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ABSTRACT
Visualization techniques of all sorts suffer from visual cluttering,
the occlusion of visual information due to the overlap of graphi-
cal items; and from excessive complexity in analytical tasks due
to multiple parallel perspectives. To cope with these problems, we
introduce Hierarchical Visual Filtering, a novel interaction princi-
ple based on pragmatic and epistemic actions. Pragmatic actions
here mean that the analyst is able to visually select and filter in-
formation, determining visual configurations that reveal different
perspectives; epistemic actions mean that the analyst can record,
annotate, and recall intermediate visualizations created pragmati-
cally. To do so, we use a tree-like organization to keep multiple vi-
sualization workspaces linked according to the analytical decisions
took by the user. Our goal is to promote an innovative systematiza-
tion that can augment the potential for database visual inspection,
and for visualization systems in general. It is our contention that
Hierarchical Visual Filtering can inspire a novel scheme of visu-
alization environments in which space limitations and complexity
are treated by means of interactive tasks.
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1 Introduction
The growth in information production has addressed the problem
of accessing the riches of information embedded in large and com-
plex databases. This issue has aggravated in yearly basis and one
of the strategies to deal with it is to use visualization. However,
sole visualization techniques are naturally limited in space. Users
cannot tell apart items nor distinguish regions of interest when visu-
alizations exceed the available display space, or when data dimen-
sionality prevents effective presentations. Even using well-known
interaction mechanisms such as interactive filtering [16], hierarchi-
cal parallel coordinates [6], focus+context [1], and link & brush [3],
the grasping of interesting facts becomes a memory intensive task.
A problem even worse when more than one investigation task is
being performed over the same scene; in this situation, it is up to
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the analyst to remember the appropriate interaction parameters for
each line of investigation and to switch in between them. These
restrictions in data presentation lead to the need of interface and
interaction designs that can aid the management of cognitive load
in visual decision-support.

Cognitive aspects
In cognitive science, Kirsh and Maglio [11] identified two kinds
of actions performed during decision-support activities. Pragmatic
actions are performed to bring one closer to a goal, and epistemic
actions are performed to uncover information that is hard to
compute mentally. In arithmetic, for example [9], pragmatic
actions permit to gradually advance on a problem’s state in order
to reach its solution. Epistemic actions correspond to various
intermediate results (paper notes), which theoretically could be
stored in working memory, but that are recorded externally to
reduce cognitive loads. In the realm of Information Visualization
(InfoVis) applications, pragmatic actions can be identified as
interaction operations to lead the analyst in the task of discovering
useful knowledge. Epistemic actions correspond to the recording
of intermediate visual presentations in order to assist the analyst
in a sequence of interactive steps. More precisely, in what refers
to computational aided visualization, Kirsh and Maglio state that
epistemic actions correspond to an automatic views management
system whose advantages include:

1. reduced memory involved in visual analysis – space com-
plexity;

2. reduced number of steps involved in visual analysis – time
complexity;

3. reduced probability of error of visual analysis – reliability.

In a level higher than cognitive science, these advantages have
been perceived by Grinstein and Ward [8] who enunciated that lim-
itations in screen resolution and color perception can be solved
through multiple linked visualizations. One main approach is to
use multiple views enabled with focus+context functionalities to
partition and detail intricate visualizations. Indeed, partitioning a
dataset is critical to select relevant data and to reduce data for fur-
ther investigation. Dividing the scene into multiple views help to
create smaller subsets easier to be managed and that allow compar-
ative discernment over different perspectives. Chi et at [2] state that
a single complex view can be cognitively overwhelming. Multiple
views can help the user to “divide and conquer” aiding memory
by reducing the amount of data one needs to consider at the same
time.
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Visualizing relational databases
In the last decade, many works have addressed the issue of visu-
alizing relational databases to formulate new hypotheses, to vali-
date known hypotheses, or to simply present facts more intuitively.
These works include multivariate multiple-view systems, and rela-
tional database driven systems.

Among the multivariate multiple-view systems, the GGobi sys-
tem [4], and the Xmdv tool [17] employ linked views as defined
by the Link & Brush principle. Our work differs from these for-
mer proposals by means of the hierarchical visual filtering princi-
ple. For this reason, our work cannot be directly compared to these
other proposals, due to its innovative interaction scheme, and to its
database orientation.

