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ABSTRACT 
In the context of reverse-engineering project we designed a use-
case specification recovery technique for legacy information 
systems. With our technique, we can recover the alternative flows 
of each use-case of the system. It is based on a dynamic (i.e. 
runtime) analysis of the working of the system using execution 
traces. But “traditional” execution trace format do not contain 
enough information for this approach to work. Then we designed 
a new execution trace format together with the associated tool to 
get the program’s dynamic decision tree corresponding to each of 
the use-case scenario. These trees are then processed to find the 
possible variants from the main scenario of each use-case. In this 
paper we first present our approach to the use-case specification 
recovery technique and the new trace format we designed. Then 
the decision tree compression technique is showed with a 
feasibility study. The contribution of the paper is our approach to 
the recovery of legacy systems’ use-case, the new trace format 
and the decision tree processing technique.  

Categories and Subject Descriptors 
D.3.1 [Software Engineering]: Requirements/Specifications - 
Methodologies 

General Terms 
Algorithms, Experimentation 

Keywords 
Use-case recovery, dynamic analysis, decision tree processing 

1. INTRODUCTION 
In our lab, we developed a reverse engineering technique for 
legacy systems based on their use-cases [6][7]. Generally, legacy 
systems documentation is at best obsolete and at worse non-
existent. Moreover it is often the case that the developers are not 
available anymore to provide the maintainers with information on 
the structure of these systems. In such situations the only people 
that still have a good perspective on the system are its users:  they 

are usually well aware of the business relevance of the programs. 
This information can be recorded as system use-cases. In short, 
our iterative and incremental reverse engineering process [8] 
works the following [7] : 

1) Re-documentation of the system use-cases; 
2) Manual redesign of the analysis diagrams associated to each 

of the use-cases; 
3) Execution of the system according to these use-cases (i.e. 

their scenarios) and recording of the execution trace; 
4) Analysis of this execution trace and identification of the 

classes involved in the trace; 
5) Mapping of the classes in the trace to the classes of the 

analysis diagram; 
6) Re-documentation of the architecture of the system by 

clustering the classes based on their role in the use-case 
implementation. 

Since we fundamentally rely on users to re-document the use-
cases, the completeness of the latter is an issue. Indeed the re-
documented use-cases are never complete and accurate, especially 
regarding the alternative flows. We then need a semi-automatic 
way to recover the missing use-cases flows. In the literature 
attempts have been made to recover the use-case form the mere 
analysis of the source code of the legacy software (see for 
example [16] [18]). But in [5] we have showed this to be 
fundamentally impossible. We then claim that the solution to the 
problem, if any, could only come from the directed dynamic 
analysis of the software coupled with the static analysis of its 
source code. Dynamic analysis is a program analysis technique 
based on the execution trace of the program [1]. Basically an 
execution trace (or trace for short) represents the sequence of 
methods (or functions) called when a program is run. By directed 
we mean that our use-case recovery technique is based on an 
example scenario for each use-case. The problem is therefore to 
re-document the complete use-cases with all their relevant flows 
from the simple scenarios described by the users. Indeed, it is 
often the case that the user only knows a very limited subset of all 
the functions of the system. The challenge is to recover the 
missing part.  

Our approach works the following: an execution trace is recorded 
when running each of the scenarios observed when the users 
perform their business task. Such a trace represents what we 
called the backbone trace of the corresponding use-case. Then we 
analyze the possible variants of the scenario by identifying the 
conditional statements in the execution path represented by the 
backbone execution trace. Next, one searches what user action 
could change the boolean condition of each statement. Such an 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC’13, March 18-22, 2013, Coimbra, Portugal. 
Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00. 
 

