
Dynamic Decision Tree for Legacy Use-Case Recovery
Philippe Dugerdil

Geneva School of Business Administration.

Univ. of Applied Sciences of Western Switzerland

7 route de Drize, CH1227 Geneva, Switzerland

+41 22 388 17 00

philippe.dugerdil@hesge.ch

David Sennhauser
Geneva School of Business Administration.

Univ. of Applied Sciences of Western Switzerland

7 route de Drize, CH1227 Geneva, Switzerland

+41 22 388 17 00

david.sennhauser@gmail.com

ABSTRACT
In the context of reverse-engineering project we designed a use-
case specification recovery technique for legacy information
systems. With our technique, we can recover the alternative flows
of each use-case of the system. It is based on a dynamic (i.e.
runtime) analysis of the working of the system using execution
traces. But “traditional” execution trace format do not contain
enough information for this approach to work. Then we designed
a new execution trace format together with the associated tool to
get the program’s dynamic decision tree corresponding to each of
the use-case scenario. These trees are then processed to find the
possible variants from the main scenario of each use-case. In this
paper we first present our approach to the use-case specification
recovery technique and the new trace format we designed. Then
the decision tree compression technique is showed with a
feasibility study. The contribution of the paper is our approach to
the recovery of legacy systems’ use-case, the new trace format
and the decision tree processing technique.

Categories and Subject Descriptors
D.3.1 [Software Engineering]: Requirements/Specifications -
Methodologies

General Terms
Algorithms, Experimentation

Keywords
Use-case recovery, dynamic analysis, decision tree processing

1. INTRODUCTION
In our lab, we developed a reverse engineering technique for
legacy systems based on their use-cases [6][7]. Generally, legacy
systems documentation is at best obsolete and at worse non-
existent. Moreover it is often the case that the developers are not
available anymore to provide the maintainers with information on
the structure of these systems. In such situations the only people
that still have a good perspective on the system are its users: they

are usually well aware of the business relevance of the programs.
This information can be recorded as system use-cases. In short,
our iterative and incremental reverse engineering process [8]
works the following [7] :

1) Re-documentation of the system use-cases;
2) Manual redesign of the analysis diagrams associated to each

of the use-cases;
3) Execution of the system according to these use-cases (i.e.

their scenarios) and recording of the execution trace;
4) Analysis of this execution trace and identification of the

classes involved in the trace;
5) Mapping of the classes in the trace to the classes of the

analysis diagram;
6) Re-documentation of the architecture of the system by

clustering the classes based on their role in the use-case
implementation.

Since we fundamentally rely on users to re-document the use-
cases, the completeness of the latter is an issue. Indeed the re-
documented use-cases are never complete and accurate, especially
regarding the alternative flows. We then need a semi-automatic
way to recover the missing use-cases flows. In the literature
attempts have been made to recover the use-case form the mere
analysis of the source code of the legacy software (see for
example [16] [18]). But in [5] we have showed this to be
fundamentally impossible. We then claim that the solution to the
problem, if any, could only come from the directed dynamic
analysis of the software coupled with the static analysis of its
source code. Dynamic analysis is a program analysis technique
based on the execution trace of the program [1]. Basically an
execution trace (or trace for short) represents the sequence of
methods (or functions) called when a program is run. By directed
we mean that our use-case recovery technique is based on an
example scenario for each use-case. The problem is therefore to
re-document the complete use-cases with all their relevant flows
from the simple scenarios described by the users. Indeed, it is
often the case that the user only knows a very limited subset of all
the functions of the system. The challenge is to recover the
missing part.

