Empowering Automatic Data-Center Management with Machine

Learning

Josep Ll. Berral, Ricard Gavalda, Jordi Torres
Universitat Politecnica de Catalunya and Barcelona Supercomputing Center
Jordi Girona 31, 08034 Barcelona, Spain
berral@ac.upc.edu, gavalda@Isi.upc.edu, torres@Qac.upc.edu

Abstract

The Cloud as computing paradigm has become
nowadays crucial for most Internet business mod-
els. Managing a cloud and optimizing its per-
formance on a moment-by-moment basis is not
easy given as the amount and diversity of elements
involved (hardware, applications, workloads, cus-
tomer needs...). Here we show how a combi-
nation of scheduling algorithms and data mining
techniques helps improving the performance and
profitability of a data-center running virtualized
web-services. We model the data-center’s main
resources (CPU, memory, 1/0), quality of service
(viewed as response time), and workloads (incom-
ing streams of requests) from past executions. We
show how these models to help scheduling algo-
rithms make better decisions about job and re-
source allocation, aiming for a balance between
throughput, quality of service, and power consump-
tion. We test our approach first with real data and
web-services on a data-center simulator, and fur-
ther validate it in a real execution on a reduced
scale cluster running the OpenNebula virtualiza-
tion platform.

1 Introduction

Cloud Computing, the new paradigm of distributed
and clustered computing, has become a crucial
model for the Internet architecture towards the ex-
ternalization of information and IT resources for
people and organizations. It brings the possibility
of offering “everything as a service” (platform, in-
frastructure, and services), allowing companies to

move their IT, previously in private owned data-
centers, to external hosting. But the control and
optimization of these infrastructures is not easy, as
many elements and actors interact and influence its
profitability, performance, and power and resource
consumption.

We distinguish three main actors: The data-
center manager, or cloud service provider, wants
to maximize its final revenue by optimally using
the physical and virtual resources she has provi-
sioned; to this end she has a certain freedom to
allocate his customer’s tasks to physical and vir-
tual resources over time. Cloud customers want
to run their services on the cloud; in order to do
this, they negotiate with the the cloud provider a
certain amount of Quality of Service (QoS) or Ser-
vice Level Agreements (SLA) that they deem suf-
ficient for their desired level of client satisfaction.
An example customer would be the owner of an
e-shop wishing to offer the shop as a web-service.
Clients are remotely connecting to the customer’s
web-services, e.g., browsing the e-shop and possi-
bly purchasing from it. In this work we mostly
take the manager’s view and explore the following
trade-off: we must provide sufficient resources to
the customer’s web-service to meet the agreed QoS
and SLA, but no more, as any allocated resource
beyond that incurs in extra costs, mainly power
consumption.

In order to make decisions matching services and
resources, as managers we may use low-level mea-
surements (resource, power, and operating system
monitors) and high-level data (user behavior and
service performance such as uptime, response time
and availability). Here we model the cloud sce-
nario as a set of data-center resources and a set

of web services, each resource with a maximum
quota of usage and energy requirements, and each
service with resource requirements (load per time
unit), performance requirements, and an execution
reward. The management and decision making
consists on placing each service on a hosting ma-
chine that assures the availability of the required
resources, and that the other services being hosted
in the host do not compete excessively for these
available resources. A good strategy used often
is consolidation: attempting to set the maximum
number of services in the least viable amount of
hosting machines, so the number of running ma-
chines and resources is minimized. Consolidation
has been made much easier with the emergence of
virtualization, a mechanism to box jobs in virtual
machines that can run in mutual isolation in the
same physical machine and moved across machines
when necessary.

The decision-making process for optimal alloca-
tion of tasks and resources should obviously im-
prove if we can exploit the information from the
system status to make predictions about future evo-
lution and about the consequences of our decisions.
As many of the parameters and functions involved
in this optimization problem are unknown a prior:
and vary over time, explicit modeling is very diffi-
cult, and data mining and machine learning meth-
ods are a more viable option. We will use these
techniques to create models from past experience,
and in particular models for each element in the
system (an application type, a workload, a physi-
cal machine, a high-level service requirement). We
can then plug these models into traditional (or not
so traditional) scheduling techniques for optimizing
system performance according to our goals. Addi-
tionally, model building should not take place once
and for all, we should keep them updated, and re-
vise them using real execution data.

In this work we present a methodology for us-
ing machine learning techniques (ML) to model the
main resources of a web-service based data-center
from low-level information, and learn high-level in-
formation predictors to drive decision-making algo-
rithms for virtualized job schedulers, without much
expert knowledge or real-time supervision. For
a given web service application, we build models
to predict features such as minimum CPU usage,
memory occupation and bandwidth status, and de-
pendence on workload volume. For quality of ser-

vice elements, such as response time, a model can
predict their dependence on the resources allocated
to the task and the low-level monitored quantities.
All in all, the problem to solve is to decide the
effects of resource allocations on hosts using con-
solidation towards services QoS and on power con-
sumption. To test the approach we prepare ML
models of CPU, memory, and bandwidth from a
real system and real workloads; we compare a set of
ad-hoc and off-the-shelf algorithms for scheduling,
with and without using predictive ML functions in
a realistic simulator. Then we also validate the al-
gorithms and models on a real data-center using
the virtualization platform OpenNebula [13].