dossantosgw
Texte tapé à la machine
Published in SAC '13 : Proceedings of the 28th Annual ACM Symposium on Applied Computing , 2013, p. 1284-1291 which should be cited to refer to this work. doi>10.1145/2480362.2480602



action would then change the execution flow hence create a new 
scenario. In this way we would have discovered an alternative 
path for the original scenario. By repeating this experiment we 
will slowly recover all the variants of the initial scenario. 
Specifically, to trigger the alternative behavior we must identify 
the control statements in the execution trace and determine what 
action the end user could take through the user interface to change 
the conditions of these control statements to execute the 
alternative flows. In short we must answer the following question: 
could the user trigger the alternative flow by manipulating some 
user interface control?  The key feature of our approach is to 
allow us to recover the sequence in which the user actions could 
be performed on the systems screens, since we can observe this 
sequence in the trace. In particular we know when, in a valid 
scenario, an alternative could be triggered. By contrast any 
arbitrary sequence of user interface manipulation does not 
represent a valid scenario since, according to [15], “A use case 
describes sequences of actions a system performs that yield an 
observable result of value to a particular actor”. There is very 
little chance that an arbitrary sequence of user interface actions 
could lead to such observable result of (business) value for the 
actor. But our approach does, since we start from a valid scenario 
and we rebuild variants from this scenario. In summary, our 
technique works the following way: 

1. We redocument the main use-case of the system by observing 
its users. This gives us one scenario per use-case (the 
backbone scenario). 

2. We instrument the source code of the system (i.e. we insert 
tracing statements), to be able to generate an execution trace. 
This new version of the source code is recompiled. 

3. The new compiled version is run according to the backbone 
scenario. 

4. We collect the execution trace and process it off-line to find 
the executed control statements. The result is stored as a 
decision tree (called a dynamic decision tree). 

5. This dynamic decision tree is compressed to reduce the 
quantity of control statements to analyze.  

6. The reduced tree is analyzed top-down to identify the control 
statements whose boolean condition could be modified by 
some user action on the screens. The candidate action is 
identified by source code analysis (program slicing [19][14]) 
and represents the trigger of a variant of the initial scenario.  

7. If a valid variant is identified at step 6, we design a new 
scenario with this variant and go back to step 3. If there is no 
valid variant, the process is ended. 

In short our technique rests on the capability to record the 
sequence of control statements executed for a given scenario, and 
to identify those for which the condition could be changed by 
some action of the user. Moreover we must know, for each 
executed control statement, if both alternatives have been 
executed and, if not, which one remains to be executed. It is worth 
noting that the recovery of such a valid (i.e. business-relevant) 
sequence of control statements by the mere analysis of the source 
code is fundamentally impossible. In a first version of our tool, 
we worked with a “standard” execution trace format containing 
only the method calls. Since the control statements were not 
explicitly represented we had to analyze the source code of the 
executed methods to recover these statements and determine 
which alternative was actually executed. But this technique has 
been very hard to implement, particularly because of the difficulty 

to analyze the types of the variables in the context of the late 
binding (Java). After having tried several alternative options, we 
gave up and decided to create an extended format for the 
execution trace that would explicitly record the executed 
conditional expressions. This worked fine on small programs. But 
we soon realized that the number of nodes to analyze was much 
too big for our scenario recovery technique to work in practice. 
Recall that, in our approach, each of the executed conditional 
statement must later be processed to identify the user-interface 
control that could possibly change the condition so that the 
alternative execution flow could be triggered. This lead us to 
develop a compression technique of the dynamic decision tree of 
the program, to keep only the relevant conditional statements. The 
result is what we called the Reduced Dynamic Decision Tree 
(RDDT).  

This paper presents the techniques we developed to record and 
process the sequence of conditional expressions (sometimes 
called DD-path or Decision to Decision path in the literature [17]) 
gathered when running the system. The paper is structured as 
follows. Section 2 presents the extended trace format and model 
we developed to gather the relevant conditional expressions. 
Section 3 presents the dynamic decision tree model we use to 
process the conditional statements in the trace. In section 4 we 
give some hints on the code instrumentor. Section 5 presents a 
feasibility study, section 6 presents the related work and section 7 
concludes the paper. 

2. EXTENDED TRACE FORMAT 
2.1 Limitations of the standard format 
An execution trace is a sequence of trace event representing the 
method called when the system is run. Several trace formats have 
been proposed in the literature, but the fundamental information 
that must be recorded is: 

[classID] [methodSignature] 

Where methodSignature is the method that has been called and 
classID is the identifier of the class of the instance that executed 
the method. Whatever the format, it is important to note that an 
execution trace does not normally record the conditional 
statements but only the method (or procedure) calls. In the 
explanation below we will refer to this kind of trace as the 
“standard” trace. With such a format, if we must identify which 
control statement was executed we must deduce it from the 
recorded method calls and the source code, since no explicit 
information is available in the trace. Here is a simple example. 
Let us have the following source code statements and execution 
trace (in its simple standard format): 

Program (in class Class1): 

x.m1(); 
if (condition1) 

then y.m2(); 
else y.m3(); 

x.m4(); 

Trace: 

Class1 m1() 
Class2 m2() 
Class1 m4() 



In the above example, it is clear that condition1 was true during 
the execution since we observe m2() in the trace. However a 
simple variant of this code could be more difficult to analyze. 

