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The ever growing computation and storage capability of mobile phones has given rise to mobile centric context 
recognition systems, which are able to sense and analyze the context of the carrier so as to provide an appropriate 

level of service. Particularly, as nonintrusive autonomous sensing and context recognition are one of the most 

desirable characteristics of a personal sensing system; commendable efforts have been made to develop opportunistic 
sensing techniques on mobile phones. The resulting combination of these approaches has ushered in a new realm of 

applications, namely opportunistic user context recognition with mobile phones.  

This article surveys the existing research and approaches towards realization of such systems. In doing so, the typical 
architecture of a mobile centric user context recognition system as a sequential process of sensing, pre-processing and 

context recognition phases are introduced.  The main techniques used for the realization of the respective processes 

during these phases are described, highlighting strengths and limitations of those. In addition, lessons learned from 
previous approaches are presented as motivation for future research. Finally, several open challenges are discussed as 

possible ways to extend the capabilities of current systems and improve their real-world experience. 

 
Categories and Subject Descriptors: A.1 [General]: Introductory and Survey; I.5.2 [Pattern Recognition]: Design 

Methodology---Classifier design and evaluation, Feature evaluation and selection; I.2.6 [Artificial Intelligence] 

Learning---Knowledge acquisition 
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1. INTRODUCTION 

Efforts to understand human behaviour date back to the early physiological, psychological and sociologic 

studies of the 18
th

 and 19
th

 centuries. Since then, different branches of science with different perspectives have 

studied human behaviour in terms of relations between different causes, events and types of behaviour. A brief 

look at scientific theories about humans shows that the causes of the behaviour involves biological aspects such 

as hormonal state or genetic inheritance, sociological aspects such as social esteem, gender, culture and religion, 

mental aspects such as IQ or cognition and many other causes and scientific factors [Martin et al., 2007]. Given 

that human behaviour is rooted in the combination of these causes, a single perspective can never give a 

comprehensive explanation of behaviour. When we add to this fact the uniqueness of an individual, 

understanding human behaviour from its internal and personal cause and effect perspective appears to be an 

unattainable goal. A solution to this problem may be to focus on the external effects of these causes in an 

individual‘s daily life by developing an understanding of their behaviour based upon the correlation between 

what individuals expose to their environment and a specific type of behaviour. Observation of such correlations 

can thus be utilised to develop a model for human behaviour in various situations. Studies in human behaviour 

show that a person‘s behaviour is highly dependent on perception, context, environment, prior knowledge and 

interaction with others [Attalah and Yang, 2009]. In this regard, various studies (e.g. [Attalah and Yang, 2009], 

[Aoki et al., 2002], [Suh et al., 2009]) have concluded that in order to model human behaviour, a complete 

context of the human‘s activities, interactions and surrounding environment is required. These contexts are 

sometimes referred to as spatial, personal, and social aspects [Suh et al., 2009] or User Context (UC) in context 

aware systems [Mostefaoui et al., 2004].  

Recent advances in the semiconductor industry and wireless communications have contributed to the 

development of alternative observation capabilities based on a variety of miniaturized sensors and computing 

technologies. These are gradually replacing the old-fashioned questionnaires, surveys and participatory 

observation techniques traditionally used to capture such information. Ambient sensors and Body Sensor 

Networks (BSN) have been typically used for sensing different aspects of a user‘s context. However, these 

technologies are typically suited for observations in limited geographic scope and over short periods of time, 

due to the dependency of the ambient sensors on the infrastructure and the intrusiveness of the BSNs. Real-

world applications of ambient and wearable sensor observations were consequently limited to surveillance, 

analysing behaviour of a group of participates during a study or healthcare approaches where patients would 

accept wearing the device for a long period of time. The collection of longer term user context information with 

ubiquitous coverage thus still remains an open technological challenge. 



In the light of new advances in computing, storage and wireless technology and the recent introduction of 

MEMS (Micro Electro Mechanical System) sensors into mobile phones, a door to a new world of application 

possibilities has been opened. Given the indispensible role of the mobile phones in everyday life, mobile phone-

centric sensing systems are ideal candidates for ubiquitous observation.  The current applications of pervasive 

mobile phone sensing primarily include the reproduction of the healthcare approaches using BSNs, modelling 

user movement patterns, environmental monitoring and discovering social interactions. With respect to human-

centric sensing, mobile phone based sensing and wireless sensor networks, in particular BSN-based approaches, 

share many similar research challenges, such as energy, security and privacy .Hence techniques developed for 

one of these systems are applicable for both. . The combination of BSNs and mobile technology has attracted 

many researchers to develop applications in mobile phones that process the data gathered from a BSN. To 

differentiate between previous work in wireless sensors and particularly in the field BSNs, the primary focus of 

this study is on the methodologies where the entire process from sensing to recognizing the various aspects of 

user context is performed on a Smartphone. In such methodologies, the mobile embedded sensors are used for 

data acquisition, while the computational capability of mobile phones is exploited for user context recognition 

through a sequential data processing architecture. After an initial sensing or data acquisition phase, the sequence 

of processes typically consists of a pre-processing and a context inference phase.  We introduce these phases 

and their interactions in section 1.1 and then extensively investigate their related techniques and issues in the 

remaining part of this work.  