This work is organized as follows: Section 2
presents previous work in this area. Section 3 de-
scribes the architecture of the scenario. Section 4
shows the models and algorithms used. Section 5
explains the machine learning models. Section 6 de-
scribes the models and experiments for quality of
service prediction. Finally, Section 7 summarizes
conclusions and future work.

2 Related Work

There are relevant previous works on autonomic
computing and data-center management using ma-
chine learning techniques to predict behaviors or
determine usefulness of policies. Approaches like
the ones presented by Vengerov et al. [19], Tesauro
et al. [16], Tan et al. [15] and Kamitsos et al. [11],
use Reinforcement Learning algorithms to manage
resource allocation and power consumption; specifi-
cally techniques like Q-learning, SARSA and MDP
explained in Sutton et al. [14], to select policies
to be applied at each time. Other works focus on
resource status prediction, like Dhiman et al. [6]
applying ML to select policies for specific resources
like hard disk and network states. Andrezejak et
al. [2] use fuzzy logics to predict resource usage,
and Vienne et al. [20] use RL for predicting lev-
els of quality of service on data-center resources
management. Also, ML is also used to detect fail-
ures on resources and manage fall-back policies.
Alonso et al. [1] apply ML and regression meth-
ods to learn to detect memory bugs from hosting
machines, and predict the time to crash of it; and
works like Hamerly et al. [9] predict failures for disk
drives using Bayesian predictors. Almost all the

current approaches, as far as we know, are oriented
towards learning the consequences of using policies
on determined states of the cloud or its elements.
Here we are focusing on learning resource models
and environment models, using them to supply ac-
curate on-line information to decision makers.

Most of the current works on modeling the cloud
present ad-hoc systems or specific expert knowl-
edge. Chase et al. presented MUSE [5], a frame-
work for modeling and autonomically control cloud
hosting centers and its policies. The approach is
based on an economical managing for scheduling
jobs to resources, where hosts and jobs bid for re-
sources, and elasticity is allowed taking into ac-
count penalties for not fully attended resources.
Also, other works like Goiri et al. [7] present a
similar way to model the cloud, where each policy
to be applied on jobs and resources is represented
by a set of conditions with rewards and penalties,
based on the job objectives and the resource ca-
pabilities. The modeling in their approach focuses
on Service Level Agreement (SLA) between the re-
source provider and the customer. Based on the
idea of modeling resources and requirements from
these works, Berral et al [3] modeled a data-center
using a mathematical program, used to optimize
virtual machine scheduling on a data-center from
learned resource behaviors and jobs requirements.
Our work here goes substantially beyond that, since
then we considered only one resource (CPU usage)
while here we model all the main resources on the
data-center. This makes the problem multidimen-
sional, and it remained to be shown whether ML
techniques can capture in a useful way the subtle
interactions among resources. For example, when a
task runs out of memory and resorts to swapping,
CPU consumption will dramatically decrease (for
no apparent reason, if looking only at CPU con-
sumption). If several tasks in the same physical
machine compete for bandwidth, again each of it
will slow down in CPU, etc. Additionally, we test
our approach both by simulation and on a small
but totally real environment, instead of only on a
simulated one.

All the current approaches using ML for resource
management, as far as we know, are oriented to-
wards learning the characteristics of specific com-
ponents or towards evaluating the consequences of
using policies on given states of the cloud or its
elements for HPC jobs. Here we focus on learn-

ing component behaviors as a way to improve the
decision-making process in resource allocation and
web-service job placement, instead of learning poli-
cies for components or global systems.

3 Managing Data-Centers

3.1 Service Data-center Architec-

ture

Typical commercial data-centers are designed so
that customers can run web-services running with-
out knowing details of the infrastructure. Cus-
tomers pay the providers on a usage-basis, and
providers ensure that the web-services will be
running according the Service Level Agreements
(SLA), negotiated by customers to accommodate
their clients requests at sufficient satisfaction level.
The data-center contains physical computing ma-
chines (PM), and each one holds virtual machines
(VM) containing data and services from different
customers. Virtualization is used to ensure iso-
lation of customer and client contents, privacy of
sensitive data, and allow for VM and service mi-
gration among PMs. Figure 1 shows the business
infrastructure.

Pay for resources || QoS
I’ \

Data-Center resource provider Customer <

Pay for use services

Clients

\ \
| rﬁkﬁ\)

[‘;\

Wil

Filesand
Web Services

Virtual Machines
(one per user)

Physical
Machines

Cloud and Data-Center

Figure 1: Data-center business infrastructure

The provider enables a VM for each customer,
adjusts the granted resources for the web-service
given the QoS, and set it into a PM with these
available resources. His goal is to maximize the
profit of each VM fulfilling the QoS and reduce the
cost of running resources. For this, consolidation
is a technique consisting on filling PMs with most
VMs as possible and shutting down empty PMs,
reducing energetic consumption.

Typical measures of Quality of Service on web
sites are the average response time (RT) for web

queries, the web site uptime and the ratio of sat-
isfactory replies. The RT (focused as quality mea-
sure in this case of study) is affected directly by
the amount of resources given to the VM and the
amount of requests and clients received by the web-
service. Also uptime can be considered as “accept-
able RT” or “timed out request” from the client
point of view. If a service receives insufficient re-
sources than the required for handling a given load,
the reply to the user web query will be slower;
but over-granting resources to it will not imply a
quicker reply.

