When publishing graph data on the web such as vocabular-
ies using RDF(S) or OWL, one has only limited means to
verify the authenticity and integrity of the graph data. To-
day’s approaches require a high signature overhead and do
not support iterative signing of graph data. This paper de-
scribes a first step towards a framework for signing arbitrary
graph data provided in RDF(S), Named Graphs, or OWL.
Our framework supports signing graph data at different lev-
els of granularity: minimum self-contained graphs (MSG),
sets of MSGs, and entire graphs. It supports iteratively sign-
ing graph data, e. g., when different parties provide different
parts of a common graph, and allows for signing multiple
graphs. Both can be done with a constant, low overhead
for the resulting signature statements, even when iteratively
signing.

1. INTRODUCTION
In order to track provenance and building trust networks

for knowledge-based systems, it is necessary to be able to
verify the authenticity and integrity of graph data by sign-
ing it. Authenticity and integrity are basic security require-
ments which ensure that graph data is really created by the
party who claims to be its creator and that any modifica-
tions on the data are only carried out by authorized parties.

To the best of our knowledge, the only solution for signing
graph data so far is the work by Tummarello et al. [1]. It
provides a simple graph signing function for so-called min-
imum self-contained graphs (MSGs). An MSG is defined
over statements. It is the smallest subgraph of the complete
RDF graph that contains a statement and the statements of
all blank nodes associated either directly or recursively with
it. Statements without blank nodes are an MSGs on their
own. Tummarello et al. provide an important early step for
signing graph data. However, their approach has significant
shortcomings regarding the functionality provided and over-
head required for representing the graph signature: First,
the signing function can be applied on MSGs only. To this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP ’13, June 23-26, 2013, Banff, Canada.
Copyright 2013 ACM 978-1-45-03-2102-0/13/06 ...$15.00.

end, the signature is attached to the MSG by using RDF
Statement reification. This requires significant overhead for
representing the signature statements. Second, it cannot
be applied on, e. g., sets of statements like ontology design
patterns or entire graphs. The approach does not support
signing Named Graphs or multiple graphs at the same time.
Finally, it does not allow for an iterative signing of graph
data as the signature statements become part of the signed
MSG. There is no explicit relationship between the signature
and the signed statements. This makes it practically impos-
sible to verify the integrity and authenticity of the graph
data.

In this paper, we present a framework for signing RDF(S)
graphs, Named Graph, and OWL graphs. The framework
is built upon canonicalization functions and graph hashing
functions such as [2, 3, 4]. A detailed description of the
framework including a formalization of the signing process
is presented in our TR [5].

2. SIGNING FRAMEWORK
Our framework can be configured, e. g., to optimize the

signing process towards efficiency or minimizing the signa-
ture overhead. The resulting signature graph is assembled
with the signed graph and can be published on the web. We
introduce three possible configurations of our graph signing
framework and discuss the different characteristics of the
configurations.

A) Tummarello et al [1] The first configuration uses a
canonicalization function and a hash function of Carroll [2].
Due to their complexity, the runtime complexity of the graph
signing function is O(n log n) and its space complexity is
O(n). Carroll’s canonicalization function handles blank node
identifiers by sorting all of a graph’s statements. Additional
statements are created for blank nodes sharing the same
identifier. With bh ≤ b being the number of such state-
ments, the canonicalized graph contains bh more statements
than the original graph. The approach by Tummarello et
al. only allows for signing a single MSG at a time. The sig-
nature is stored using six signature statements. Signing a
graph with r MSGs requires r signatures. This results in a
signature overhead of bh+6r statements for signing a whole
graph.

B) Minimum Signature Overhead Using the canonicaliza-
tion function and hash function of Fisteus et al. [3] leads
to a signing process with a minimum signature overhead.
Both functions have a runtime complexity of O(n log n) and
a space complexity of O(n). Thus, the runtime complexity
of the singing function σN is O(n log n) and the space com-

plexity is O(n). Since the functions of Fisteus et al. do not
create any additional statements, the signature overhead is
solely determined by s signature statements storing the cre-
ated signature. When m graphs are signed at the same time,
the m graphs are arranged using RDF bag. This results in
a total of s+ 2m signature statements.

C) Minimum Runtime Complexity Using the canonical-
ization function and hash function of Sayers and Karp [4]
leads to a minimum runtime complexity. In order to de-
tect already handled blank nodes, the the canonicalization
function maintains a list of additional statements created so
far. This list contains at most b entries with b being the
total number of additional statements. Assuming that each
statement of a graph can contain no, one, or two blank nodes
and that a blank node is part of at least one statement, the
graph can contain at most twice as many blank nodes as
statements, i. e., b ≤ 2n. This results in a space complexity
of O(n) of the graph signing function. The signature over-
head consists of b statements added by the canonicalization
function and s signature statements.