The selection of required computational techniques strongly depends upon the level of active user involvement 

in the sensing process [Lane et al., 2010]. Approaches that are supported by the active involvement of the user, 

e.g. by providing explicit input or decisions to the sensing process are called participatory sensing. In contrast, 

methods that operate autonomously without user involvement are more challenging and are referred to as 

opportunistic sensing. More details on these aspects are provided in Section 1.2.  

This work provides a survey of the state-of-the-art of the techniques for opportunistic mobile centric user 

context recognition systems. There are three objectives of this work. The first is to classify the current 

methodologies in opportunistic phone sensing as different components of a mobile sensing architecture.  

According to our knowledge, this literature is the first survey that has provided such information about this 

domain. The second is to provide an overview and analysis of the more recent progress made toward solving the 

key challenges for realising opportunistic sensing systems. This will allow researchers to better understand the 

currently available capabilities.  The third objective is to present several remaining issues and possible future 

directions of this research area.   

The remainder of this article is organised according to the architecture of mobile phone-centric user context 

recognition systems. Section 2 will discuss the sensors embedded in current mobile phones and their respective 

sensing capabilities.  Section 3 focuses on pre-processing, discussing recent advances and techniques for 

calibration and feature extraction. Section 4 investigates the currently widely implemented algorithms for the 

context recognition phase and analysis their computational characteristics. Section 5 summarizes all of the 

mentioned aspects and provides a comprehensive overview of the latest applications. Finally, Section 6 

highlights some of the future challenges and opportunities in related fields. 

It should be mentioned that, apart from using data from mobile embedded sensors, researchers have explored a 

variety of different data sources from mobile phones for modelling and understanding different facets of human 

behaviour. Examples range from analysis of the pattern of  message communication, phone calls (e.g. [Fawcett 

and Provost, 1996], [Vieira et al., 2010]) to logs of Internet browsing data (e.g. [Olmedilla et al., 2010]) and 

application usage for calendar, music or photo browsing (e.g. [Zulkefly and Baharudin, 2009]). However, the 

respective analyses are usually performed offline and in backend servers and so do not fit the scope of this 

article.  

 

1.1. Mobile phone-centric user context recognition 

The potential of exploiting mobile phones for sensing and context recognition research has long attracted 

researchers in both industrial [Nokia, 2005] and academic research communities [Eagle and Pentland, 2006]. 

However, the majority of advancement has taken place only recently. In their recent survey on mobile phone 

sensing [Lane et al., 2010], Lane et al. argue that the recent acceleration of progress in this field  is the result of 

four main technological advances: 1) the presence of low-cost and powerful sensors in mobile phone devices; 2) 

the facilitation of the entrance of third-party programmers by offering them Software Development Kits (SDK) 

and Application Programming Interfaces (APIs); 3) the introduction of application stores that enables 

developers to deliver their applications to a large number of users across the world;  4) the mobile computing 

cloud that enables the developers to take advantage of resources in back-end servers as well as for analysing and 

collecting data from a large number of users. The combination of these factors has accelerated the rise of 

innovative mobile sensing applications, which are likely to lead to a revolution in everyday life in the near 

future.  Early examples of such successful and popular applications are SenSay [Siewiorek et al., 2003], Micro-



Blog [Gaonkar et al., 2008], PeopleNet [Motani et al., 2005], MyExperience [Froehlich et al., 2007], Serendipity 

[Eagle and Pentland, 2005], Place-its [Sohn et al., 2005] and CenceMe [Miluzzo et al., 2008].  

Systems for user context inference on mobile phones rely on a variety of technologies from different domains 

including artificial intelligence, digital signal possessing, human computer interactions and ubiquitous 

computing. Since sensing with mobile phones is still in its infancy, no clear consensus on sensing architecture 

on mobile phones currently exists [Lane et al., 2010]. Our survey provides an important step in this direction, by 

reviewing the recent advances in mobile-based sensing and identifying the essential aspects that have been 

recently proposed in the different existing approaches. Mobile phone-based user context recognition 

methodologies typically realise a sequence of main system stages as shown in Figure 1.  

The initial sensing step typically produces raw observational and measurement data that is often refined in a pre-

processing step. The refined data or features extracted through pre-processing are then passed to context 

inference processes before the measured context is delivered to the context consumer (i.e. an application on the 

mobile phone or backend server). The energy constraints on the mainly battery powered portable handsets, make 

the configuration of sensing very challenging. The main challenge that impacts the sensing stage is to accurately 

recognise the required context with a minimum number of sensors and sensing frequency. Through pre-

processing, the phone‘s context ambiguity is resolved via a calibration process prior further processing steps. 