The web-services this work focuses on are web
applications, with a typical stack formed by the
Operating System, the web server, the app en-
vironment, and the data-base server, like e.g.
GNU/linux OS + apache server + PHP + MySQL.
Each VM contains a replica system with this infras-
tructure, so customers add their services on the web
server. Also we focus on the basic resources found
in a data-center (CPU, memory and input/output
network).

3.2 Information Monitoring

Middleware software such as OpenNebula [13], Eu-
caliptus [12] or EmotiveCloud [17] is typically used
in cloud-like architectures in order to manage PMs,
VMs, network elements and traffic. We will rely
on the existence of some such middleware both for
sensing (collecting high- and low-level data) and for
acting (managing tasks, workloads, and VM and
PM resources). Figure 2 shows the typical cloud
middleware infrastructure. An agent on each PM
controls VMs and monitors PM resources and VM
requirements; the decision maker, on a Director
Machine, reads all monitored lectures and makes
decisions on a MAPE control loop [5]; also an agent
on the Gateway receiving orders to redirect traffic
and also monitor itself as part of a possible traffic
bottleneck, also monitor RT (and so QoS) for each
VM.

At scheduling time, we are interested on obtain-
ing as much system information as possible, so
knowing the requirements of each VM, availabil-
ity of each PM, and RTs obtained from current
loads and scheduling. Monitors get the load and
resources from hosting machines and VMs, obtain-
ing the following set of attributes per time unit:
timestamps; number of requests; average response

Front-end /
Gateway /
Load balancer

Clients

=

P

M

‘ﬁ

Virtual
Machines

Virtualization

) | Resource Manager Scheduler
Middleware —
VM Manager VM Manager VM Manager

Physical
Infrastructure

Distributed File System

Figure 2: Virtualization middleware schema

times; average requested bytes; and resource usage
and bandwidth.

This information can be grouped in two classes:
Load (#requests, response time per request, bytes
per request), and resources (CPU, memory, and
bandwidth, both at the PM and VM levels, and
both requested and granted). Further, other useful
information or attributes can be derived from the
obtained from monitors, like the time elapsed from
last time unit (previous measures and current mea-
sures); any load or difference of load respect the last
time unit; any resource or difference of resources
respect the last time unit; and any aggregation of
resources on VMs, PMs or gateways.

3.3 Modeling and Prediction

When making decisions in this context, often the
required information 1) is not available, 2) is avail-
able but highly uncertain, or 3) cannot be read be-
cause of privacy issues. Examples of the three cases
occur when reading from both PMs and VMs, and
information coming from VMs is extremely deli-
cate to handle and interpret. First, observed re-
source usage often differs a lot if monitored at the
PM level and at the VM level. VM apparent CPU
usage is affected by its stress level and the virtu-
alization software overhead. Secondly, monitors on
the PM may read information of consumption rel-
ative to available resources, e.g. if a VM is running
alone in a PM, consuming 25% effective CPU, but
having CPU quota ~ 100%, as the virtualization
agent has all the CPU for itself or it runs its own

VM-inside IDLE process. And third, pinning the
VM to read information from its internal system log
could be against the customer privacy, as property
of the data and code inside the VM.

In order to solve these lacks of information and
uncertainty, we employ here Machine Learning
(ML) methods. ML is a subfield of Data Mining in
charge of creating (mostly predictive) system mod-
els automatically from real examples of observed
past behaviors. We base our work in a ML hypoth-
esis:

Hypothesis 1 For each situation, there may be a
model obtained by careful expert modeling and tun-
ing better than any ML-learned model. But, for
each situation, ML can obtain semi-automatically a
model which is as good as or better than a generic
model built without intensive expert knowledge or
intensive tuning work.

The advantage of ML over explicit expert model-
ing is when systems are complex enough that no
human expert can explore all relevant possibilities,
when no experts exist, or when system changes over
time so models must be rebuilt periodically or re-
actively to changes. So in this work we use these
ML modeling and prediction techniques in order to
obtain accurate models of the data-center we are
managing, and predict information and behaviors
to manage it properly.

4 Methodology

4.1 Framework Schema

The first contribution of this work is to model
the VM and PM behaviors (CPU, Memory and
I0) from the amount of load received, to be pre-
dicted on-line, boosting the decision making algo-
rithm (here the PMxVM scheduler) with extra in-
formation. By learning a model of the function
f(load) — E[CPU,MEM,IO], lectures from in-
side the VM can be replaced, and predict the esti-
mated effective resources required by a VM depend-
ing only on its received load without interferences
of stress on the VM or occupation on the PM or
network.

The second contribution is the prediction of the
QoS variables (this is, the RT). When the scheduler
has to make decisions on where to place each VM

depending on the expected resource usage, min-
imization of power consumption will consolidate
VMs in PMs. Giving each VM always the maxi-
mum resources would not consolidate resources as
much as could be, and giving each VM less than the
minimum required given the load would degrade
the RT. By learning a function expecting the RT
from placing a VM in a PM with a given occupa-
tion f(status,resources) — E[RT], scheduler can
consolidate VMs without risking the RT in excess,
and grant resources playing safe.