More specific to our work, in the field of relational-database
driven systems, Wang et al. [20] present the ZoomTree, a web-
based system that uses a grid layout to present sequential zoom
operations carried over a database. Different from our approach,
the ZoomTree allows data propagation via selection of dimensions
to draw aggregation datacubes; also, the selection of data does not
follow free database querying, instead, it is restricted to datacube-
refinement operations. A pioneer work on the same topic is system
Polaris [18], another grid-based layout whose main feature is its
flexibility in defining the visual encoding; different from our work,
Polaris does not allow hierarchical exploration, rather it improves
on the commercial Pivot Table method. Another related proposal
is the work of Mansmann and Scholl [12]; their Decomposition
Tree permits the user to visually conduct datacube operations, that
is, dimension-oriented operations that are data-driven, rather than
analysis-driven. As a last remark, we can state that our work is
defined over a combination of visualization with clutter reduction
techniques; in this scenario, even if we consider the taxonomic re-
view of clutter-reduction techniques of Ellis and Dix [5], we find
that our interaction scheme is a novel contribution.

Visual filtering
Visual filtering (or brushing) over multiple coordinated views [15]
is one of the main interaction techniques for visualization; it al-
lows analysts to select the graphical items that are more inter-
esting, gaining focus and details over them. In a recent work,
Weaver [22] introduces a scheme that is opposite to ours. Instead
of creating multiple views by means of visual filtering, they define
a collective filtering based on selections originating from multiple
views. Kehrer et al. [10] argue in favor of statistical summariza-
tions (mean, variance, skewness, and kurtosis), each in a dedicated
view, as a means for interpreting visually filtered data. Also re-
cent, Turkay et al. [19] create multiple views by simultaneously fil-
tering data and data dimensions assisted by statistical summaries.
In another work, Weaver [21] proposes the use of boolean logic
to progressively refine the content visually presented, leading to a
more robust filtering. Our work differs from all these proposals as
it permits an unrestricted number of views that are kept linked by
complimentary actions; besides, our proposal is adequate for any
kind of visualization technique, including statistical summaries as
well.

The rest of the text is organized as follows. In section 2 we
present the innovations proposed by our system along with con-
cepts, analyses, and discussion. In section 3 we formally analyze
the potential of our interaction principle regarding visual clutter. In
section 4 we demonstrate our technique in respect to pragmatic and
epistemic actions, just before the final remarks of section 5.

2 Methodology
As a critical setting for database visual analysis, we consider the
use of heterogeneous visualizations in a multiple views environ-
ment making use of pragmatic and epistemic actions. In order to
prove this concept, we developed Visualization Tree (VisTree) [13],
a system that enables multiple representations of a dataset relation
allowing comparison and operation with a strong feeling of locus
of control. VisTree is designed for any kind of visualization tech-
nique; specifically for this work, we use classical techniques Paral-
lel Coordinates, Scatter Plots, Table Lens [14], and Fastmap-based
projection [7]. Over the VisTree systematization we demonstrate
the Hierarchical Visual Filtering principle.

2.1 Hierarchical Visual Filtering
A straightforward way to partition a dataset is to use relational
database queries that, over visualization scenes, correspond to in-
teractive filtering, a well-known pragmatic instrument of visualiza-
tion. Extending this interactive principle, here we propose what we
call Hierarchical Visual Filtering, an improvement of interactive
filtering that brings epistemic possibilities to visual analysis. Hier-
archical Visual Filtering allows for pragmatic actions as the analyst
is able to select parts of the visualization scene; and allows for epis-
temic actions as the analyst is able to record, annotate, and recall
intermediate visualizations created over his pragmatic actions. Hi-
erarchical Visual Filtering contributes to visual analysis research in
two ways:

• by reducing visual clutter for more scalable analysis;
• by reducing cognitive loads – specially over memory, for a

richer analytical experience.

Hierarchical Visual Filtering combines interactive selection and
progressive refinement to permit analytical management in a
hierarchically-arranged environment. As presented in Figure 1, it is
composed of a dataset D, a visualization V , a visualization function
v, an interactive filtering function f and a function Λ that plays just
reverse to function v.