The constraints of computation and memory resources also limit the implementations of pre-processing and 

classification techniques to less computational intensive methods. During the pre-processing stage, redundancy 

and noise are minimised in the raw data and more computationally efficient representations of the data (called 

features) are derived.   Features are used as inputs to the classification techniques that determine the computed 

user context. The selection of features for a classifier is performed often offline by frequent training and 

evaluation of classification performance, with the aim to improve the classification accuracy by discarding 

indiscriminative or highly correlated features and to avoiding the curse of dimensionality. The availability of 

certain features depends on a phone‘s context which is often dynamic. Furthermore, the extraction of features 

may require techniques of different computational complexity. Therefore existing mobile sensing system 

architecture require a feature extraction control mechanisms to exploit these tradeoffs dynamically,  in order to 

better adapt to the resource constraints of the mobile sensing platform and varying context requirements. 

Finally, the derived context (or sensed data) is delivered to either a backend server or to an application on the 

mobile phone for consumption. Delivering the context to locally consuming services and applications on a 

mobile phone causes less privacy concerns and reduces the power required for transferring the data. However, 

the complexity of the applications is limited by the local computing and storage resources.  Uploading data to a 

back end server meanwhile provides better opportunities for the exploitation of aggregate data from a large 

number of users, while allowing for the realisation of more complex applications. However, it requires more 

serious considerations for privacy and power consumption for the remote context delivery. 

 

 

Figure 1.  Overview of tasks and data flow of mobile phone-centric sensing for user context recognition.  

1.2. User Involvement in the sensing process 

Based upon the level of the user involvement during the sensing process, the sensing applications can be divided 

into participatory sensing applications, where the user is actively participating in the sensing process, or 

opportunistic sensing where the user remains passive and does not require participation.  While the identified 

system components introduced in the previous section essentially apply for both of these categories, the 

techniques for realising the system stages, from sensing to context inference, can differ. 



In participatory sensing, complex operations can be supported by leveraging the intelligence of the user, which 

compared to an opportunistic approach, significantly reduces the sensing, calibration and classification 

challenges. For example, the information about the orientation and the position of the device or identifying the 

user‘s context can be directly provided (or at least corrected) by the user. This can significantly reduce the 

computational requirements on the device. More importantly with user supervision, there will be an increased 

user awareness regarding the contents of the sensed data. This eventually improves the acceptability of this 

approach in terms of privacy. Despite several advantages of participatory approaches, some drawbacks must 

also be considered. One particular drawback is that the data specifications and characteristics (e.g. time, 

duration, location, space, contents, etc.) are dependent upon a participant‘s enthusiasm and willingness to collect 

data during their daily life. Moreover, collected data are affected by a bias of the user‘s knowledge/opinion 

during the data collection. The problematic effects of this fact are well known and carefully considered in data 

collection methods for human subject studies [Mcniell and Chapman, 2005].  

Opportunistic sensing, alternatively, lowers the burden placed on the user which in return implies that collected 

data is less affected by user characteristics. One of the main challenges in opportunistic sensing systems is 

determining how to transfer the required sensing functionality and intelligence to mobile phones without 

jeopardizing the phone experience caused by the additional processing overhead. For example, the position of 

the phone relative to user‘s body is a key parameter for activity recognition. With the lack of user participation, 

such algorithms require the execution of a calibration process that automatically identifies the device position 

prior to activity recognition, adding significant computational burden to the mobile phone. The classification 

methods, while being computationally simple, must be able to accurately recognize the user context and even 

cope with the presence of unknown contexts, thereby providing scalability in the methods‘ context recognition 

techniques. Generally speaking, these systems are often technically more difficult to realise [Das et al., 2010] 

but provide more reliable data and tend to attain more acceptance by users, since their application is less 

intrusive. 

 

 

2. SENSING 

Sensors available on mobile phones can be classified as inertial, positioning and ambient sensors. Each of these 

types of sensors is capable of sensing different aspects of user context and are selected and configured based 

upon application requirements. In this section, these sensors, their sensing capability and current applications are 

introduced. In addition, Table .2 in appendix .1 shows how they have been utilised in different mobile phone 

centric context recognition systems.  

 

2.1. Inertial sensors 

Inertial sensors are usually referred to as sensors that are able to measure the physical motion of a solid object. 

Recently, mobile phones have been equipped with inertial sensors such as accelerometers and gyroscopes. Their 

characteristics and applications are described in the following sections. 