Figure 3 shows the information flow and elements
composing our decision making schema. From past
monitoring information we obtain a model for load
versus CPU, MEM and I/O consumption for each
VM /web-service (or each kind of). Also we obtain
a model for load and context vs RT. Then the de-
cision maker, powered by current on-line monitor-
ing information plus model predictions, creates the
next schedule for VMs, using some classic fitting
function like “always give maximum resources” or
using the RT prediction by playing with tentative
resource grants.

Using ML to
schedule

Traditional
techniques

Past Data for learning Model Fitting

Monitoring modefs Qos function
Stats sbout Conditions
to allpcate
A A
stats Model | Stats about VM

System Create

Monitoring

CPU/MEM/IO

Decision Maker Schedule

Stats about System

Figure 3: Information flow schema using models

4.2 Architecture Details

Measuring the QoS. Quantifying the quality of
service as perceived by the end client is a highly
complex issue, with psychological factors as impor-
tant as technological ones. It is clear, though, that
Response Time (RT), the amount of time our data-
center requires to reply a request, is a central ones.
Indeed RT is typically a main character in Service
Level Agreements, which are in some sense the con-
tracts where provider and customer commit to a
common notion of QoS. Here we make the simpli-
fying assumption that SLA fulfillment, is strictly
a function of RT; further factors such as uptime
rate could be added to our methodology, as long as

they are measurable from monitored data. To be
specific, here we measure the RT on the data-center
domain and network, not at the client side since he
may use unpredictable thinking time and he may
have a slow machine or connection at his end.

A common “Response Time to QoS function” in
SLAs is to set a threshold « and a desired response
time RTy, and set SLA fulfillment level to

1 if RT < RTy,
SLA(RT) =<1 - a?;TTO if RTy < RT < o - RTy,
0 if RT > a - RTy

that is, the SLA is fully satisfied up to response
time RTp, totally violated if it exceeds «- RTj, and
degrades linearly in between. We use this func-
tion for simplicity in our experiments, but this is a
nonessential choice.

Power Consumption. Several costs can be
considered from running a data-center (construc-
tion, maintenance, power consumption, ...), but
the most important directly related to the resource
usage is power consumption. Multiprocessor com-
puters have the advantage that their energetic con-
sumption depends primarily on the CPU usage,
and once on-line, increasing load does not make
consumption to grow linearly. E.g. in a Intel
Xeon 4-CPU machine, the power consumption (in
Watts/hour) when all CPUs are in idle state is 235,
and 267.8, 285.5, 302.5, and 317.9 when 1, 2, 3,
and 4 CPUs are active. This implies that two such
machines using one processor each consume much
more energy than a single machine executing the
same work on two (or even four) processors and
shutting down the second one. This explains the
potential for power saving by consolidation.

4.3 Scheduling Algorithms

Following the schema from MUSE [5] and Berral et
al., [3], the data-center benefit optimization prob-
lem can be formulated as a Mixed Integer Program,
which can be made linear if the elements in it are
themselves linear. In short, the function to be max-
imized is the sum of:

e the income from customers from executed jobs,

e minus the penalties paid for SLA violation,
typically a function of the SLA fulfillment level
as described above,

e and minus the power costs, which we can take
as the sum of power consumed by all machines
during the times are turned on, times the cost
of a power

The function reflects the trade-off we have been
discussing so far: one would like to have as many
machines turned on as possible in order to run as
many customer jobs as possible without violating
any SLA, but at the same time to do this with
as few machines as possible to reduce power costs.
The unknowns of the program describe which tasks
are allocated to each PM, and how resources of each
PM machine are split up among the tasks allocated
to it. Constraints in the program link these vari-
ables with the high level values (degree of SLA ful-
fillment, power consumption). The point of our
methodology is that the functions linking the for-
mer to the latter are, in many cases, learned via ML
rather than statically decided when writing up the
program. The details are omitted here, for space
reasons. They are similar to [3], except that, as
mentioned, we consider several resources instead of
CPU only.

Such Mixed Integer Programs can be in the-
ory solved exactly via exhaustive solvers, but due
to its exponential cost in the number of variables
and constraints, this becomes unfeasible for realis-
tic settings. Here we use approximate, heuristic,
and faster algorithms: the generic for bin pack-
ing problems, Ordered First-Fit and Best-Fit al-
gorithms [18]. We also use two the BackFilling
and A-Round Robin algorithms [7], specialized for
load-balancing via consolidation. Algorithms are
depicted in Algorithms [1,2,3,4].

All such algorithms use as an oracle some “fit-
ting function” used to evaluate how well a VM
“will fit” into a PM which has already been as-
signed some VMs. We propose to substitute the
conventional fitting functions by the learned func-
tion mapping tasks descriptions and assigned func-
tions to response times. This predicted time in turn
is monetized, via the SLA fulfillment function, into
a predicted SLA economic penalty, hence into its
effect on the function to be maximized.

5 Learning Models

The following subsections explain each modeling
and Figure 1 shows the numeric results for each one.