Our approach works the following: an execution trace is recorded
when running each of the scenarios observed when the users
perform their business task. Such a trace represents what we
called the backbone trace of the corresponding use-case. Then we
analyze the possible variants of the scenario by identifying the
conditional statements in the execution path represented by the
backbone execution trace. Next, one searches what user action
could change the boolean condition of each statement. Such an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’13, March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00.

dossantosgw
Texte tapé à la machine
Published in SAC '13 : Proceedings of the 28th Annual ACM Symposium on Applied Computing , 2013, p. 1284-1291 which should be cited to refer to this work. doi>10.1145/2480362.2480602

action would then change the execution flow hence create a new
scenario. In this way we would have discovered an alternative
path for the original scenario. By repeating this experiment we
will slowly recover all the variants of the initial scenario.
Specifically, to trigger the alternative behavior we must identify
the control statements in the execution trace and determine what
action the end user could take through the user interface to change
the conditions of these control statements to execute the
alternative flows. In short we must answer the following question:
could the user trigger the alternative flow by manipulating some
user interface control? The key feature of our approach is to
allow us to recover the sequence in which the user actions could
be performed on the systems screens, since we can observe this
sequence in the trace. In particular we know when, in a valid
scenario, an alternative could be triggered. By contrast any
arbitrary sequence of user interface manipulation does not
represent a valid scenario since, according to [15], “A use case
describes sequences of actions a system performs that yield an
observable result of value to a particular actor”. There is very
little chance that an arbitrary sequence of user interface actions
could lead to such observable result of (business) value for the
actor. But our approach does, since we start from a valid scenario
and we rebuild variants from this scenario. In summary, our
technique works the following way:

1. We redocument the main use-case of the system by observing
its users. This gives us one scenario per use-case (the
backbone scenario).

2. We instrument the source code of the system (i.e. we insert
tracing statements), to be able to generate an execution trace.
This new version of the source code is recompiled.

3. The new compiled version is run according to the backbone
scenario.

4. We collect the execution trace and process it off-line to find
the executed control statements. The result is stored as a
decision tree (called a dynamic decision tree).

5. This dynamic decision tree is compressed to reduce the
quantity of control statements to analyze.

6. The reduced tree is analyzed top-down to identify the control
statements whose boolean condition could be modified by
some user action on the screens. The candidate action is
identified by source code analysis (program slicing [19][14])
and represents the trigger of a variant of the initial scenario.

7. If a valid variant is identified at step 6, we design a new
scenario with this variant and go back to step 3. If there is no
valid variant, the process is ended.

In short our technique rests on the capability to record the
sequence of control statements executed for a given scenario, and
to identify those for which the condition could be changed by
some action of the user. Moreover we must know, for each
executed control statement, if both alternatives have been
executed and, if not, which one remains to be executed. It is worth
noting that the recovery of such a valid (i.e. business-relevant)
sequence of control statements by the mere analysis of the source
code is fundamentally impossible. In a first version of our tool,
we worked with a “standard” execution trace format containing
only the method calls. Since the control statements were not
explicitly represented we had to analyze the source code of the
executed methods to recover these statements and determine
which alternative was actually executed. But this technique has
been very hard to implement, particularly because of the difficulty

to analyze the types of the variables in the context of the late
binding (Java). After having tried several alternative options, we
gave up and decided to create an extended format for the
execution trace that would explicitly record the executed
conditional expressions. This worked fine on small programs. But
we soon realized that the number of nodes to analyze was much
too big for our scenario recovery technique to work in practice.
Recall that, in our approach, each of the executed conditional
statement must later be processed to identify the user-interface
control that could possibly change the condition so that the
alternative execution flow could be triggered. This lead us to
develop a compression technique of the dynamic decision tree of
the program, to keep only the relevant conditional statements. The
result is what we called the Reduced Dynamic Decision Tree
(RDDT).

This paper presents the techniques we developed to record and
process the sequence of conditional expressions (sometimes
called DD-path or Decision to Decision path in the literature [17])
gathered when running the system. The paper is structured as
follows. Section 2 presents the extended trace format and model
we developed to gather the relevant conditional expressions.
Section 3 presents the dynamic decision tree model we use to
process the conditional statements in the trace. In section 4 we
give some hints on the code instrumentor. Section 5 presents a
feasibility study, section 6 presents the related work and section 7
concludes the paper.