Figure 1: (a) Components of Hierarchical Visual Filtering, (b)
functions that define it, and (c) its iterative cycle.

In Figure 1, function v : Di→Vi is parameterized by a pair (s,g)
where s is the spatialization scheme that states how data D occupy
the screen space (projection, graph-like, sequentially, and so on)
and g is the set of graphical marks (dots, lines, curves, icons, and
so on) used by visualization Vi. Also in Figure 1, filtering function
f : Vi → V ′i is parameterized by a pair (d,e) where d is the set of
dimensions of the data and e is a set of relational select predicates
that apply to d in order to determine the selection of the interactive
filtering. Interactive filtering produces an altered configuration V ′i
that is made of a subset of the graphical entities of visualization
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Vi. Function Λ : V ′i → Di+1 receives a filtered visualization V ′i and
performs the opposite of function v using its same parameters; it
returns the data items Di+1 that define visualization V ′i .

Figure 1 presents the iteration cycle that defines Hierarchical Vi-
sual Filtering. According to it, a dataset Di is used to create a vi-
sualization Vi through function v. This visualization is interactively
filtered via function f to determine a new visualization configura-
tion V ′i . Then, the data that is being presented in V ′i is extracted with
function Λ. With the extracted data Di+1, a new visualization Vi+1
can be created. This process is to be repeated iteratively according
to the user’s exploratory goals, which determines how many steps
are necessary.

In Figure 2, we illustrate the Hierarchical Visual Filtering the
way it is performed in VisTree and according to the technique pre-
sented in Figure 1. We use two iteration sequences, in the first one
the entire dataset (“SELECT * FROM DATA_SET”) D1 is loaded
in a new visualization workspace; the interface of this workspace
permits to choose one of five available visualization techniques –
Figure 2(a). By choosing one of them, visualization function v is
triggered to generate visualization V1. Over V1, the user can deter-
mine parameters (highlighted in the figure) for interactive function
f , and a new visualization V ′1 is determined. Another user com-
mand (Pipeline – Figure 2(b)) triggers function Λ, which identifies
the data D2 being presented in V ′1 (“SELECT * FROM DATA_SET
WHERE ((139 ≤ DIM_2 ≤ 334) AND (73 ≤ DIM_4 ≤ 78))”).
The data of V ′1 is now sent (pipelined) to a new workspace to create
visualizations V2 and then V ′2 in the second iteration cycle – Figure
2(c).

Figure 2: Hierarchical Visual Filtering iteration loop. (a)
Choice for visualization function v; (b) triggering of function
Λ; (c) second iteration cycle.

Hierarchical Visual Filtering permits the user to define new vi-
sualization workspaces, each one carrying a subset of the data that
he/she considers worthy for analysis. To do this, the user can ob-
serve a given workspace and interactively filter its data by choosing
a set of parameters e of relational select predicates. When an inter-
esting visualization configuration comes up, the user can command
its data elements to flow to a new workspace. This process can
be repeated for the new workspace or for the same workspace. As
another workspace is created, the current branch of exploration be-
comes deeper, as seen in Figure 3(a). If a new workspace is created
from the same workspace, a parallel branch of exploration is cre-
ated, as seen in Figure 3(b). The same operation can be done at
any level of the tree, as demonstrated in Figure 3(c). Along this
iteration/interaction, the VisTree systematization is responsible for

keeping track of the multiple workspaces and to present them in a
tree-like structure.

Figure 3: VisTree Construction. (a) Sequential exploration of
a branch. (b) Parallel exploration over different branches. (c)
Iteration at deeper levels of the tree.

The epistemic aspect of VisTree comes as the system automat-
ically records the relational predicates used during analysis and,
also, it comes as the user is able to annotate each workspace so that
she/he can remember what the presented data refers to. VisTree
complements these features by organizing the workspaces in ac-
cordance to how they were created, providing a sense of analytical
flow with reduced cognitive load.