Algorithm 1 A\-Round Robin algorithm

Algorithm 4 Descending Best-Fit algorithm

for each vm i:
get_data(i);
res_quota[i] <- get_required_resources(i);
for each host j:
res_avail[j] <- get_total_resources(j);
numHosts <- calculateNumHosts(res_quotal],lambda);
c_host <- 1;
for each vm v:
visited <- 1;
while (not fit(res_quotalv],res_availlc_host])
and visited <= numHosts)
c_host <- (c_host + 1) % numHosts;
visited <- visited + 1;
if (visited <= numHosts)
assign_vm_to_host(c_host,v);
update_resources(res_avail[c_host],v);
else :
assign_vm_to_host(null_host,v);

Algorithm 2 Backfilling algorithm

for each vm i:
get_data(i);
res_quotali]

for each host j:
get_data(j);
res_avail[j] <- get_available_resources(j);

order[] <- order_by_empty(hosts,res_availll);

for each host h in order[]:
for each vm v in host h:

k <- numHosts;
1 <- index_of (h,order[]);
stay <- true;
while (k > 1 and stay)
c_host <- order[k];
if (fit(res_quotalv],res_availlc_host]))
move_vm_to_host (c_host,v);
update_resources(res_avail[c_host],v);
stay <- false;
k--;

<- get_required_resources(i);

Algorithm 3 Descending First-Fit algorithm
for each vm i:
get_data(i);
res_quota[i] <- get_required_resources(i);
for each host j:
res_avail[j] <- get_total_resources(j);
order[] <- order_by_demand(vms,res_quotal],desc);
for each vm v in order[]:
for each host h and #processors:
if (fit(v,h,p,res_quotalv],res_availlh]))
assign_vm_to_host(c_host,v);
update_resources(res_avail [c_host],v);
continue next vm;

Note that to obtain accurate data from the resource
usage all measures are taken on a VM running alone
in a test run in wvoid, without other VMs or jobs
in the PM. The learned models must include only
the VM behavior with the virtualization overheads.
We used the popular WEKA [8] machine learning
package for all our learning tasks. We tested differ-

for each vm i:
get_data(i);
res_quota[i] <- get_required_resources(i);
for each host j:
res_avail[j] <- get_total_resources(j);
order[] <- order_by_demand(vms,res_quotal],desc);
for each vm v in order([]:
best_profit <- 0;
c_host <- 0;
for each host h and #processors:
profit <- profit(v,h,p,res_quotalv],res_availl[h]);
if (profit > best_profit)
best_profit <- profit;
c_host <- h;
assign_vm_to_host(c_host,v);
update_resources(res_avail[c_host],v);

ent regression methods (LinReg, SVM, M5P...) for
each model, with tuned parameters, selecting the
simplest model among the ones that bring the best
or almost-best results.

5.1 CPU Prediction

CPU is the main element in resource brokerage. To
serve incoming requests, the VM running a web-
service will demand CPU depending mainly on the
amount of requests. From the monitors we can ob-
tain, for example, the current number of requests
per time unit F[requests], the average time per re-
quest E[timepr], and the average number of bytes
exchanged per request, E[bytespr]. The function to
be learned, one for each type of PM in the data cen-
ter, maps E[requests|, E[bytespr], and E[timepr]
to some figure E[cpuvm] denoting the expected per-
centage of the PM CPU that will be used by the
VM in these circumstances. Other predictive vari-
ables can be added to the function, but these are
the ones we found significant in our specific exper-
iments.

In order to learn this function, we used a M5P
algorithm [8], a decision tree holding linear regres-
sions on its leaves. The choice makes sense, as CPU
consumption may be in significantly different load
regimes, but reasonably linear in each.

5.2 Memory Prediction

The second resource to model is the Memory allo-
cated to the VM. Unlike other resources, memory
consumption has... memory, that is, the memory
used at any given moment cannot be determined

or even approximated from the currently observ-
able measures, but strongly depends on the past
evolution. This is because because virtualization
software, operating systems, the Java Virtual Ma-
chine, application servers, and databases typically
will initially request large chunks of memory for
buffering and caching, which is retained until some
limits are reached, when memory space is reorga-
nized by flushing caches, freeing unused elements,
and general garbage collection. These changes are
known to be nightmarishly difficult to model explic-
itly. At this stage, we propose to learn to predict
the amount of used memory memuvm; used at the
t-th measurement as a function of memvm;_1 and
the variable describing the load, say E[requests],
E[bytespr], E[timepr]; we have investigated a sim-
ple model

5.4 SLA Prediction

Finally, we need to predict the expected SLA ful-
fillment levels given a placement of VM’s in PM’s
and resource allocation within each PM. Our deci-
sion making method (allocator) is based on a fitting
function that predicts the degree SLA fulfillment of
a VM (a figure within 0 and 1) from its load param-
eters and its context, i.e., the features of the PM
where it is currently or tentatively placed, the load
parameters of the VM in the same PM, and the
amount of physical resources currently allocated to
each VM.

As explained, we made the simplifying assump-
tion for the moment that SLA fulfillment depends
exclusively on response time, RT, via a known and
simple function. The task is thus to learn a function
relating a high-level measure, response time, to low-
level measures, such as number of requests, bytes

memuvmy = o - memumi— + (1 — a) - f(Loads, AT, memvmi—1)per request, CPU, memory, and bandwidth used

with AT being the real time between measure-

ments ¢t and ¢ — 1, and o about 0.9 in our ex-
periments. We observed that linear regression of
this form gave reasonable results. Obviously, more
complex models with nonlinear dependencies and
longer memory are up for research.