 

 2.1.1.  Accelerometers. 

Accelerometers are typically electromechanical instruments that measure the applied acceleration acting along 

their sensitive axis. The measured acceleration can be static like the constant force of gravity or dynamic caused 

by moving or shaking the accelerometer. Regardless of manufacturing and design differences, the 

accelerometers functionality is a variation of a spring mass system. In this system, the acceleration is 

proportional to the displacement of the mass when the force is applied.  MEMS-based accelerometers have been 

long used as a primary resource for capturing context information with wearable technologies [Yi et al., 2005]. 

Examples of such research are relative positioning systems (a.k.a. dead reckoning) (e.g. [Judd and Levi, 1996], 

[Olguin and Pentland, 2006]), pervasive activity recognition applications such as physical work monitoring 

[Stiefmeier et al., 2008], health care applications such as estimating energy expenditure, fall detection, activity 

level(e.g. [Redmond and Hegge, 1985], [Bouten et al., 1997], [Wu et al., 2007], [Choudhury and Consolvo, 

2008] and [Lester et al., 2006] ) and ambulatory monitoring (for extensive discussion in this field refers to 

[Mathie et al., 2004] ). Developing such applications requires the ability to discriminate between different user 

physical activities contained within the accelerometer data, ranging from coarser levels such as moving or 

stationary modes for dead reckoning approaches to finer levels of movement such as running, walking, sitting or 

standing and even the transition patterns between them in healthcare approaches. It has been successfully 

verified in many studies (e.g. [Ravi et al., 2005], [Bouten et al., 1997] and [Choudhury and Consolvo, 2008]) 

that a single accelerometer attached to the user body is enough to detect the majority of daily life activities with 

the accuracy required for these applications. Accelerometers are also found in many smart phones. Their 

primary purpose is to detect the changes in the orientation of the mobile phone so as to rotate the screen‘s 

display in accordance with the phone‘s orientation. Recent studies have utilized these accelerometers for 



detecting the user‘s physical activities while carrying a mobile phone. However it is unclear as to what extent 

these embedded accelerometers are capable of detecting a user‘s activity. A comparison between the required 

capabilities for activity recognition and the characteristics of the embedded accelerometers in current off-the-

shelf mobile phones will clarify this issue in the following. 

The acceleration generated during human movement varies across the body and depends upon the activity being 

performed. This acceleration increases in magnitude from the head to the ankle, and is generally greatest in the 

vertical direction [Bhattacharya et al., 1980]. Despite the vertical acceleration being the most dominant 

component, it is not advisable to neglect the horizontal acceleration [Lafortune, 1991]. In [Mathie et al., 2004] a 

comprehensive analysis of acceleration measurements with respect to different daily activities is provided. 

According to this study, running produces the greatest vertically directed acceleration amongst other ordinary 

daily activities, followed by walking down stairs and jumping on a trampoline, while walking up stairs, walking 

on level terrain and cycling produce lower acceleration magnitudes. For many researchers, the detection of 

walking activity as the most frequent daily activity [Kunze et al., 2005] is of great importance.  

Studies about the range of magnitude and the frequency range of acceleration generated from body during daily 

life activities (e.g. [Antonsson and Mann, 1985] , [Aminian et al., 1995] and [Bouten et al., 1997] ) confirm that 

the capabilities provided by current mobile phone embedded accelerometers are sufficient for detection of 

almost the same range of activities as with the current wearable approaches. For example, Cappozzo [Cappozzo, 

1989], has stated that during walking, upper body accelerations in the vertical direction have been found to vary 

from −0.3 to 0.8g or Hilla and Sun [Hilla and Sun, 1993] have found that the major energy production for daily 

activities is confined to a frequency range from 0.3 to 3.5 Hz. Accelerometers such as the LIS302DL digital 

output accelerometer (STMicroelectronics) that are embedded in Nokia and Apple mart-phones ( [Yang, 2009], 

[Hailes et al., 2009]) provide a 3-axial measurement with a configurable range of ± 2 g or ± 8 g and  output  rate 

of 100 Hz or 400 Hz [Anon., 2008].   

However, the studies from the wearable community also suggest that the accuracy of the results is strongly 

dependent upon the position of the accelerometer on the user‘s body. A further issue is that the claimed 

sampling frequency of embedded accelerometers are practically often not achievable on mobile phone due to 

implementation constraints and access restriction to the full resolution and sampling frequencies by the 

corresponding APIs [Brezmes et al., 2009]. For example, experiments of the authors with Android-based G1 

phones from HTC have demonstrated a realistically achievable sampling frequency range of 5-25 Hz. Similarly, 

[Yang, 2009] has reported a maximum frequency of 36Hz on a Nokia N95 device. The power consumption of 

accelerometers is very small compared to other sensing modalities. For instance, the LIS302DL energy 

consumption is less than 1 mW .  