2. EXTENDED TRACE FORMAT
2.1 Limitations of the standard format
An execution trace is a sequence of trace event representing the
method called when the system is run. Several trace formats have
been proposed in the literature, but the fundamental information
that must be recorded is:

[classID] [methodSignature]

Where methodSignature is the method that has been called and
classID is the identifier of the class of the instance that executed
the method. Whatever the format, it is important to note that an
execution trace does not normally record the conditional
statements but only the method (or procedure) calls. In the
explanation below we will refer to this kind of trace as the
“standard” trace. With such a format, if we must identify which
control statement was executed we must deduce it from the
recorded method calls and the source code, since no explicit
information is available in the trace. Here is a simple example.
Let us have the following source code statements and execution
trace (in its simple standard format):

Program (in class Class1):

x.m1();
if (condition1)

then y.m2();
else y.m3();

x.m4();

Trace:

Class1 m1()
Class2 m2()
Class1 m4()

In the above example, it is clear that condition1 was true during
the execution since we observe m2() in the trace. However a
simple variant of this code could be more difficult to analyze.

Program (in class Class1):

x.m1();
if (condition1)

 then y.m2();
 else z.m2();

x.m4();

Trace:

Class1 m1()
Class2 m2()
Class1 m4()

Now we must identify the type of the variables y and z to know
which one corresponds to Class2. Only then could we deduce the
boolean value of condition1. But the identification of the dynamic
type of each variable could lead to a very difficult search in the
source code since this may involve other conditional statements as
well as late binding. In the case below the code may even lead to
ambiguities which are hard to solve:

Program (in class Class1):

x.m1();
if (condition1)

 then {y.m2(); y.m3();}
 else y.m2();

if (condition2)
 then y.m3();

x.m4();

Trace:

Class1 m1()
Class2 m2()
Class2 m3()
Class1 m4()

In this case, were condition1 true and condition2 false or the other
way around? This is important because we must know what
alternative remains to be executed. In short, we found it very
hard, for each conditional statement, to determine what branch
was actually executed from the limited information available in
the “standard” trace format. Initially the motivation to keep the
standard format was to allow anyone in the dynamic analysis
community [12] to reproduce our results. But we realized that this
goal had to be abandoned in favor of a richer format including
information on the executed control statements.

2.2 Extended trace format
The limitations of the standard trace format lead us to define a
new format with explicit representation of the control information
(decision nodes plus executed alternative). This new trace format
allows us to identify which conditional branches were executed
and if an alternative flows of execution remains to be executed.
Moreover, since we need to record the hierarchy of the calls to
build a decision tree, not only must we record the method entries
but also the method exits. In short, our technique is to insert the
tracing statement at the beginning and end of the methods as well
as in the conditional statements themselves. However, in the case

of the conditional statements, where should the tracing statement
be inserted to know the executed alternative? Moreover, does an
alternative path actually exist for the statement (is the then part
followed by an else part for a given if statement or not)?
Consequently, we decided to instrument the blocks of code
associated to the then and else parts of an if statement and the
block of code associated to loop statements (for, while,…).

2.3 Trace format grammar
To limit the impact of the insertion of the tracing statements on
the performance of the system, the trace information is not
directly written in a database but in a flat file. This file is later
loaded offline in a database for further processing. With the new
format, the trace events are method calls and conditional
statements execution. Below, we present the grammar of the trace
events recorded in the trace file.

Method entry:

[spn][scn][dpn][dcn]‘[’[tn]‘]’ [evt]‘AS’[rt]‘[’[tsIN]‘]’[pv]

Method exit:

‘END’[spn][scn][dpn][dcn]‘[’[tn]‘]’ [evt]‘AS’[rt]‘[’[tsOUT]‘]’

Where:

[spn] := fully qualified name of the package of the class in which
the executed method or conditional statement are declared.

[scn] := name of the class in which the executed method or
conditional statement are declared.

[dpn] := fully qualified package name of the class of the instance
that actually executed the method or conditional statement.