5.3 Bandwidth Prediction

The final resource we model is the network band-
width used by each VM. VM’s in a PM usually
share the network interface, which implies that all
VMs dump and receive data directly from the same
physical interface. PM traffic is then the sum of all
VMs network packets plus some extra PM network
control packets. This traffic also includes the data
transfer from external file system servers, some-
thing common in commercial data-centers, imply-
ing that the usage of disk requires network.

We then would like to learn a function returning
the expected number of incoming and out-coming
packets at a PM as a function of the sums of load
parameters E[requests], E[bytespr], E[timepr] of
the VM’s allocated to it. After experimenting with
several different models (LinReg, decision trees,
SVMs), we again selected the tree-of-models M5P
algorithm because of its results.

by each VM. Most importantly, we are predicting
the response time if we (hypothetically) placed VMs
in a particular candidate way that the scheduling
algorithm is currently considering among others.
Therefore, we do not really have most low level
measures: we will instead use the predictions by
the respective learned models discussed before.

For this prediction stage, we use again the M5P
method, since simple linear regressions were in-
capable of representing the relations between re-
sources and RT.

6 Experiments

6.1 Environment Description

We have performed different test to demonstrate
how ML can match or improve approximate and
ad-hoc algorithms using explicit knowledge, and to
validate the models on real machines. The exper-
iments have been performed using real workloads
for the model learning process, an analytic simu-
lator to compare the different ML-augmented al-
gorithms, and real hosting machines for the model
validation.

A set of Intel Xeon 4 Core machines (3Ghz,
16Gb RAM) have been used as test-bed, running
jobs of kind [Apache, PHP, MySQL] in a virtual-
ized environment [Ubuntu Linux 11.10 SE, Virtual-
Box v3.1.8]. Also, to test the ML-augmented algo-

ML Method Training Validation MRE MAE StDev Data range
Predict CPU M5P (M = 50) 3968 inst 7528 inst 0.164 2.530% 4.511 [2.37,100.0]% CPU
Predict MEM Linear Reg. 107 inst 243 inst 0.0127 4.396 MB 8.340 [124.2,488.4] MB
Predict IN M5P (M = 30) 1623 inst 2423 inst 0.193 926 Pkts 1726 [56, 31190] #Pkts
Predict OUT M5P (M = 30) 1623 inst 2423 inst 0.184 893 Pkts 1807 [25,41410] #Pkts
l Predict RT [M5P (M = 4) 38040 inst 15216 inst 0.00878 9.9 ms 0.0354 [0,2.78]s, RT 17ms l

Table 1: Learning details for each predicted element. All training processes are done using random split of

instances (66/34)

rithms, we performed a full test using the workload
against an analytic simulation of our data-center, a
R version of the cloud simulator EEFSIM made by
Julia et al. [10]. The simulator allowed us to test
different configurations and models before validat-
ing the model on a real data-center, also recreate
big scenarios easily.

The workload used corresponds to the Li-BCN
Workload 2010 [4], a collection of traces from dif-
ferent real hosted web-sites offering services, from
file hosting to forum services (deployed on Apache
v2.1 with an hybrid architecture). These web-
applications correspond to a set of customers run-
ning their services in a virtualized environment.

To price each element involved on our minimiza-
tion function, we established that providers behave
as a cloud provider similar to Amazon EC2, where
users will rent some VMs in order to run their
tasks. The pricing system for the VMs is similar to
the one EC2 uses and medium instances with high
CPU load are assumed. We fixed their cost to 0.17
euro/hour (current EC2 pricing in Europe), and
the power cost to 0.09 euro/KWh (representative
of prices with most cloud-providing companies).

As a parameter defining the QoS, we used the
response time at the data-center exit gateway.
The jobs on workload have as RTy the values €
[0.4,1.2]s (each job can have different SLA terms),
as experiments on our data-center showed that it is
a reasonable response value obtained by the web
service without stress or interferences. The ini-
tial o parameter is set to 1 (SLA fulfillment is 0
if RT > 2RTy).

6.2 ML-augmented scheduling algo-
rithms

In the following experiments we compare the A-
RR algorithm, First Fit and Best Fit algorithms,
these two last ones with and without ML added
functions. Their basic versions require expert in-

formation on the models and the fitting function.
E.g. checking if a VM fits in a PM requires get-
ting the VM CPU usage and add at least +20%
of virtualization overhead, while the ML version
uses the VM CPU as a parameter of the RT pre-
diction function without pre-known factors. The
same happens with the memory, as instead of mul-
tiplying the VM memory per 2 as memory caching
overhead, the predictor uses this value without ex-
tra knowledge. Further, each version with ma-
chine learning uses the learned function RT as a fit-
ting function E[RT,,] > RT) um or profit function
SLA(E[RT,m], RTo,4m), while the others use as fit-
ting function cpupmy + cpuvmyy,, < MaxzCPUj
and mempmy, + memomey, < MaxM EMj},.

These comparative experiments are simulator-
based, running 20 VMs containing web-services in
a data-center of 20 machines with 2 or 4 cores,
for a 24 hours workload, and scheduling rounds of
1 hour. Data monitoring and statistics are taken
each 10 minutes, and the measures used to perform
each schedule are the ones taken previously to the
scheduling round flank. Table 2 and Figure 4 show
the results.