2.2 Tree management and interaction
As the user pragmatically creates new workspaces and the tree
structure evolves, it is necessary to manage its structure in order
to maximize space utilization and to maintain the epistemic poten-
tial of the tree representation. Each node of the tree occupies an
equal area of the 2D space, therefore it is necessary to partition
this space at the same time that the tree representation adjusts to its
spatial arrangement.

We developed a recursive algorithm to combine suitable tree pre-
sentation with space partitioning of display space. The algorithm
uses a tree scheme named tNode – presented in Figure 4(a), which
carries pointers to son and sibling nodes. It also carries a pointer to
an instance of a visualization object, referenced as vis pointer. The
tree data structure grows as the user triggers interaction events, as
illustrated in Figures 4(b) and 4(c). The structure is used during the
whole management of the visualization environment.

Figure 4: (a) The node structure for managing the VisTree. (b)
A tree example and its correspondent data structure. (c) The vis
pointers hold the instances of the visualizations (workspaces)
being presented.
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In VisTree, the tree is presented in left to right orientation, in-
stead of top-down as usual. To organize nodes this way, we break
the node positioning problem in two parts; first, to determine hori-
zontal positioning and, then, to determine vertical positioning. For
a given node, horizontal positioning is straightly achieved using the
node’s (horizontal) level, which corresponds to how deep the node
is located in the tree, as can be seen in Figure 5. Meanwhile, ver-
tical positioning is a little trickier because it demands positioning
from the bottom of the display up to its top considering the num-
ber of workspaces and of branches at each level. Therefore, tree
presentation must start by the leaves, otherwise we may have edge
crossings and/or nodes overlapping that could compromise the tree
aesthetics.

In Figure 5 we illustrate how the presentation process occurs.
The first thing is that, any new node is positioned at the bottom of
the screen. In steps 1 through 3 in Figure 5, nodes 5 and 6 illus-
trate the case for nodes without sons: initial bottom positioning,
search for the first node above it (surrounded by circle) and then
repositioning. In steps 4 through 8, nodes 7 and 8 illustrate the case
for nodes with sons; after the first repositioning, it is necessary to
perform a second repositioning according to the child nodes (sur-
rounded by an ellipse). For aesthetic reasons, this second reposi-
tioning places the father node in a position where both the sum and
the variance of distances for all child nodes are minimized. That
is, the father node is positioned in the middle height, which ranges
from its highest son (or grandson) to its lowest son (or grandson).

Figure 5: VisTree’s nodes positioning. The first illustration
presents the desired presentation. Following, steps 1 through
8 illustrate the positioning of nodes 5 through 8 in order to
achieve the desired configuration. For each positioned node, its
“first node above” is highlighted with a circle. Child sons that
are considered for repositioning are highlighted with ellipses.

2.3 Workspaces management and interaction
In the environment of the VisTree, as new epistemic information
is recorded in the form of new workspaces, the tree grows and its
nodes become smaller in terms of screen space. However, the nodes
of the tree have a minimum acceptable size, otherwise, too small vi-
sualization scenes could not be observed. For this minimum size,
we use 2.5 x 1.5 inches, which nearly corresponds to a two-column
article illustration. We assume that the screen resolution will al-
ways be sufficient to support such presentation size, no matter the
technique. This minimum size implicates that, at a certain step, the
algorithm can no longer accommodate the tree inside the display

space, because the nodes would have to satisfy spatial constraints
causing them to be smaller than what is practically visible.

Our strategy to handle this matter is to provide automatic and
manual interaction mechanisms to explore the visualization envi-
ronment. Hence, when the tree does no longer fit the screen space
and a new node is created, we automatically position this last node
at the center of the screen. With this mechanism we provide as
much context as possible for the new node; at the same time, we
induce locus of control, because the last user operation is imme-
diately presented to him/her surrounded by the formerly created
workspaces.