[dcn] := name of the class of the instance that actually executed
the method or conditional statement.

[tn] := id of the thread in which the method or conditional
statement is executed.

[evt] := [sign] | [cond]
[sign] := signature of a method: method name followed by the

ordered list of the fully qualified types of the parameters of
the method, written within brackets. This grammar element is
only relevant for events corresponding to method executions.

[cond] := ‘IF_TRUE()’ | ‘IF_TRUE_NO_ELSE()’ |
‘IF_FALSE()’ | ‘FOR_TRUE()’ | ‘FOR_FALSE()’ |
‘WHILE_TRUE()’ | ‘WHILE_FALSE()’ |
‘DOWHILE_TRUE()’. This is the identification of the
conditional statement that has been executed. This grammar
element is only relevant for events corresponding to
conditional statement executions.

[rt] := if ([evt] = [sign]) this is the name of the type of the value
returned by method. If ([evt] = [cond]) this element is void.

[tsIN] := timestamp when entering the method or the conditional
expression.

[tsOUT] := timestamp when exiting the method or the conditional
expression.

[pv] := [mpv] | [le] ‘@’ [cl] | whitespace
[mpv] := method parameter values: list of the values of the

primitive-typed parameters in the same sequence as the
parameter type in the method signature. If a value is not of
primitive type, it is represented by the underscore character
‘_’. This grammar element is only relevant for events
representing method calls ([evt]= [sign]). If the method does
not have any parameters, this element is empty (white space).

[le] := string representing a logical expression associated with a
control flow statement in the source file. This grammar
element is only relevant for events representing conditional
statements ([evt] = [cond]).

[cl] := location of the control statement: [static package name] ’.’
[filename] ‘:’ [line number].

The timestamps allow us to compute the time taken to process
each event. In case of method calls, the event contains the values
of the primitive-typed parameters (i.e. non class-typed
parameters). This is used to locate, in the trace, the entry of some
input parameters by the user. In case of events representing
conditional statement this element represents the logical
expression of the statement together with the exact location of the
statement in the code. This is required since the same control
statement with the same logical expression may be declared
several times in the same class, to the contrary of method
signatures that must be unique.

2.4 Trace model
The model of the stored format of the trace information in the
database is presented in Figure 1. An ExecutionTrace instance
represents a specific trace associated to a given scenario
belonging to some use-case. It is composed of a collection of
TraceEvents that could either be method calls or conditional
statements. But the latter also contain an attribute representing
their physical location (full file name and line number in the file).
With this unique identifier, we are able to unambiguously identify
the similar execution subtrees. As can be seen from the model,
each node holds its thread number. In the database, we record a
separate call tree for each of the threads.

2.5 Instrumenting conditional statements
We will now explain how if and loop statements are instrumented.
Here is the simplest example of the location of the tracing
statements in an if statement:

if(expression) {
//THEN block
tracingObject.traceStatement(“if_true”);
…
}

Else {
//ELSE block
tracingObject.traceStatement(“if_false”);
…
}

next_statement;

In this situation, a trace event will be generated and recorded
whatever the value of the conditional expression. Therefore we
will know what alternative has been executed and if there is yet
another one to be executed. But the difficulty comes from the
processing of the if statements when there is no alternative path
(then without else). In this case if the condition is false, there is
no conditional code to execute. Consequently we could not record
the execution of this conditional statement since the tracing code
is located in the conditional blocks. Below is an example of the
instrumented code that follows the technique presented above. If
expression1 is false, there is no execution of the conditional block
and therefore no record of any tracing event in the trace file.

if(expression1) {
//THEN block
tracingObject.traceStatement(“if_true”….);
…
}

next_statement;

But we must know that a conditional flow remains to be executed
for the scenario (the then part in the example above).