=
o

25

1.5 20

Benefit (Euros)

1.0

0.5
1

L) 5 10 15 20 25

Time (Hours)
First-Fit
First-Fit+ ML

Lambda-RR
BackFilling

- Best-Fit
— Best-Fit+ML

Figure 4: Evolution of the revenue per algorithm
From the results we observe that the versions

using the learned model perform similar or better
than the versions including expert knowledge, and
they approach relatively well to the ad-hoc expert
algorithms, backfilling and A-RR, using the optimal

Benefit (euro) Avg.Consumption (watt) Avg.QoS Total Migrations Avg.Used PMs/hour
A-RoundRobin 33.94 2114 0.6671 33 9.416
BackFilling 31.32 1032 0.6631 369 6.541
First-Fit 28.77 1874 0.5966 139 6.542
First-Fit + ML 29.99 1414 0.6032 153 5.000
Best-Fit 29.85 778 0.5695 119 2.625
Best-Fit + ML 31.771 1442 0.6510 218 4.625

Table 2: Comparative of algorithms from the relevant business model values

configurations for this kind of data-center, calcu-
lated in [7]. While ML version of the approximated
algorithms are better than their expert-knowledge
versions, the Best Fit + ML approach is close to
the ad-hoc expert algorithms in QoS and benefit.

6.3 Validation on Real Machines

After the initial experimental check on the simu-
lated data-center, we moved to validating and test-
ing the method in a real environment. The set-up
consists in a small workbench composed by 5 In-
tel Xeon 4core machines, 3 as data-center nodes,
1 as gateway and 1 attacking machine reproduc-
ing client requests, in a different data-center than
the previous training experiments. The virtualiza-
tion environment is the same as in ML training and
testing (Oracle VirtualBox), and as virtualization
middleware framework we use OpenNebula, replac-
ing the default scheduler by our own, having im-
plemented on it our policies and algorithms. We
introduce on the system 10 VMs, each one contain-
ing a replica of the LiBCN10 imageboard website.
Also for each VM, an attacker is launched replicat-
ing the load of a whole day scaled by 100-300 times
to reproduce heavy load (using different days and
scaled different for each VM in order to create some
diversity on traffic). We ensured that all of CPU,
memory, and bandwidth overload occur separately
and in combination in our benchmarks, to test the
full spectrum of prediction models.

We used physical machines with the same archi-
tecture than those used for the training, so that we
could import the learned models for CPU, mem-
ory, and I/O. The Response Time model had to
be learned again, as the network environment and
topology were different and response time certainly
depends on them. We observed that linear regres-
sion, in this case, seemed to perform significantly
worse than before. We trained a nearest neigh-
bor model, which recovered the previous perfor-
mance. Let us recall that the contribution we want

to emphasize is not the particular models but the
methodology: this episode suggests that, method-
ologically, it is probably a good idea to fix on any
particular model kind, and that upon a new en-
vironment or system changes, several model kinds
should be always tested.

For this validation experiments we run Best-Fit
against its ML-augmented version in this reduced
environment. Figure 5 presents the results. We
can see that best-fit considers that all VMs will
fit in CPU and Memory (virtualized and physi-
cally) in one machine, which degrades RT. The
ML approach, instead, is able to detect from low-
level measures situations where RT would not be
achieved (because of CPU competition, but also
because of memory exhaustion and network/disk
competition), hence migrating sufficient VMs to
other machines where, for example, network inter-
faces not so loaded.

Service Level Agreement fulfillment

(=)
: T_"I_H‘" ‘ | |'| I| \llll |i| || /_|| |'I | \j f a I
= m,,? \ w iy f \/ Il.'
b AR 'M'}J F kv
5 (=] | ‘H | | S
o = |
=1 | |‘
i 'l
=1
= T T T T
0 20 40 60 80
Time (step=10 minutes)
Physical Machines used
(=]
“ ‘ 1] \ Tl i
| T 1‘|| TR |/
[o | Il [
o | [| I
B 7
° f
2 o
— BF-noML
. — BF+ML
= T T T T
0 20 40 60 80

Time (step=10 minutes)

Figure 5: BF-noML against BF+ML SLA (based
on response time) and machines used

We observe that the ML-augmented versions of
Best-fit and First-fit improve the final figure (rev-

10

enue) over their non-ML counterpart, and gets
closer to the revenue of ad-hoc algorithms such as
A-RR, which needs to be parametrized and tuned
by the administrators. Not reported here, for space
reasons, is the fact that these ML-augmented ver-
sions can automatically adapt to changes in task
execution prices, SLA penalties, and power price
as shown on [3]. Adapting the ad-hoc algorithms
to these changes requires expert (human) interven-
tion, and is simply unfeasible in the highly changing
scenarios envisioned for the future, where virtual
resources, SLA penalties, and power prices will in-
teractively and constantly be in negotiation, for ex-
ample by means of auctions and automatic agents.
In fact, the ML hypothesis can be verified, as for
any fized parametrization of A\-RR, there will be
some scenario where a real-time, on-line learned
ML-model will perform better.

7 Conclusions

In this work we presented a methodology for mod-
eling cloud computing resources of a web-service
based data-center using machine learning, obtain-
ing good predictors to empower and drive decision-
making algorithms for virtualized job schedulers,
without the intervention of much expert knowledge.
Using these models, CPU, memory, input/output
and web-service response times can be predicted, so
classic scheduling generic algorithms such as First-
fit and Best-fit can use predictions to make more
accurate decisions driven by goal functions (SLA
depending on response times). This is a more
economical and sustainable solution than resource
over-provisioning, which is still the predominant
one in practice. The models and schedulers have
been trained in a real data-center using as input
real web-service traces, tested in a simulation envi-
ronment to compare behaviors in large scale data-
centers, and latter tested in short scale in a real
cluster, using the OpenNebula virtualization plat-
form as testbed.