Program (in class Class1): 

x.m1(); 
if (condition1) 

 then y.m2(); 
 else z.m2(); 

x.m4(); 

Trace: 

Class1 m1() 
Class2 m2() 
Class1 m4() 

Now we must identify the type of the variables y and z to know 
which one corresponds to Class2. Only then could we deduce the 
boolean value of condition1. But the identification of the dynamic 
type of each variable could lead to a very difficult search in the 
source code since this may involve other conditional statements as 
well as late binding. In the case below the code may even lead to 
ambiguities which are hard to solve: 

Program (in class Class1): 

x.m1(); 
if (condition1) 

 then {y.m2(); y.m3();} 
 else y.m2(); 

if (condition2) 
 then y.m3(); 

x.m4(); 

Trace: 

Class1 m1() 
Class2 m2() 
Class2 m3() 
Class1 m4() 

In this case, were condition1 true and condition2 false or the other 
way around? This is important because we must know what 
alternative remains to be executed. In short, we found it very 
hard, for each conditional statement, to determine what branch 
was actually executed from the limited information available in 
the “standard” trace format. Initially the motivation to keep the 
standard format was to allow anyone in the dynamic analysis 
community [12] to reproduce our results. But we realized that this 
goal had to be abandoned in favor of a richer format including 
information on the executed control statements. 

2.2 Extended trace format 
The limitations of the standard trace format lead us to define a 
new format with explicit representation of the control information 
(decision nodes plus executed alternative). This new trace format 
allows us to identify which conditional branches were executed 
and if an alternative flows of execution remains to be executed. 
Moreover, since we need to record the hierarchy of the calls to 
build a decision tree, not only must we record the method entries 
but also the method exits. In short, our technique is to insert the 
tracing statement at the beginning and end of the methods as well 
as in the conditional statements themselves. However, in the case 

of the conditional statements, where should the tracing statement 
be inserted to know the executed alternative? Moreover, does an 
alternative path actually exist for the statement (is the then part 
followed by an else part for a given if statement or not)? 
Consequently, we decided to instrument the blocks of code 
associated to the then and else parts of an if statement and the 
block of code associated to loop statements (for, while,…).  

2.3 Trace format grammar 
To limit the impact of the insertion of the tracing statements on 
the performance of the system, the trace information is not 
directly written in a database but in a flat file. This file is later 
loaded offline in a database for further processing. With the new 
format, the trace events are method calls and conditional 
statements execution. Below, we present the grammar of the trace 
events recorded in the trace file. 

Method entry: 

[spn][scn][dpn][dcn]‘[’[tn]‘]’ [evt]‘AS’[rt]‘[’[tsIN]‘]’[pv] 

Method exit: 

‘END’[spn][scn][dpn][dcn]‘[’[tn]‘]’ [evt]‘AS’[rt]‘[’[tsOUT]‘]’ 

Where: 

[spn] := fully qualified name of the package of the class in which 
the executed method or conditional statement are declared. 

[scn] := name of the class in which the executed method or 
conditional statement are declared. 

[dpn] := fully qualified package name of the class of the instance 
that actually executed the method or conditional statement. 

[dcn] := name of the class of the instance that actually executed 
the method or conditional statement. 

[tn] := id of the thread in which the method or conditional 
statement is executed. 

[evt] :=  [sign] | [cond]  
[sign] := signature of a method: method name followed by the 

ordered list of the fully qualified types of the parameters of 
the method, written within brackets. This grammar element is 
only relevant for events corresponding to method executions. 