Figure 1

The solution is to add an else block during instrumentation, for
the only purpose to generate an event in the trace file. This is
showed below. Moreover, one should also record that in case the
expression is true there is no alternative code to execute.
Example:

Before instrumentation:

if(expression) {
//THEN block
…
}

next_statement;

After instrumentation:

if(expression) {
//THEN block
tracingObject.traceStatement(“if_true_no_else”);
…
}

Else {
//Added ELSE block
tracingObject.traceStatement(“if_false”);
}

next_statement;

In case the expression is true, the recorded event is
IF_TRUE_NO_ELSE. Then we know that no alternative code
remains to be executed. But is the expression is false, we will
record it and know that an alternative path does exist. In the same

vein, we generate two events in the case of while and for loop
statements. One in the case the loop is executed at least once, and
another one if the loop was not executed at all. Here are the
events for the while statements:

1. ‘WHILE_TRUE’ : this is recorded if the loop code was
executed at least once

2. ‘WHILE_FALSE’ this is generated if the loop was not
executed at all.

The same is done in the case of for loops. Finally, since do-while
loop statements are always executed at least once, there is never
any alternative to generate. But we record the corresponding
event for completeness purpose only (to have a complete picture
of what was executed).

3. DECISION TREE MODELS
3.1 Introduction
Our technique aims at recovering the alternative execution paths
from a backbone use-case’s scenario. These alternative paths
represent variants from the backbone hence the alternative flow of
the corresponding use case. But for an alternative path to be
recorded as a plausible alternative, its execution must be
controllable by the user. In other words, the value of the
corresponding logical expression must be changeable through
some user interface control. Therefore, our approach works in two
steps:

1) Identify all the alternative paths to the backbone execution.
2) Determine if each path could be selected by the user

through the GUI.

3.2 Definitions
In order to simplify the reading of the formal structure of the
decision tree we built, we introduce the following definitions:

DN: Decision node. This represents an executed control flow
statement.

PDN : Partially executed decision node. This is a DN for which
an alternative to the current execution flow remains to be
executed (in other words, there remain alternative paths to be
run).

FDN: Fully executed decision node. This is a DN for which all
the alternatives have been executed. In other words, there is no
new path of execution that could be generated from this node.

DDT: Dynamic Decision Tree. This represents all the DNs in the
executions of a scenario, recorded with their hierarchical
dependence.

RDDT: A Reduced Dynamic Decision Tree. This is a DDT where
all the nodes are PDN (i.e. all FDN have been removed).

3.1 Dynamic Decision Tree (DDT)
From the analysis of the trace we must build a decision tree to
represents the decision statements involved in one or several
execution of the program when running variants of the scenarios
belonging to the same use-case. A DDT is then constructed to
represent the hierarchical dependence between the DNs, since
some control nodes may be dominated by other control nodes (i.e.
when we change the boolean value of a DN, we may not be able

to reach the DN located below it in the program). A DDT is
generated for each of the separated threads in the trace (Figure 2).
The DDT we generate contains different types of DNs: if, while,
for, do while.

3.2 Reduced decision tree
The generation of a DDT produces huge trees with hundreds of
DNs. These “raw” trees are much too big for our technique to
work: we could not analyze thousands of decision nodes to find
the one that could be influenced by some user action. In fact, what
we are interested in are the nodes for which there still remains an
alternative path to be executed. Therefore, our analysis algorithm
will explore the tree and record all these nodes, removing the ones
for which no alternative remains to be executed (FDNs). Then we
rebuild a tree containing only PDNs. The resulting tree is what we
call the reduced dynamic decision tree (RDDT).

Figure 2

When the program is run according to the backbone scenario, the
corresponding DDT is generated. To know what alternative paths
have yet to be executed to complete the scenarios of a given use-
case, we must combine the DDT of all the executed scenarios as a
single RDDT to identify the remaining PDNs. The RDDT is
therefore built incrementally from the DDTs of each execution of
the system. After having chosen an alternative user action from
the analysis of the PDNs in the RDDT (representing a variant of
the scenario), the system is run again and the variant of the
scenario is played. This leads to a new trace and a new DDT that
is merged with the previous RDDT and so on. These scenarios
represent the synthetic variants of the backbone scenario for the
use-case as illustrated in Figure 3.