We observe that the ML-augmented generic al-
gorithms behave often equal or better than ad-hoc
with expert tuning. Response time and quality of
service is better maintained on some stress situa-
tions when it is possible, by consolidating and de-
consolidating by predicting the required computing
resources and the resulting RT for a given schedule.

11

Next steps will focus on scalability and on hierar-
chically modeling the cloud system as a set of data-
centers where services can not only move between
machines but among locations around the world.
Also we will focus on the network side, including
the service time DC-client as another SLA object,
bringing the services near their demand. Finally,
in the future this technique and research will move
towards on-line machine learning, as models will
be created on the fly, when new environments (ma-
chines, networks, ...) and new kind of web-services
enter into the system to be managed.

Acknowledgments

Thanks to RDlab-LSI for their support. This work
has been supported by the Spanish Ministry of Sci-
ence under contract TIN2011-27479-C04-03 and under
FPI grant BES-2009-011987 (TIN2008-06582-C03-01),
by EU PASCAL2 Network of Excellence, and by the
Generalitat de Catalunya (2009-SGR-1428).

References
[1] J. Alonso, J. Torres, J. L. Berral, and
R. Gavalda. Adaptive on-line software ag-

ing prediction based on machine learning. In
IEEE/TFIP Intl. Conf. on Dependable Systems
and Networks (DSN 2010), 2010.

A. Andrzejak, S. Graupner, and S. Plantikow.
Predicting resource demand in dynamic util-
ity computing environments. In Intl. Conf. on
Autonomic and Autonomous Systems (ICAS
’06), 2006.

J. Berral, R. Gavalda, and J. Torres. Adaptive
Scheduling on Power-Aware Managed Data-
Centers using Machine Learning. In Intl. Conf.
on Grid Computing (GRID 2011), 2011.

J. Berral, R. Gavalda, and J.
res. Li-BCN Workload 2010,
http://www.lsi.upc.edu/dept/techreps/
llistat_detallat.php?id=1099.

Tor-
2011.

J. S. Chase, D. C. Anderson, P. N. Thakar,
and A. M. Vahdat. Managing energy and
server resources in hosting centers. In 18th
ACM Symposium on Operating System Prin-
ciples (SOSP), 2001.

[6]

[12]

[14]

[15]

G. Dhiman. Dynamic power management us-
ing machine learning. In IEEE/ACM Intl.
Conf. on Computer-Aided Design 2006, 2006.

I. Goiri, F. Julia, R. Nou, J. Berral, J. Gui-
tart, and J. Torres. Energy-aware Scheduling
in Virtualized Datacenters. In 12th IEEE In-
ternational Conference on Cluster Computing
(Cluster 2010), 2010.

M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA

data mining software: an update. SIGKDD
Explor. Newsl., 11(1):10-18, 2009.
G. Hamerly and C. Elkan. Bayesian

approaches to failure prediction for disk
drives. In Intl. Conf. on Machine Learning
(ICML’01), San Francisco, CA, USA, 2001.

F. J/uliz}, J. Roldan, R. Nou, O. Fité, Vaque,
G. I, and J. Berral. EEFSim: Energy Effi-
cency Simulator, 2010.

I. Kamitsos, L. Andrew, H. Kim, and M. Chi-
ang. Optimal Sleep Patterns for Serving
Delay-Tolerant Jobs. In Intl. Conf. on Energy-
Efficient Computing and Networking (eEn-
ergy’10), 2010.

D. Nurmi, R. Wolski, C. Grzegorczyk,
G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In IEEE/ACM Intl.
Symp. on Cluster Computing and the Grid
(CCGRID 2009), Washington DC, USA, 2009.

B. Sotomayor, R. S. Montero, I. M. Llorente,
and I. Foster. Virtual infrastructure manage-
ment in private and hybrid clouds. IEEE In-
ternet Computing, 13(5):14-22, Sept. 2009.

R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

Y. Tan, W. Liu, and Q. Qiu. Adaptive power
management using reinforcement learning. In
International Conference on Computer-Aided
Design (ICCAD °09), New York, NY, USA,
2009. ACM.

12

[16]

[17]

[18]

[19]

G. Tesauro, N. K. Jong, R. Das, and M. N.
Bennani. A hybrid reinforcement learning ap-
proach to autonomic resource allocation. In
Intl. Conf. on Autonomic Computing (ICAC
2006), 2006.

A. Vaqué, L. Goiri, J. Guitart, and J. Torres.
Emotive cloud: The bsc’s iaas open source so-
lution for cloud computing, 2012-01-31 2012.

V. V. Vazirani. Approzimation Algorithms.
Springer-Verlag, 2001.

D. Vengerov and N. Takovlev. A reinforcement
learning framework for dynamic resource allo-
cation: First results. In Intl. Conf. on Auto-
nomic Computing (ICAC 2005), 2005.

P. Vienne and J.-L. Sourrouille. A middle-
ware for autonomic qos management based on
learning. In Intl. Wksp. on Software Engineer-
ing and Middleware, 2005.