[cond] :=  ‘IF_TRUE()’ | ‘IF_TRUE_NO_ELSE()’ | 
‘IF_FALSE()’  | ‘FOR_TRUE()’ | ‘FOR_FALSE()’ | 
‘WHILE_TRUE()’ | ‘WHILE_FALSE()’  | 
‘DOWHILE_TRUE()’. This is the identification of the 
conditional statement that has been executed. This grammar 
element is only relevant for events corresponding to 
conditional statement executions. 

[rt] := if ([evt] = [sign]) this is the name of the type of the value 
returned by method. If ([evt] = [cond]) this element is void. 

[tsIN] := timestamp when entering the method or the conditional 
expression. 

[tsOUT] := timestamp when exiting the method or the conditional 
expression. 

[pv] := [mpv] | [le] ‘@’ [cl] | whitespace 
[mpv] := method parameter values:  list of the values of the 

primitive-typed parameters in the same sequence as the 
parameter type in the method signature. If a value is not of 
primitive type, it is represented by the underscore character 
‘_’. This grammar element is only relevant for events 
representing method calls ([evt]=  [sign]). If the method does 
not have any parameters, this element is empty (white space). 



[le] :=  string representing a logical expression associated with a 
control flow statement in the source file. This grammar 
element is only relevant for events representing conditional 
statements ([evt] = [cond]). 

[cl] := location of the control statement: [static package name] ’.’ 
[filename] ‘:’ [line number]. 

The timestamps allow us to compute the time taken to process 
each event. In case of method calls, the event contains the values 
of the primitive-typed parameters (i.e. non class-typed 
parameters). This is used to locate, in the trace, the entry of some 
input parameters by the user. In case of events representing 
conditional statement this element represents the logical 
expression of the statement together with the exact location of the 
statement in the code. This is required since the same control 
statement with the same logical expression may be declared 
several times in the same class, to the contrary of method 
signatures that must be unique.  

2.4 Trace model 
The model of the stored format of the trace information in the 
database is presented in Figure 1. An ExecutionTrace instance 
represents a specific trace associated to a given scenario 
belonging to some use-case. It is composed of a collection of 
TraceEvents that could either be method calls or conditional 
statements. But the latter also contain an attribute representing 
their physical location (full file name and line number in the file). 
With this unique identifier, we are able to unambiguously identify 
the similar execution subtrees. As can be seen from the model, 
each node holds its thread number. In the database, we record a 
separate call tree for each of the threads.  

2.5 Instrumenting conditional statements 
We will now explain how if and loop statements are instrumented. 
Here is the simplest example of the location of the tracing 
statements in an if statement: 

if(expression) { 
//THEN block 
tracingObject.traceStatement(“if_true”); 
… 
} 

Else { 
//ELSE block 
tracingObject.traceStatement(“if_false”); 
… 
} 

next_statement; 

In this situation, a trace event will be generated and recorded 
whatever the value of the conditional expression. Therefore we 
will know what alternative has been executed and if there is yet 
another one to be executed. But the difficulty comes from the 
processing of the if statements when there is no alternative path 
(then without else).  In this case if the condition is false, there is 
no conditional code to execute. Consequently we could not record 
the execution of this conditional statement since the tracing code 
is located in the conditional blocks. Below is an example of the 
instrumented code that follows the technique presented above. If 
expression1 is false, there is no execution of the conditional block 
and therefore no record of any tracing event in the trace file. 

if(expression1) { 
//THEN block 
tracingObject.traceStatement(“if_true”….); 
… 
}  

next_statement; 

But we must know that a conditional flow remains to be executed 
for the scenario (the then part in the example above).  

 
Figure 1 

The solution is to add an else block during instrumentation, for 
the only purpose to generate an event in the trace file. This is 
showed below. Moreover, one should also record that in case the 
expression is true there is no alternative code to execute. 
Example: 

Before instrumentation: 

if(expression) { 
//THEN block 
… 
}  

next_statement; 

After instrumentation: 

if(expression) { 
//THEN block 
tracingObject.traceStatement(“if_true_no_else”); 
… 
}  

Else { 
//Added ELSE block 
tracingObject.traceStatement(“if_false”); 
} 

next_statement; 

In case the expression is true, the recorded event is 
IF_TRUE_NO_ELSE. Then we know that no alternative code 
remains to be executed. But is the expression is false, we will 
record it and know that an alternative path does exist. In the same 



vein, we generate two events in the case of while and for loop 
statements. One in the case the loop is executed at least once, and 
another one if the loop was not executed at all. Here are the 
events for the while statements: 

1. ‘WHILE_TRUE’ : this is recorded if the loop code was 
executed at least once  

2. ‘WHILE_FALSE’ this is generated if the loop was not 
executed at all.  