 

2.1.2.  Gyroscopes. 

Recently Apple (with the iPhone 4G), HTC and ST-Ericsson, have announced that their next mobile will be 

equipped with MEMS Gyro sensors
[2]

. MEMS gyroscopes are non-rotating sensors which basically use the 

Coriolis Effect on a mass to detect inertial angular rotation [Titterton and Weston, 2002]. The embedded gyro 

sensors have been used in physical activity recognition (e.g. [Morris and Pradiso, 2002]), body posture detection 

(e.g. [Cho et al., 2004]) and dead reckoning applications (e.g. [Kourogi and Kuratta, 2003]). However, probably 

the most successful application of the embedded gyroscopes has been for digital camera stabilizing techniques 

(e.g. [Yong-xiang et al., 2009]). With a 100% market penetration in any camera that has more than 5 

megapixels, camera stabilization is predicted to be the primary task of gyros in new mobile phones
[3]

. MEMS-

based gyroscopes are believed to have very low power consumption. However, using the gyro sensors for 

orientation estimation is prone to error accumulation as a result of significant calibration errors, electronic noise 

and temperature [Woodman, 2007].   

 

2.2. Positioning sensor and user proximity detection  

Contemporary mobile phones comprise a number of sensors capable of sensing the user‘s location and presence 

of entities in her proximity.  Apart from GPS, which is primarily used for outdoor positioning, GSM, Wi-Fi and 

Bluetooth signals are also used for user localization (for extensive readings about ubiquitous localization refer to 

[Hightower and Borriello, 2001]). The short range communication link that can be provided by Bluetooth 

devices  is also a very popular tool for probing the user soundings. This technique has gained the attention of 

many researchers including social scientists. In this section an overview of these technologies is provided along 

with some examples of their applicability for mobile-centric sensing. 

 

 2.2.1.  Bluetooth. 

                                                           
[2] http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=224701537 
[3] http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=224701537 

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=224701537
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=224701537


Bluetooth is a universal, low-cost interface for ad-hoc wireless connectivity initially developed by Ericsson in 

1994, released in 1998 to operate in 2.4-2.48 GHz, and ratified as the IEEE standard 802.15.1. Bluetooth is 

designed for short range communication. For example the power class 2 of Bluetooth devices which is typically 

implemented in handsets is limited to approximately 10 meter with a transmission power around 

2.45mW(4dbm) The version 2.0 (2004) of Bluetooth communication is capable of transmitting up to 3Mbit/s 

[Schiller, 2003]. The main application of Bluetooth for sensing purposes has been in logging local devices and 

communicating with external sensors or services. Every Bluetooth device is capable of performing device 

discovery so as to obtain information about other devices in their vicinity. This information includes the 

Bluetooth MAC address, which is also referred to as a Bluetooth identifier (BTID), device name and device 

type. The BTID is a 48 bit number which is unique for a particular device. A device name is defined by users 

and the device type is a set of three integers representing the type of discovered device (laptop, phone and etc.). 

The ability of Bluetooth to sense the presence of other devices in close proximity to the user has been widely 

employed in social intelligence applications. The high power consumption of continuous Bluetooth scanning for 

detecting the proximate devices makes battery life in mobile devices a concern [Crk et al., 2009] . 

 

 2.2.2.  Cell Tower Signals.  

In a mobile communication network, the geographical region of the network is divided into cells. Each cell is a 

geographic area within which mobile devices can communicate with a particular base station. A base- station is 

interconnected with other base stations mostly through a wired backbone network, while it communicates with 

mobile devices in its territory via wireless channels. Mobile phones are continuously receiving signals from 

proximate cell towers.  Depending on a variety of parameters, such as network traffic and signal strength, a 

phone in a cellular network can be connected to different cell towers in different locations at different times. 

Logging the proximate tower‘s ID over time has been widely used as a technique for localizing mobile users 

(e.g. [Kim and Lee, 1996]). Cell tower IDs are uniquely identified by a combination of Mobile Country Code 

(MCC), Mobile Network Code (MNC), Location Area Code (LAC) and cell identifier [Sohn et al., 2006]. 

Researchers have also tried to analyse the data from mobile phone operators (e.g. [Gonzalez et al., 2008], 

[Onella et al., 2007]) such as Call Data Records (CDR).  However, CDRs provide an estimation of the location 

only during the time that the device is in use. Therefore, as is suggested in [Eagle et al., 2009],  the only option 

up to now for obtaining continuous cellular tower data has been to prepare a logging application on the mobile 

device itself. A mobile device may sense a number of cell towers belong to the same region but from different 

network providers. Sometimes this redundancy in data is filtered by locking the logging software by the 

Subscriber Identity Module (SIM) card provider (e.g. [Sohn et al., 2006] ) or clustering towers based on LAC 

(e.g. [Anderson and Muller, 2006]). Maintaining mobile-to-base station communication when a user is moving 

requires the network to provide migration service provision from one cell to another. This process is called a 

hand-off and typically occurs when the received signals on a mobile phone drop below a pre-determined 

threshold. Varying speeds of user movement poses different distributions of received cell IDs according to the 

hand-off strategies and the distribution of cells in the user environment (e.g. fluctuation of cell IDs in a 

metropolitan area may have different patterns as compared with an urban area). The cell IDs fluctuation pattern 

in the company of signal strength fluctuation patterns is widely used for obtaining coarse information about the 

user‘s physical activities [Anderson et al., 2007]. 