Figure 3

The principle of the construction of the RDDT is summarized in
Figure 4. Here are the steps:

1) The RDDT is initialized.
2) An initial (backbone) scenario is executed.

3) The execution trace is captured by running the instrumented
code according to the scenario and the DDT is generated from
this trace.

4) This DDT is merged with the RDDT for the use-case: all the
PDNs of this DDT are added to the RDDT and the similar
PDNs are compared. If the two alternative execution paths of
the PDN have been executed, this node becomes an FDN and
is not a candidate for alternative execution anymore. It is then
removed from the RDDT.

5) The resulting RDDT is analyzed to find the remaining PDNs.
If there is at least one, we check if its condition could be
changed by the user through some GUI action. If yes, a new
scenario is built by adding this action to the previous scenario
and the process go back to (3).

Figure 4

Technically, when a PDN is added to the RDDT we must also add
all its parents. The parents of a PDN are all the decision nodes we
need to travel to reach the root node from the PDN (i.e. all DNs
which dominate the PDN). Indeed the execution of a given DN
depends on the “state” of its parents’ conditional statements.
Moreover, the adding of the whole ancestor path up to the root for
a PDN assures that we later compare (and compress) similar paths
in the execution flow. The technique to identify the user action
associated to some conditional statement works the following
way. Starting from the conditional statement (the slicing criteria)
we compute the associated backward slice [19][14]. If a GUI-
related variable is present in the slice, this means that the value of
the conditional expression could be changed by modifying the
state of the variable.

Figure 5 present the initial RDDT when a new node (the central
one just below the root) is added. It is worth noting that all the
DNs are prefixed with their physical location in the source code
so that we could easily find all the similar nodes. For example, in
Figure 5, we represented three nodes with the prefix: “1” meaning
that they all represent the same node in the source code. Two of
them have been evaluated to true and the one in the middle to

false which makes that decision node an FDN (all paths have been
executed). Then this node is removed from the RDDT. This is
presented in Figure 6.

Figure 5

Figure 6

But if the node in the middle had been evaluated to true, there
would still remain a path to execute (i.e. corresponding to the
false case). Then the node would have been kept in the RDDT.
Figure 7 we present the reorganization of the RDDT where the
FDN is removed and the pointers from the parents redirected to
the children of the removed node.

Figure 7

4. CODE INSTRUMENTOR
The tracing statements are inserted in the source code by a tool
called the code instrumentor. We developed our own based on the
analysis of the AST of the Java projects using a specific Eclipse
library (org.eclipse.jdt.core.dom). First, the Abstract Syntax Tree
(AST) of the Java source code of the system to analyze is
generated one file at a time using this Eclipse library. Each file

represents one Eclipse project of the system. Then this AST is
navigated and the tracing statements are added to each method
entry and exit and in conditional statement as explained above.
Once the AST of the project has been processed, the source code
of the project is regenerated from the modified AST to get its
instrumented version.

When the instrumented system is run, the tracing events are
written to a flat file. Next, this file is read offline and the events
are loaded in a database for further processing. This technique
limits the impact of the tracing statements to the processing speed
of the instrumented code. If we would have written the events
directly to a database the processing speed would have been much
more impacted. Currently our code instrumentor only works for
Java. As an alternative to the building of our own code
instrumentor, we explored Aspect Oriented Programming.
However since the source code is instrumented at conditional
statement level, AOP does not work. Indeed AOP does not allow
to alter the behavior of the code at statement level, but only at
method level. AOP can trigger the execution of additional code
(advice) before or after a method call but not at a specific
statement in a method. This explains why we dismissed AOP in
favor of the implementation of our instrumentor.

5. FEASIBILITY STUDY
The question that remains to be answered concerns the
workability of our approach. Due to the combinatorial explosion
of the number of execution paths of a program, could our
approach lead to a manageable set of alternatives to explore or
would this set be so large that such an exploration would be
prohibitive? The short answer is that our Reduced Dynamic
Decision Tree (RDDT) technique leads to a workable solution.

