
On the Borowsky-Gafni Simulation Algorithm

(Brief Announcement)

Nancy Lynch * Sergio Rajsbaum t

Consider a read/write asynchronous shared mem-

ory system. In [1], Borowsky and G&i describe an

algorithm that allows a set of f + 1 processes, any ~ of

which may exhibit stopping failures, to “simulate” a

larger number n of processes, also with at most ~ fail-

ures. This simulation algorithm is used in [1] to con-

vert an arbitrary k-fault-tolerant n-process solution

for the k-set-agreement problem into a wait-free k+ 1-

process solution for the same problem. Since the k+l-

process k-set-agreement problem has been shown to

have no wait-free solution (e.g. [1]), this transforma-

tion implies that there is no k-fault-tolerant solution

to the n-process k-set-agreement problem, for any n.
This and other initial examples suggest that the

Borowsky-Gafni simulation can become a powerful

tool for proving solvability and unsolvability results

for fault-prone asynchronous systems. However, in

order for this to happen, it must be clear exactly what

the simulation algorithm is, and what it guarantees.

We began this research with the modest aim of stat-

ing and proving precise correctness guarantees for the

Borowsky-Gafni simulation algorithm, using the 1/0

automaton model (e.g. [2]) and standard proof tech-

niques. However, the job turned out to be more dif-

ficult than we expected, because the description in

I * lynch@theory.lcs.mit.edu. Laboratory for Computer Sci-
1 ence, Massachusetts Institute of Technology, Cambridge,
, MA 02139. Supported by Air Force Contract AFOSR F49620-

92-J-0125, NSF contract 9225124CCR, and DARPA contracts
NOO014-92-J-4033 and F19628-95-C-01 18.

trajsbaumQservidor.unam. mx. Instituto de Matem6ticsa,
U. N. A.M., Ciudad Universitaria, D.F. 04510, Mr!xico. Sup-
ported by DGAPA projects.

Per@eion to make digitelhd copies of all or pmt of WI materiel for
peratmel or classroom use is granted without fee provided that the copies
are not made or distributed for profit or conutwrekd advantage, the copy-
right notice, the title of the publication and ita date appear, ●nd notice is
given that copyright is by permission of the ACM, be. To copy otherwise,
to republish, to poet on servers or to redktribute to he, requires epecific
permiaaion endlor fee.

PODC’96, Phiidelphia PA, USA
Q 1996 ACM &89791 -8oo-2/96/05. .$3.50

0

[1] is brief and informal, and does not include a care-

ful specification of what the algorithm provides to its

users; it leaves some ambiguities that we needed to

resolve. 1 The final product of our work is a complete

and careful description of a version of the Borowsky-

Gafni simulation algorithm, plus a careful description

of what it accomplishes, plus a proof of correctness.

In order to specifi what the simulation accom-

plishes, we define a notion of fault-tolerant reducibility

between decision problems, and show that the algo-

rithm implements thk reducibility, in a precise sense.

We give some examples of pairs of decision problems

that do and do not satisfy this reducibility. In con-
trast, [1] deals only with the use of the simulation in

the set agreement problem.

The presentation has a great deal of interesting

modularity, expressed by 1/0 automaton composition

and both forward and backward simulation relations.

Composition is used to include a safe agreement mod-

ule, a simplification of one in [1], as a subroutine. For-

ward and backward simulation relations are used to

view the algorithm as implementing a rnulti-ty snap-

shot strategy. The most interesting part of the proof

is the safety argument, which is handled by the for-

ward and backward simulation relations; once that is

done, the liveness argument is straightforward.

References

[1]

[2]

E. Borowsky and E. Gafni, “Generalized FLP

impossibility result for t-resilient asynchronous

computations; in Proceedings of the 1993 ACM

Symposium on Theory of Computing, May 1993.

N.A. Lynch, Distributed Algorithms, Morgan

Kaufmann Publishers, Inc. 1996.

1For example, the simulation does not work in the

read/write shared memory model that we believe is intended

in [1]; we instead use an atomic snapshot memory.

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F248052.248060&domain=pdf&date_stamp=1996-05-01