The same is done in the case of for loops. Finally, since do-while 
loop statements are always executed at least once, there is never 
any alternative to generate. But we record the corresponding 
event for completeness purpose only (to have a complete picture 
of what was executed). 

3. DECISION TREE MODELS 
3.1 Introduction 
Our technique aims at recovering the alternative execution paths 
from a backbone use-case’s scenario. These alternative paths 
represent variants from the backbone hence the alternative flow of 
the corresponding use case. But for an alternative path to be 
recorded as a plausible alternative, its execution must be 
controllable by the user. In other words, the value of the 
corresponding logical expression must be changeable through 
some user interface control. Therefore, our approach works in two 
steps:  

1) Identify all the alternative paths to the backbone execution. 
2) Determine if each path could be selected by the user 

through the GUI. 

3.2 Definitions 
In order to simplify the reading of the formal structure of the 
decision tree we built, we introduce the following definitions:  

DN: Decision node. This represents an executed control flow 
statement.  

PDN : Partially executed decision node. This is a DN for which 
an alternative to the current execution flow remains to be 
executed (in other words, there remain alternative paths to be 
run). 

FDN: Fully executed decision node. This is a DN for which all 
the alternatives have been executed. In other words, there is no 
new path of execution that could be generated from this node. 

DDT: Dynamic Decision Tree. This represents all the DNs in the 
executions of a scenario, recorded with their hierarchical 
dependence. 

RDDT: A Reduced Dynamic Decision Tree. This is a DDT where 
all the nodes are PDN (i.e. all FDN have been removed). 

3.1 Dynamic Decision Tree (DDT) 
From the analysis of the trace we must build a decision tree to 
represents the decision statements involved in one or several 
execution of the program when running variants of the scenarios 
belonging to the same use-case. A DDT is then constructed to 
represent the hierarchical dependence between the DNs, since 
some control nodes may be dominated by other control nodes (i.e. 
when we change the boolean value of a DN, we may not be able 

to reach the DN located below it in the program). A DDT is 
generated for each of the separated threads in the trace (Figure 2). 
The DDT we generate contains different types of DNs: if, while, 
for, do while. 

3.2 Reduced decision tree 
The generation of a DDT produces huge trees with hundreds of 
DNs. These “raw” trees are much too big for our technique to 
work: we could not analyze thousands of decision nodes to find 
the one that could be influenced by some user action. In fact, what 
we are interested in are the nodes for which there still remains an 
alternative path to be executed. Therefore, our analysis algorithm 
will explore the tree and record all these nodes, removing the ones 
for which no alternative remains to be executed (FDNs). Then we 
rebuild a tree containing only PDNs. The resulting tree is what we 
call the reduced dynamic decision tree (RDDT). 

 
Figure 2 

When the program is run according to the backbone scenario, the 
corresponding DDT is generated. To know what alternative paths 
have yet to be executed to complete the scenarios of a given use-
case, we must combine the DDT of all the executed scenarios as a 
single RDDT to identify the remaining PDNs. The RDDT is 
therefore built incrementally from the DDTs of each execution of 
the system. After having chosen an alternative user action from 
the analysis of the PDNs in the RDDT (representing a variant of 
the scenario), the system is run again and the variant of the 
scenario is played. This leads to a new trace and a new DDT that 
is merged with the previous RDDT and so on. These scenarios 
represent the synthetic variants of the backbone scenario for the 
use-case as illustrated in Figure 3. 

 

Figure 3 

The principle of the construction of the RDDT is summarized in 
Figure 4. Here are the steps:  

1) The RDDT is initialized. 
2) An initial (backbone) scenario is executed. 



3) The execution trace is captured by running the instrumented 
code according to the scenario and the DDT is generated from 
this trace.  

4) This DDT is merged with the RDDT for the use-case: all the 
PDNs of this DDT are added to the RDDT and the similar 
PDNs are compared.  If the two alternative execution paths of 
the PDN have been executed, this node becomes an FDN and 
is not a candidate for alternative execution anymore. It is then 
removed from the RDDT.  