As an illustration, we present a simple example based on the
analysis of “FastUML”, a small open source UML modeling tool.
In this experiment we recorded 3 different scenarios, representing
simple variants of each other. After having applied the tool on
those three traces we obtain the following results:

 Trace 1 contained 116 007 events. Its DDT contained 45 544
Decision Nodes.

 Trace 2 contained 312 495 events. Its DDT contained 121 317
DNs.

 Trace 3 contained 104 958 events. Its DDT contained 32 849
DNs.

First, we observe that the Decision Nodes account for
approximately 30% of the events in the trace. This is about what
we got in all our experiments. Once we applied our decision tree
reduction algorithm, the resulting RDDT from the merge of the
three DDT contained only 74 PDNs. In short, with our algorithm
we went from a maximum of 121 317 DNs in the trace to a final
74 PDNs. This limited number of PDNs shows that it is indeed
feasible to analyze the control flow statements to identify the user
manipulations leading to alternatives scenarios for a use-case.

6. RELATED WORK
Decisions to decisions graphs of programs have been used for
quite some time in different contexts. In his early work, Paige
reviews different approaches to partition program graph [17]. One
of the techniques is decision-to-decision path that he uses to
partition a program graph and propose a reduced version of the
program graph only made on decision nodes. In their paper,

Geoghegan and Avresky focus on adding fault detection to
software. To achieve that goal they use dd-graph (decision to
decision graph) to construct an execution path tree, which is used
to predict normal flow of execution. Then Geoghegan and
Avresky check that the current execution location follows the
predicted flow of execution [10]. In a decade later Costa and
Monteiro analyzed the execution of embedded software and
compute observability-based statement coverage metric [3]. The
particularity of this metric is that it allows knowing the statements
that influence the output of the system. They compute the metric
using Control Dataflow Graphs (CDFG) representing the system
behavior. The result are the input data that would trigger the
change in the execution flow if inputted during execution. As far
as the execution trace format is concerned, Hamou-Lhadj
proposed several years ago an exchange format for the traces that
he called the “Compact Trace Format” [11]. Later, he proposed a
metamodel for execution traces [12]. These format and
metamodel corresponds to a “standard” approach, i.e. a trace in
which the events are only method (or procedure) calls. The
“controlNode” element present in the metamodel is not the
representation of a control statement but a special construct aimed
at signaling repetitions and sequence of similar sets of events in
the trace. Indeed, this format is intended to represent a trace in a
compressed format. In particular, each of the unique subtrees of
events in the trace is represented only once. But the control
statements are definitely absent from this format. Finally, to the
best of our knowledge, we have not found any approach trying to
recover the use-cases of a system using dynamic analysis
techniques coupled with static analysis.

7. CONCLUSION
This paper presents a technique to recover the functional
specification (use-cases) of a legacy program when no
documentation is available (which is the common case). Our
approach is based on a novel technique that uses an example
scenario (that we called the backbone) for each use-case to
recover. The latter then drives the discovery of the alternative
flows for the use-case. The technique is to collect the control
statement executed when running the scenarios and to identify the
user manipulations that could change their state i.e. the flow of
execution. The first challenge we encountered was to identify all
the control flow statement involved in the scenario and what
alternative was actually executed. This was very difficult to do
using a standard execution trace format. We then decided to
design a new trace format and we built a code instrumentor to be
able to generate a trace in the new format. A second challenge
was to cope with the large number of conditional statement to
analyze in a single trace. Then we developed an approach where
all the dynamic decision trees corresponding to the alternative
scenarios to the same use-case are merged to get a reduced
dynamic decision tree (RDDT). The principles for the building of
such a tree have been presented in the paper. This technique has
proven to be efficient in reducing the decision tree to a size
compatible with our approach. The next step in the method is to
take each of the remaining nodes and check if their condition can
be changed by some user manipulation through the screens of the
application. To go from a PDN to the screen code we use a code
slicer that we presented briefly. The full explanation of the slicing
technique is out of the scope of this paper. The contributions of
our paper are:

1. The presentation of a novel technique to recover the
functional specification of a legacy system (use cases) using
dynamic and static techniques.