 

 2.2.3.  GPS.  

 Global Positioning System provides the position and velocity of the user nearly anywhere on  earth. GPS is 

based on simultaneous propagation measurements that can be carried out from a mobile unit [Kyriazakos and 

Karetsos, 2000]. The position of a mobile phone can be measured based upon the distance of the mobile phone 

and each of a number of satellites [Mishra, 2004] in two dimensions (latitude, longitudinal), when the receiver is 

able to see at least three satellites. Zhao outlines in his study [Zhao, 2000] that civilian applications can exploit 

GPS signals transmitted at 1575.42 MHz using Code-Division Multiple-Access (CDMA) techniques with 

Direct-Sequence Spread-Spectrum (DS-SS) signals at 1.023 MHz (Mchips/s) [Zhao, 2000]. A satellite‘s DS-SS 

signals include accurate time and coefficients (ephemeris) that describe the satellite‘s position as a function of 

time. The ground GPS receiver position is determined by Time of Arrival (TOA) of these signals. The accuracy 

of this system is between 50 to 80 meters and by means of differential GPS can be improved to an accuracy of 

up to 10 meters [Kyriazakos and Karetsos, 2000]. Positioning of mobile users with GPS or GSM signals (which 

will be later introduced) is especially desirable for network operators, as it allows them to provide a variety of 

value-added services based upon user location. Kyriazakos and Karetsos [Kyriazakos and Karetsos, 2000] have 

classified the application of mobile user positioning for operators into a number of services such as safety, 

billings, information, tracking and multimedia. An example of such services can be the NAVITIME application 

[Arikawa et al., 2007] which helps pedestrians find the best route to their destination based on different 

parameters such as weather at the destination and the amount of carbon dioxide the user may emit during the 

trip. Many researchers have especially emphasized the unique opportunity that the use of mobile phone GPS 



sensors can provide for studying the travelling behaviour of users, ( [Yim, 2003], [Yim and Cayford, 2001], 

[Ohmori et al., 2005]). It has even been suggested that mobile GPS data replace conventional survey data 

gathered about a user‘s travelling behaviour [Ohmori et al., 2005]. Travelling information from mobile devices 

is used in a  variety of applications such as traffic estimation [Herrera et al., 2010] or helping riders for 

navigation and driving tips [Barbeau et al., 2010]. 

Despite the high accuracy of GPS technology for outdoor localization, GPS is usually considered as the most 

power hungry localization technique for mobile computing [Gaonkar et al., 2008]. 

 

 2.2.4.  Wi-Fi.   

IEEE 802.11 (Wi-Fi) is a means to provide wireless connectivity to devices that require quick installation or in 

general to mobile devices inside a Wireless Local Area Network (WLAN) [Ferro and Potorti, 2005]. The 

spectrum ranges from 2.4 to 2.4835 GHz in the United States and Europe, while in Japan it ranges from 2.471 to 

2.497 GHz. As compared to Bluetooth, the other available short rage wireless communication method, Wi-Fi 

provides communication ranges of up to 100 meters but with much higher power consumption (30-100mW). 

Wi-Fi connections can also provide higher rates (up to few hundred Mb/s for one-way data) and they have less 

limitations in terms of the maximum number of devices in a basic cell (unlimited in ad hoc mode and up to 2007 

nodes in infrastructure mode). A comprehensive comparison between Bluetooth and Wi-Fi communication and 

protocols is provided in [Ferro and Potorti, 2005]. A Wi-Fi device scans the available channels by sending probe 

requests in order to discover an active network that, in return, sends probe responses. At this stage, the logging 

of the MAC address of access points or the SSID (Service Set Identifier) of the network with a known location 

can be used for localizing the scanning device (e.g. [Bahl and Padmanadhan, 2000], [Grisworld et al., 2002]). 

However, due to the larger Wi-Fi signal transmission range, the positioning accuracy is not sufficient and so 

supplementary information such as signal strength (e.g. [Krumm and Horvitz, 2004]) or signal triangulation and 

fingerprinting when multiple access points (e.g. [Kansal and Zhao, 2007]) or a combination of them (e.g. 

[Cheng et al., 2005]) have been utilized is required. A comparison between GPS, Wi-Fi, AGPS and GSM 

localization in [Gaonkar et al., 2008], has shown that after GPS, localization techniques based upon the 

detection of Wi-Fi access points is the most power demanding approach. As a result, Wi-Fi is typically used as a 

secondary and complementary instrument while in the company of Bluetooth [Miluzzo et al., 2008] or GSM 

(e.g. [Gaonkar et al., 2008]) signals for indoor localization techniques. 