But, as we provide endless visualization space, the drawback is
that the tree can be much bigger than the screen space and acting
epistemically becomes a usability problem. To tackle with this, we
designed an interaction scheme enabled with zooming and transla-
tion functionalities. These two features aid in the process but, for
large trees, they may demand excessive interaction steps in order
for the user to grasp the desired information. Therefore, we also
designed a novel interaction scheme with two features, named In-
stant Focus and Instant Context:

• Instant Context, Figure 6 (a), works by presenting the entire
tree structure no matter how small its nodes become. To do
so, the user has to pass the mouse over a desired node and
the tree will be visualized with emphasis over that node. It
becomes possible to figure out where in the tree structure
the node is located. As the user moves the cursor out of the
desired node, the application returns to the former spatial ar-
rangement;
• Instant Focus, Figure 6(c), allows the user to pop up a sepa-

rate window from the tree structure; this new window bears
the visualization workspace that the user has chosen for fo-
cusing. To do so, similarly, the user must pass the mouse
cursor over the desired workspace. The focus window can
occupy part of the screen space or can be maximized for the
entire screen. To return to the VisTree environment, the user
has to pass the mouse cursor out of the boundaries of the fo-
cus window or to close the window in case it has been maxi-
mized.

Instant Focus and Instant Context permits the user to benefit from
focus+context interaction over the VisTree multiple windows envi-
ronment.

Figure 6: Instant Context shows where in the tree structure a
node of interest is located (a). For large trees, normal presenta-
tion may hide context and/or detail (b). Instant Focus presents
the details of a given scene by increasing its window size (c).

3 Reduction of visual clutter
In this section we formally demonstrate how the refinement

promoted by Hierarchical Visual Filtering deals with overlap of
graphical items reducing the problems of visual clutter.

Problem formalization
Initially, we formalize the concepts of graphical item, screen-
space, and screen-space coordinates. We consider that graphical
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items refer to any distinct visual mark used for data visualization,
screen-space refers to the available display space that a given visu-
alization can use for presentation, and screen-space coordinates, in
turn, refer to each position that can be addressed in a given screen-
space.

The screen-space is naturally discrete in the number of coordi-
nates, no matter whether the domain of the data being presented is
discrete or continuous. Consequently, the number of coordinates
in screen-space limits the number of graphical items that can be
presented, what varies depending on the data domain that will be
presented.

Although the number of possible graphical items can be much
bigger than the number of screen-coordinates, the number of
possible graphical items cannot exceed the number of screen-
coordinates. This problem is even worse for graphical items
that are bigger than one pixel. This limitation determines that
visualization techniques suffer from overlap of graphical items
and, consequently, by visual cluttering. In this context, overlap
of graphical items is understood as the mapping of different data
items to the same screen coordinate; meanwhile, visual clutter-
ing refers to the confused or disordered arrangement that arises
from overlap of graphical items, what negatively affects perception.

Overlap of graphical items

For this topic, we initially formalize the concept of region of in-
terest. For a given visualization technique, a region of interest is a
sub-area of the screen-space in which a collection of data items is
being presented. The biggest region of interest is the whole visual-
ization itself, meanwhile, smaller regions of interest are defined via
interactive filtering.

Based on these notions, we can develop a formal metric for the
overlapping of graphical items. The overlap can be measured by
the density of elements that map to one same visual coordinate.
Therefore, given a workspace ∆ composed by the collection D of
data items, and by the set G of graphical items, the overlap factor
is given by the total number of elements mapped to ∆, that is, |D|,
divided by the total number of graphical items presented in ∆, that
is, |G|. Then:

overlap_ f actor =
|data_elements_mapped_to_∆|
|graphical_items_presented_in_∆| =

|D|
|G| (1)

The same holds for regions of interest. That is, given a region of
interest δ ⊂ ∆, the overlap_ f actor is given by the total number of
elements mapped to this region, that is, |d| for d ⊂ D, divided by
the total number of graphical items presented in this region, that is,
g for g⊂ G.

As presented in Figure 7, the Hierarchical Visual Filter-
ing determines that, given a region of interest δ ⊂ ∆ with
overlap_ f actor = |d|/|g|, it is possible to create a new workspace
∆′ with overlap_ f actor′ = |d|/|G′|. Considering that a region
of interest is always smaller or equal to the screen-space, and
considering that the workspaces created via pipelining use the
whole screen-space, then, the following inequality is always valid
|g| ≤ |G′|. This is because a wider screen-space will be available for
the new pipelined workspace and, thus, more graphical items can
be presented. Consequently, overlap_ f actor′ ≤ overlap_ f actor
is always true. In other words, the pipelining operation will always
create new scenes with equal or reduced overlap_ f actor.