5) The resulting RDDT is analyzed to find the remaining PDNs. 
If there is at least one, we check if its condition could be 
changed by the user through some GUI action. If yes, a new 
scenario is built by adding this action to the previous scenario 
and the process go back to (3). 

 
Figure 4 

Technically, when a PDN is added to the RDDT we must also add 
all its parents. The parents of a PDN are all the decision nodes we 
need to travel to reach the root node from the PDN (i.e. all DNs 
which dominate the PDN). Indeed the execution of a given DN 
depends on the “state” of its parents’ conditional statements. 
Moreover, the adding of the whole ancestor path up to the root for 
a PDN assures that we later compare (and compress) similar paths 
in the execution flow. The technique to identify the user action 
associated to some conditional statement works the following 
way. Starting from the conditional statement (the slicing criteria) 
we compute the associated backward slice [19][14]. If a GUI-
related variable is present in the slice, this means that the value of 
the conditional expression could be changed by modifying the 
state of the variable.  

Figure 5 present the initial RDDT when a new node (the central 
one just below the root) is added. It is worth noting that all the 
DNs are prefixed with their physical location in the source code 
so that we could easily find all the similar nodes. For example, in 
Figure 5, we represented three nodes with the prefix: “1” meaning 
that they all represent the same node in the source code. Two of 
them have been evaluated to true and the one in the middle to 

false which makes that decision node an FDN (all paths have been 
executed). Then this node is removed from the RDDT. This is 
presented in Figure 6. 

 
Figure 5 

 
Figure 6 

But if the node in the middle had been evaluated to true, there 
would still remain a path to execute (i.e. corresponding to the 
false case). Then the node would have been kept in the RDDT. 
Figure 7 we present the reorganization of the RDDT where the 
FDN is removed and the pointers from the parents redirected to 
the children of the removed node.   

 
Figure 7 

4. CODE INSTRUMENTOR 
The tracing statements are inserted in the source code by a tool 
called the code instrumentor. We developed our own based on the 
analysis of the AST of the Java projects using a specific Eclipse 
library (org.eclipse.jdt.core.dom). First, the Abstract Syntax Tree 
(AST) of the Java source code of the system to analyze is 
generated one file at a time using this Eclipse library. Each file 



represents one Eclipse project of the system. Then this AST is 
navigated and the tracing statements are added to each method 
entry and exit and in conditional statement as explained above. 
Once the AST of the project has been processed, the source code 
of the project is regenerated from the modified AST to get its 
instrumented version.  

When the instrumented system is run, the tracing events are 
written to a flat file. Next, this file is read offline and the events 
are loaded in a database for further processing. This technique 
limits the impact of the tracing statements to the processing speed 
of the instrumented code. If we would have written the events 
directly to a database the processing speed would have been much 
more impacted. Currently our code instrumentor only works for 
Java. As an alternative to the building of our own code 
instrumentor, we explored Aspect Oriented Programming. 
However since the source code is instrumented at conditional 
statement level, AOP does not work. Indeed AOP does not allow 
to alter the behavior of the code at statement level, but only at 
method level.  AOP can trigger the execution of additional code 
(advice) before or after a method call but not at a specific 
statement in a method. This explains why we dismissed AOP in 
favor of the implementation of our instrumentor. 

5. FEASIBILITY STUDY 
The question that remains to be answered concerns the 
workability of our approach. Due to the combinatorial explosion 
of the number of execution paths of a program, could our 
approach lead to a manageable set of alternatives to explore or 
would this set be so large that such an exploration would be 
prohibitive? The short answer is that our Reduced Dynamic 
Decision Tree (RDDT) technique leads to a workable solution.  

As an illustration, we present a simple example based on the 
analysis of “FastUML”, a small open source UML modeling tool. 
In this experiment we recorded 3 different scenarios, representing 
simple variants of each other. After having applied the tool on 
those three traces we obtain the following results: 

 Trace 1 contained 116 007 events. Its DDT contained 45 544 
Decision Nodes. 

 Trace 2 contained 312 495 events. Its DDT contained 121 317 
DNs. 

 Trace 3 contained 104 958 events. Its DDT contained 32 849 
DNs. 