3. EXAMPLE OF SIGNING OF GRAPHS
We describes the use of our graph signing framework. The

examples refer to configuration B). Additional examples and
a scenario are presented in our TR [5]. In the scenario, the
German Telecom receives an already signed Named Graph
bka:bka-sg-1 from the German Federal Criminal Police Of-
fice (Bundeskriminalamt, BKA). This graph contains infor-
mation for regulating access to neo-Nazi material on the
Internet but does not describe how to implement this regu-
lation. Thus, the German Telecom adds its own RDF graph
_:gt-data-2 with implementation details such as a proxy
server and its IP address. It then signs _:gt-data-2 to-
gether with the received graph bka:bka-sg-1. This results
in a Named Graph gt:gt-sg-2 as depicted in Listing 1. The
graph contains the created signature statements (lines 2 to
5) as well as the two graphs _:gt-data-2 (lines 6 to 14) and
bka:bka-sg-1 (lines 15 to 21). The signature statements
cover the signature value (line 3) and the ISP’s public key
certificate gt:gt-pck-2 (line 4).

1 gt:gt-sg-2 {

2 gt:gt-sig-2 a sig:Signature ;

3 sig:hasSignatureValue "YXJlIGJlbG9uZyB0byB1cw==" ;

4 sig:hasVerificationCertificate gt:gt-pck-2 .

5 ...

6 _:gt-data-2 {

7 bka:pr-1 DUL:hasQuality gt:naq-2 .

8 gt:naq-2 a tec:NetworkAddressQuality ;

9 DUL:hasRegion gt:ipr-2 .

10 gt:ipr-2 a tec:IPv4AddressRegion ;

11 tec:hasIPAddress "141.26.83.115" ;

12 tec:hasSubnetMask "255.255.0.0" .

13 ...

14 }

15 bka:bka-sg-1 {

16 bka:bka-gsm-1 a sig:Signature ;

17 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZQ==" ;

18 sig:hasVerificationCertificate bka:bka-pck-1 .

19 ...

20 _:bka-pattern-1 { ... } _:bka-rules-1 { ... }

21 }

22 }

Listing 1: Example of iteratively signed graphs.

A primary school receives the graph gt:gt-sg-2 from the
German Telecom and another graph cw:cw-sg-3 from Con-
tentWatch. The graph cw:cw-sg-3 covers regulation infor-

mation about adult content such as Internet pornography.
The school adds its own regulation details as RDF graph
_:ps-data-4 including a proxy server run by the school. It
signs the graph _:ps-data-4 together with the two graphs
cw:cw-sg-3 and cw:cw-sg-3. This results in the Named
Graph ps:ps-sg-4 shown in Listing 2, containing the graph
_:ps-data-4 (lines 6 to 14), the German Telecom’s graph
gt:gt-sg-2 (lines 15 to 22), and ContentWatch’s graph cw:cw-
sg-3 (line 23). The school’s signature statements (lines 2 to
5) cover the created signature value (line 3) and the school’s
public key certificate ps:ps-pck-4 (line 4).

1 ps:ps-sg-4 {

2 ps:ps-sig-4 a sig:Signature ;

3 sig:hasSignatureValue "QWxsIHlvdXIgYmFzZSBhcmU=" ;

4 sig:hasVerificationCertificate ps:ps-pck-4 .

5 ...

6 _:ps-data-4 {

7 cw:pr-3 DUL:hasQuality ps:naq-4 .

8 ps:naq-4 a tec:NetworkAddressQuality ;

9 DUL:hasRegion ps:ipr-4 .

10 ps:ipr-4 a tec:IPv4AddressRegion ;

11 tec:hasIPAddress "141.26.83.116" ;

12 tec:hasSubnetMask "255.255.0.0" .

13 ...

14 }

15 gt:gt-sg-2 {

16 gt:gt-sig-2 a sig:Signature ;

17 sig:hasSignatureValue "YXJlIGJlbG9uZyB0byB1cw==" ;

18 sig:hasVerificationCertificate gt:gt-pck-2 .

19 ...

20 _:gt-data-2 { ... }

21 bka:bka-sg-1 { ... _:bka-pt-1 { ... } _:bka-rl-1 { ... } }

22 }

23 cw:cw-sg-3 { ... cw:cw-rl-3 { ... } }

24 }

Listing 2: Example of multiple signed graphs.

4. CONCLUSION
Our framework allows for signing multiple and distributed

RDF(S) graphs, OWL graphs, and Named Graphs. It sup-
ports signing together A-box and T-box knowledge of differ-
ent granularity such as single MSGs, ontology design pat-
terns, and whole graphs. We have discussed three different
configurations of the signing framework and have presented
an implementation based on TriG [6]. The complete exam-
ples as well as a signature ontology are available from: http:
//icp.it-risk.iwvi.uni-koblenz.de/wiki/Signing_Graphs.

5. REFERENCES
[1] Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.:

Signing individual fragments of an RDF graph. In:
WWW, ACM (2005) 1020–1021

[2] Carroll, J.J.: Signing RDF graphs. In: ISWC 2003,
Springer (2003) 369–384

[3] Fisteus, J.A., Garćıa, N.F., Fernández, L.S., Kloos,
C.D.: Hashing and canonicalizing Notation 3 graphs.
JCSS 76 (2010) 663–685

[4] Sayers, C., Karp, A.H.: Computing the digest of an
RDF graph. Technical report, HP Laboratories (2004)

[5] Kasten, A., Scherp, A.: Iterative signing of RDF(S)
graphs, named graphs, and OWL graphs: Formalization
and application. Technical report, University of
Koblenz-Landau (2013) http://www.uni-koblenz.de/
~fb4reports/2013/2013_03_Arbeitsberichte.pdf.

[6] Bizer, C., Cyganiak, R.: The TriG syntax (2007) http:
//www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/.