Figure 7: Treatment of graphical items overlap via pipeline re-
finement. (a) A workspace ∆ and a region of interest δ ⊂ ∆

(black ellipse) defined with parameters 17.0≤ AT T RIBUT E6≤
18.5. (b) The workspace ∆′ achieved via pipelining of the region
of interest presented in (a). Also in (b), it is clear the increase
in the number of graphical items, specially for AT T RIBUT E6.
As consequence, in most dimensions not only the overlap factor
was reduced but also the visual clutter in general.

4 Experiments over pragmatic and epistemic
actions

In this section we demonstrate the possibilities of the Hierarchical
Visual Filtering; to do so, we perform experiments over a dataset
of agrometeorological data - the Embrapa dataset. The dataset
has 9 attributes: precipitation, maximum temperature, minimum
temperature, normalized difference vegetation index (NDVI), wa-
ter requirement satisfaction index (WRSI), average temperature,
potential evapotranspiration (ETP), real evapotranspiration (ETR)
and measured evapotranspiration (ETM) collected partly with re-
mote sensors (satellite) and partly with in locus samples from sugar
cane plantation regions in Brazil. The data was collected during 82
months from 2001 to 2007, so that each record corresponds to the
data collected in a given month for one region. Since there are 5
regions: Araraquara (1), Araras (2), Jaboticabal (3), Jaú (4), and
Ribeirão Preto (5), there is a total of 410 records. In order to test
our hypothesis, we proceeded with the following tasks:

• characterize the 5 regions in relation to all the attributes of
the dataset;
• choose two regions of interest in order to draw further visual

clues comparatively.

The problem here is that the data is organized according to sev-
eral regions and, although we want to inspect these regions sepa-
rately, we do not want to use multiple visualization sessions. Mul-
tiple sessions would demand managing several windows, or even
paper annotations. Also, the data is multivariate and it would be in-
teresting to observe it according to multiple kinds of visualization
techniques put together in a single environment. Lastly, it is de-
sired to select subsets of the data and to summarize them by means
of statistical calculations drawn over each of the visual workspaces,
making the comparative analysis faster. In Figure 8, we show a vi-
sualization session for these data and for the proposed tasks; the
image was edited for better presentation.

The visualization of all the data items over Parallel Coordinates –
Figure 8(a) – presents a hard to interpret cluttering of lines. For this,
the first step of the analytical process was to define 5 filterings each
corresponding to a different region. With the filterings we could
create 5 workspaces – Figure 8(b) – presented simultaneously and
prone to detailed inspection by means of Instant Focus. Next, we
want to characterize the workspaces’ data with a simple statistical
operation - to do so, we calculate the average of each dimension
at each workspace and proceed by drawing a polyline of average
values emphasized in green on top of the Parallel Coordinates –
also presented in Figure 8(b). This first round shows that the 5
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Figure 8: Definition of an analytical hierarchy of data over the Embrapa dataset. (a) Visualization of all the data items. (b) Interactive
filtering of 5 subsets of the data, with one workspace to each showing a Parallel Coordinates scene. (c) The 5 workspaces, now
visualized with Fastmap multidimensional projection. (d) Workspace with the 50% records with highest levels of precipitation of
region 1. (e) Workspace with the 50% records with lowest levels of precipitation of region 1. Each workspace carries details of its
correspondent select predicate, number of records, and user annotations (header of each window).

regions have similar values for each of the attributes with slight
variations that confer them local peaks according to each average
polyline.

In a next step, we want to visualize the same data in a multidi-
mensional projection achieved using the well-known Fastmap al-
gorithm; as so, in Figure 8(c), another visualization is presented for
each of the workspaces. These new visualizations work by map-
ping the 9 attributes of the datasets into 3 dimensions, allowing one
to inspect the data in respect to their dispersion in space, to the
presence of clusters, and of outliers. The figure shows that region 1
(upper-most workspace) is the one whose data points better charac-
terize a single cluster, contrasting with the others that define widely
spread spatial regions. From this observation we assume that this
region should be better analyzed, since evidence indicates that its
data is homogeneous, potentially following a well-defined pattern.
On the other hand, region 2 presents the plotting in which the points
are more widely spread if compared to all the other workspaces, in-
dicating a high-level of irregular behavior, what should be further
investigated as well.