2. The design of an enhanced execution trace format to be able
to construct the Dynamic Decision Tree of some scenario
execution.

3. The design of a decision tree compression algorithm to
reduce the size of the decision tree to analyze.

Future work is to tune the slicing technique to be able to cope
with large GUI libraries. Indeed our approach has been tested so
far on limited systems only. We must now tune our techniques to
show that it is a feasible approach for large systems.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the UAS of
Western Switzerland, grant N° 24245

9. REFERENCES
[1] Ball T. The Concept of Dynamic Analysis. Proc. 7th

European Software Engineering Conference (ESEC’99)
1999

[2] Bass L., Clements P., Kazman R. Software Architecture in
Practice, 2nd edition. Adison-Wesley Inc.. 2003

[3] Costa J., Monteiro J. - Computation of the minimal set of
paths for observability-based statement coverage. 15th IEEE
Int. Conf. on Mixed Design of Integrated Circuits and
Systems (MIXDES). 2008

[4] Di Lucca G. A., Fasolino A. R., De Carlini U. Recovering
Use Case models from Object-Oriented Code : a Thread-
based Approach. Proc IEEE WCRE 2000

[5] Dugerdil Ph., Jossi S. A Legacy System’s Use-Cases
Recovery Method. Proc ICSOFT, Athens, Greece. 2010

[6] Dugerdil Ph., Jossi S. Empirical Assessment of Execution
Trace Segmentation in Reverse Engineering. Proc ICSOFT
2008

[7] Dugerdil Ph., Jossi S. Reverse-Engineering of an Industrial
Software Using The Unified Process: An Experiment. Proc
IASTED SEA. 2007

[8] Dugerdil Ph. - A Reengineering Process based on the
Unified Process. Proc. IEEE International Conference on
Software Maintenance, 2006.

[9] El-Ramly M., Stroulia E., Sorenson P.. Mining System-User
Interaction Traces for Use Case Models. Proc IEEE IWPC.
2002

[10] Geoghegan S. J., Avresky D. R. - Method for Designing and
Placing Check Sets Based on Control Flow Analysis of
Programs. Proc. of the 7th IEEE Int. Symp. on Software
Reliability Engineering, 1996.

[11] Hamou-Lhadj A.. Techniques to Simplify the Analysis of
Execution Traces for Program Comprehension. PhD Thesis.
Ottawa-Carleton Institute for Computer Science, University
of Ottawa. 2005

[12] Hamou-Lhadj A.,Lethbridge T.. A Metamodel for the
Compact but Lossless Exchange of Execution Traces.
Journal of Software and Systems Modeling (SoSym),
Springer, pp. 1-22, 2012.

[13] Jacobson I., Booch G., Rumbaugh J.. The Unified Software
Development Process. Addison-Wesley Professional. 1999

[14] JavaSlicer official website : http://www.st.cs.uni-
saarland.de/javaslicer/

[15] Leffingwell D, Widrig D. Managing software requirements,
Addison Wesley. 2003

[16] Li Q., Hu S., Chen P., Wu L., Chen W.. Discovering and
Mining Use Case Model in Reverse Engineering, Proc. IEEE
FSKD. 2007

[17] Paige M.R. - On Partitioning Program Graph. IEEE
Transactions On Software Engineering, Vol. 3, No. 6. 1977

[18] Qin T., Zhang L., Zhou Z., Hao D., Sun J.. Discovering Use
Cases from Source Code using the Branch-Reserving Call
Graph. Proc. IEEE APSEC. 2003

[19] Mark Weiser - Program Slicing. Proc. IEEE International
Conference on Software Engineering (ICSE) 1981

