
Comparing Primary-Backnp and State Machines for crash Failures

Jeremy B. Sussman and Keith Marzullo
Department of .Compute~ Sci~nce and Engineering

Umverslty of Cahforrua, San Diego
La Jolla, CA 92093-0114

Two of the more prevalent methods of construct-
ing a highly available service are the primary-backup
(e.g., [2]) and the state machine (e.g., [5]) ap-
proaches. Both methods are widely used, and a
common wisdom has developed about their relative
strengths and weaknesses. Our research attempts
to make this comparison of relative strengths and
weaknesses in a more formal manner under the
crash failure model and in a synchronous system
model.

The metrics upon which this comparison are
based refer to the service response tim~, which is
the time elapsed from when a client initially sends
a request to the service until the client receives the
response from the service.

Common wisdom says that in terms of best-
csse and expected service response times, primary-
backup is better than state machines, but in terms
of worst-case service response time, state machines
are better than primary-backup. Hence, common
wisdom argues that the state machine approach is a
better choice for real-time systems in which schedu-
lability is a concern, but primary-backup is a better
choice for most other cases.

Our comparison necessitated fully specifying the
two methods. The primary-backup approach has
been specified [2] in terms of how a service must
appear to a client, but not in terms of how a client
interacts with the service except that the client
only sends requests to the process it believes to
be the primary. We have considered three different
client-service protocols. It is easy to show that the
primary-backup approach for any of these client-
service protocols is optimal for the best-case service
response time.

Specifying the state machine approach has proven
to be more difficult. We have found it convenient
to categorize the approach into three different cases,
depending on how the ordering of the reliable broad-
casts from clients to the service is done. We refer to
these as the sequencer approach (for example, [4]),
the consensus approach (for example, [6]), and the
a priori approach (for example, [3]).

In the a priori approach, the order of delivery is

determined by timestamping requests with a real
clock value, and enqueuing them at the server un-
til any earlier messages have been received. Thus,

the ordering latency-that is, the time from when
a client sends a request to the service until when
the service delivers the request—is the same for all

failure patterns, including failure free runs. This

approach is provably optimal in the worst case, but
a penalty is paid in that every request has the same
ordering latency.

In the consensus approach, the order of the re-
quests are determined jointly by all of the (non-
faulty) servers in the system. In order to attain this
consensus, a consensus protocol either must be run
repeatedly [1] or must be initiated when a process
of the service receives a client’s request. Running
consensus repeatedly can yield a small ordering la-
tency, but is very expensive in terms of the number
of messages used. Starting consensus from the re-
ceipt of a client’s request, on the other hand, has
a larger ordering latency but uses fewer messages.
Neither is optimal in either the best-case service re-
ponse time or the worst-case service response time.

In the sequencer-based approach, there is in-
finitely often a single server that unilaterally de-
cides the order of a set of requests. In this sense, it
is analogous to the primary-backup approach, and
some of the lower bounds for primary-backup apply
to sequencer-based state machines as well. Further-
more, there exist protocols of this approach that are
optimal in the best-case service response time and
are better than primary-backup in expected service
response time.

Hence, contrary to common wisdom, we have
found that in terms of best-case service response
time, both primary-backup and state machines can
be optimal. In terms of worst-case service response
time, an optimal st ate machine service can be con-
structed, while an optimal primary-backup service
cannot. However, the best-case service response
time for this state machine service will be very poor.
Finally, there are state machine protocols that have
expected service response times better than any
primary-backup protocol.

[1]

[2]

[3]

[4]

Permission to make dlgitallhard copies of all or part of thk matarial for
[5]

personal or claaeroom use is granted withont fee provided that the copies
aomnot ~de or distributed for profit or commercial advantage, the copy-
right n@ce, the title of the publication and its date appear, and notice b 1
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to radh%ributa to lists, requires specific
permission and/or fee.

PODC’96, Phiidelphn PA, USA
e 1996 ACM o-s9791-goo-2/96/05. .$3.50

90

P. Berman and A. A. Bharali. Quick atomic broad-
cast. In Distributed Algorithms, 7th International
Workshop, WDAG ’93, pages 189–203, Sept. 1993.
N. Budhiraja, K. Marzullo, and F. B. Schneider.
Primary-backup protocols: Lower bounds and opti-
mal implement ations. In Dependable Computing for
Critical Applications 3, pages 321-343, Sept. 1992.
F. Cristian, H. Aghili, H. R. Strong, and D. Dolev.
Atomic broadcast: From simple message diffusion
to byzantine agreement. In Proc. of the 15th Inter-
national Symposium on Fault- Tolerant Computers,
pages 200–206, 1985.
M. F. Kasshoek, A. S. Tanenbaum, S. F. Hummel,
and H. E. Bal, An efficient reliable protocol. Oper-
ating System Review, 23(4):5–19, Oct. 1989.
F. B. Schneider. Implementing fault tolerant ser-
vices using the state machine approach: A tutorial.
Computing Services, 22(4):299-319, Dec. 1990.

D. Skeen. Crash Recovery in a Distributed Database
System. PhD thesis, University of California, Berke-
ley, 1982.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F248052.248067&domain=pdf&date_stamp=1996-05-01