Next, we visually filter region 1 according to the 50-th percentile
of attribute precipitation. This way we get a level deeper in the
hierarchy and two new workspaces that we visualize according to
techniques Parallel Coordinates and Scatter Plots. The first visual-
ization accounts for the records of region 1 that present higher lev-

els of rain – Figure 8(d), while the second accounts for the records
with lower levels of rain – Figure 8(e). By inspecting the Parallel
Coordinates average summary of both workspaces, there is a clear
distinction in all of the attributes when the level of rain significantly
varies. More specifically, the Scatter Plots visualization shows that
the NDVI x Precipitation plot indicates that only part of the vegeta-
tion suffers with rain shortage, while a great part of it remains with
high levels of green matter, possibly due to artificial irrigation. The
same findings were verified for region 2, although not presented in
the figure due to space limitations.

The demonstration of our system is not favored by the flat paper
presentation; for this reason we put the system fully operational at
http://gbdi.icmc.usp.br/~junio/VisTree/VisTree.htm,
where it can be experimented with several other datasets.

User tests
In order to test the Hierarchical Visual Filtering in terms of usabil-
ity, the same analytical tasks as described previously in this sec-
tion were proposed to a group of 22 Computational Physics under-
graduate students, familiar with computational tools. The students
were instructed to use the VisTree system and to perform the same
tasks, but in two different ways: in a first round, using Hierarchi-
cal Visual Filtering; in a second round, using one single workspace
with simple visual filtering in order to create all the visualizations.
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Under supervision, the students were monitored so that wall-clock
time could be measured, and so that it would be possible to verify
whether the tasks were really executed – without shortcuts. The
experiment was conducted with the students, one at a time, in the
same machinery, according to the following protocol:

• first, the students were trained with another dataset in order
to get familiar with the system;
• the students received the expected answer of the analytical

experiment: identify the two extreme regions, and to create
further visualizations from each based on the precipitation
attribute; this way, it would be possible to analyze only the
Hierarchical Visual Filtering, and not the entire system;
• in the second round, the students received a different version

of the dataset in which the labels of the regions differed from
the dataset used in the first round; this way they would still
have the challenge of identifying the two regions of interest;
• for the second round, the students could use paper to make

annotations;
• for each task completed, the visualization was verified and

the elapsed time was annotated.

In this experiment, 21 of the students were able to suitably com-
plete the exercise. From these, all of them could complete the task
faster by using the Hierarchical Visual Filtering, the gain was of
42% average – 4 minutes 52 seconds average for the first round,
and 8 minutes 24 seconds average for the second round. Only 5
students used the paper for annotation, the remaining subjects pre-
ferred to use multiple windows and to alternate in between them.
All of the subjects declared that the tasks were easier to be accom-
plished if Hierarchical Visual Filtering could be used.

For these results, we argue that the time gains would be higher
for more complex tasks, or even for different tasks, instead of the
same tasks performed with different operations; the same applies
for the need of paper annotations. In despite of that, the results
confirmed the adequacy and potential of the Hierarchical Visual
Filtering analytically and empirically.

5 Conclusions
We have introduced Hierarchical Visual Filtering, an innovative in-
teraction principle that overcomes cluttering issues and analytical
complexity. Its principle is to allow the user to pipeline subsets
of information to multiple workspaces that are automatically man-
aged over a tree-like presentation. The essence of our contribution
is based on actions that are pragmatic – filter and pipeline, and
epistemic – record, annotate, and recall persistent visualizations.
We have performed experiments that demonstrate that our system-
atization potentially speeds up and simplifies analytical tasks.

For now, we have experienced Hierarchical Visual Filtering over
one single table (database relation); as further goals, we envision
the design of VisTree as a visual join tool, in which multiple related
tables could be inspected. This design shall bring new challenges
as join information may demand massive memory and processing
resources; graphically, it will be necessary to adapt the Hierarchical
Visual Filtering to a graph-like presentation, since a tree will not be
enough; in terms of interaction, such configurations may be tricky
as tables can be interrelated according to different cardinalities.
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