First, we observe that the Decision Nodes account for 
approximately 30% of the events in the trace. This is about what 
we got in all our experiments. Once we applied our decision tree 
reduction algorithm, the resulting RDDT from the merge of the 
three DDT contained only 74 PDNs. In short, with our algorithm 
we went from a maximum of 121 317 DNs in the trace to a final 
74 PDNs. This limited number of PDNs shows that it is indeed 
feasible to analyze the control flow statements to identify the user 
manipulations leading to alternatives scenarios for a use-case. 

6. RELATED WORK 
Decisions to decisions graphs of programs have been used for 
quite some time in different contexts. In his early work, Paige 
reviews different approaches to partition program graph [17]. One 
of the techniques is decision-to-decision path that he uses to 
partition a program graph and propose a reduced version of the 
program graph only made on decision nodes. In their paper, 

Geoghegan and Avresky focus on adding fault detection to 
software. To achieve that goal they use dd-graph (decision to 
decision graph) to construct an execution path tree, which is used 
to predict normal flow of execution. Then Geoghegan and 
Avresky check that the current execution location follows the 
predicted flow of execution [10]. In a decade later Costa and 
Monteiro analyzed the execution of embedded software and 
compute observability-based statement coverage metric [3]. The 
particularity of this metric is that it allows knowing the statements 
that influence the output of the system. They compute the metric 
using Control Dataflow Graphs (CDFG) representing the system 
behavior. The result are the input data that would trigger the 
change in the execution flow if inputted during execution. As far 
as the execution trace format is concerned, Hamou-Lhadj 
proposed several years ago an exchange format for the traces that 
he called the “Compact Trace Format” [11]. Later, he proposed a 
metamodel for execution traces [12]. These format and 
metamodel corresponds to a “standard” approach, i.e. a trace in 
which the events are only method (or procedure) calls. The 
“controlNode” element present in the metamodel is not the 
representation of a control statement but a special construct aimed 
at signaling repetitions and sequence of similar sets of events in 
the trace. Indeed, this format is intended to represent a trace in a 
compressed format. In particular, each of the unique subtrees of 
events in the trace is represented only once. But the control 
statements are definitely absent from this format. Finally, to the 
best of our knowledge, we have not found any approach trying to 
recover the use-cases of a system using dynamic analysis 
techniques coupled with static analysis. 

7. CONCLUSION 
This paper presents a technique to recover the functional 
specification (use-cases) of a legacy program when no 
documentation is available (which is the common case). Our 
approach is based on a novel technique that uses an example 
scenario (that we called the backbone) for each use-case to 
recover. The latter then drives the discovery of the alternative 
flows for the use-case. The technique is to collect the control 
statement executed when running the scenarios and to identify the 
user manipulations that could change their state i.e. the flow of 
execution. The first challenge we encountered was to identify all 
the control flow statement involved in the scenario and what 
alternative was actually executed. This was very difficult to do 
using a standard execution trace format. We then decided to 
design a new trace format and we built a code instrumentor to be 
able to generate a trace in the new format. A second challenge 
was to cope with the large number of conditional statement to 
analyze in a single trace. Then we developed an approach where 
all the dynamic decision trees corresponding to the alternative 
scenarios to the same use-case are merged to get a reduced 
dynamic decision tree (RDDT). The principles for the building of 
such a tree have been presented in the paper. This technique has 
proven to be efficient in reducing the decision tree to a size 
compatible with our approach. The next step in the method is to 
take each of the remaining nodes and check if their condition can 
be changed by some user manipulation through the screens of the 
application. To go from a PDN to the screen code we use a code 
slicer that we presented briefly. The full explanation of the slicing 
technique is out of the scope of this paper. The contributions of 
our paper are: 



1. The presentation of a novel technique to recover the 
functional specification of a legacy system (use cases) using 
dynamic and static techniques. 

2. The design of an enhanced execution trace format to be able 
to construct the Dynamic Decision Tree of some scenario 
execution. 

3. The design of a decision tree compression algorithm to 
reduce the size of the decision tree to analyze. 

Future work is to tune the slicing technique to be able to cope 
with large GUI libraries. Indeed our approach has been tested so 
far on limited systems only. We must now tune our techniques to 
show that it is a feasible approach for large systems. 
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