 

2.3. Ambient Sensors 

As discussed in the previous sections, location sensors and inertial sensors on a mobile device can provide 

information about the persons who acts as their carrier. In this section we discuss sensors that can be used for 

sensing the surroundings of a user, such as a camera, magnetometer and microphone. Exploiting their 

capabilities for sensing environmental state, some researchers have utilised a network of mobile phones as a 

sensor network for environmental monitoring purposes [Kanjo et al., 2009]. 

 

 2.3.1. Camera. 

The mobile phone‘s camera is a ubiquitous imaging device with powerful image capture and processing 

capabilities. Therefore, it is not surprising that in addition to its main function as an image capturing tool, it is 

also a useful enabler of a variety of additional applications. Examples of these applications include the 

recognition of objects in museums [Ruf and Detyniecki, 2009], [Bruns et al., 2007], gesture recognition (e.g. 

[Wang et al., 2006], [Haro et al., 2005]), location identification (e.g. [Davis et al., 2006], [Ravi et al., 2005], 

[Lim et al., 2007]) and document recognition (i.e. scanning) (e.g. [Liu et al., 2006], [Erol et al., 2008]). Usually 

these applications require a client/server architecture where computationally intensive image processing and 

classification are carried out on backend servers (e.g. [Lim et al., 2007], [Chen et al., 2009] ).One example is a 

study by Takacs [Takacs et al., 2008] in providing augmented reality on mobile phones where the camera phone 

images are processed on the phone to be matched against a large database of location tagged images on back end 

server. Sometimes picture frames are used directly with no further processing (e.g. [Miluzzo et al., 2008] , 

[Larsen and Luniewski, 2009]) or utilise simple and computationally affordable techniques directly on the 

mobile phone [Wagner et al., 2010] (for a comprehensive discussion the reader is referred to [Gu et al., 2008]).  

Opportunistic sensing with a camera is not as straight forward as it is with the aforementioned sensors. For 

instance, since the pictures are not taken intimately by a user, the data acquisition technique must be able to 

ensure, with reasonable confidence, that the taken picture contains the proper data about the user‘s surroundings 

(e.g. the phone is not in the user‘s pocket). Moreover, as continuous sampling of a camera can generate larger 

quantities of data, adequate data management techniques are essential for resource constraint mobile sensing 

systems. 

 

 2.3.2.  Magnetometer. 



Digital compasses are another class of sensors that have gained popularity in mobile phones. At the heart of 

these solutions are tri-axial vector magnetometer sensors, which are able to sense the magnitude of the 

surrounding magnetic field along their sensitive axes. The magnetometers embedded in mobile phones typically 

utilise the Hall Effect
[4]

.  The sensed magnetic field is a combination of earth magnetic field and surrounding 

objects. The effect of surrounding objects can be divided to deterministic interference including the effect of 

ferrous materials (soft iron) and magnetized materials (hard iron) and non deterministic interference. The effect 

of surrounding objects can distort or even superimpose the direction earth magnetic field in navigation proposes. 

In this case additional systems are required along magnetometers for compensation of surrounding interference. 

Currently, magnetometers that embedded in mobile phones are typically equipped with a Dynamic Offset 

Estimation (DOE) system for compensating the deterministic interference. The nondeterministic interference 

can also be effectively mitigated by proper shielding of the sensor and performing simple filtering over the 

measured magnetic field [Fang et al., 2005]. 

Portable sensing of the ambient magnetic field provides opportunities for a variety of applications. Lee and 

Mase [Lee and Mase, 2002] have used the digital compass for dead reckoning. Statistical analysis of 

accelerometer, magnetometer thermometer and light sensors has also been proposed in [Golding and Lesh, 

1999] for portable indoor navigation systems. In such systems, the direction of movement is detected with the 

magnetometer, while the accelerometer and gyro sensors are used for gait recognition. A similar approach has 

been implemented by [Lee and Mase, 2001] and [Lee and Mase, 2002]. Some personal navigation systems for 

mobile devices combine compass and GPS information. Assuming the user is aware of the mobile phone 

orientation, the system simply provides a comparison between the phone orientation (or the sensitive access of 

magnetometer) and the static directions (e.g. North, South...) of a map. Other examples of smart phone-based 

applications exploiting embedded magnetometers include a three degrees of freedom controller in 3D object 

rotation tasks based upon innovative techniques such as those proposed in [Katzakis and Hori, 2009]. Mobile 

phone embedded magnetometers are very efficient in power consumption. For example, the AK8976A device 

which is used in the HTC Dream handset consumes 6.7 mA during sensor operation, 460 µA of average current 

with measurements at 100 ms intervals [6 Axis Electronic Compass Chip - AK8976A - Asahi Kasei, 2006].  

 

 2.3.2.  Microphone.   

A microphone is an acoustic transducer, typically with a conversion of about 10 mV/Pa and a signal to noise 

ratio of about 68 dB for the frequency range of 20 Hz to 10 kHz. Since 1876, when Emile Berliner invented the 

first microphone, it has been extensively used for converting analogue sound waves into electrical signals. As 

the initial idea for developing mobile phones was to ease the transmission and reception of voice, microphones 

have always been a part of mobile phones. In addition to their use in voice calls, researchers have recently tried 

to develop different applications based upon the sensing capabilities of a mobile phone‘s microphone. A very 

successful example is that of speech recognition systems [Deligne et al., 2002], which are widely implemented 

in current mobile phones. These systems enable users to operate the mobile phone by means of voice command 

without a keyboard. Pervasive applications based on microphones as Choudhury and Consolvo have discussed 

in [Choudhury and Consolvo, 2008], typically involve recording people in unconstrained and unpredictable 

situations, both in public and in private. These recordings may involve information that the user may not have 

intended to share. Therefore, most sensing applications focus on extracting non-verbal features from the 

recorded sound before sharing any information. Non-verbal vocal cues such as the pattern of silent moments, 

pich or tempo of the speech have been used in sociometer badges such as Meeting Mediator (MM) [Kim et al., 

2008] to give feedback about the user‘s social behaviour on his mobile phone. Another example of non-verbal 

features is the analysis of ambient noise to measure noise pollution in environmental monitoring applications 

[Kanjo, 2010] or for detecting the presence of conversation in context aware applications.  

 

 

3. PRE-PROCESSING 

In order to reduce data redundancy, noise and jitter in instantaneous sensor readings, measured values are 

usually passed to a pre-processing stage. Figure 2 provides a flow chart of a typical pre-processing stage of 

mobile phone-centric sensing systems. The pre-processing first filters the raw sensor data by minimizing the 

errors related to noise or jitter during sensing procedures and calibration problems and then converts it into a set 

of finite features or categories. Based upon the applied sensors and the required quality of data, many different 

noise and jitter algorithms have been developed to obtain a consistent data stream. The body of existing work on 

these algorithms  is immense, even when limited to the aforementioned sensors. There the discussion on the first 

part of this section will be more narrowly focused on the methods of addressing the limitations and errors 

inherited from the handset properties of a mobile-centric sensing system, namely the calibration, or phone 

                                                           
[4] e.g. HTC Dream uses AK8976A Hall effect magnetometer from Asahi Kasei Micro devices [Katzakis and Hori, 
2009] 



context issues [Lane et al., 2010]. Such sensing systems must be prone to frequent changes in orientation and 

position of the device during data collection, preparation and feature extraction, while still being able to 

generate informative and computationally efficient features. The second part of this section is dedicated to an 

introduction to diverse feature extraction techniques available for different aspects of a user‘s context. It should 

be noted that despite the discussed problems, which affect all sensing systems that are developed on mobile 

phones, errors related to the specification of implemented mobile platforms such as added error in rough 

quantization [Bieber et al., 2009], inconsistency in sensor readings [Bieber et al., 2009] and operating system 

limitations [Miluzzo et al., 2008] are not discussed in this study.  

 

 

Figure 2.   Overview of different procedures during the pre-processing stage 

3.1.  Calibration 

Analogous to [Martens and Naes, 2002], ―calibration‖ is defined as a process that enables one to predict an 

unknown quantity Y from an available observation X through some mathematical transfer function where, the Y 

value would be the calibrated value at a known reference. Compared to other sensing systems, which consider a 

fixed position and orientation for their sensors, the mobile phones are carried and used in ways that are difficult 

to anticipate in advance for a particular user. Moreover, the output of inertia sensors and ambient sensors are 

susceptible to the phone position and/or orientation. For instance the quality of sound and picture samples is 

susceptible to the position of the sensing device (e.g. the phone could be in the user‘s pocket or hand). Thus 

adding the orientation information to samples from the camera can also help to provide more informative 

features
[5]

. Therefore, providing a pervasive sensing system on a mobile phone requires a calibration process to 

transfer the measured data into a known location and orientation references. These references are predefined 

positions and orientations of the device that are used in feature extraction and subsequently the learning process 

of classifications methods (described in Section 4). An analysis of literature on opportunistic sensing based on 

microphones and cameras shows that simple heuristic techniques are typically adequate for addressing the 

required information about the phone position (e.g. in a pocket or bag or out of them). This includes the use of 

light or sound levels to identify adequate positions and confining the sampling to the moments that the mobile is 

in those. For instance, the data collection technique in [Miluzzo et al., 2008] takes photos when the user touches 

a key on the phone or in [Azizyan et al., 2009] a photo is taken when user is answering a phone call. In the 

SoundSense project [Lu et al., 2009] an admission control stage is designed which discards the samples with 

unacceptable quality caused by an inappropriate phone context. Many studies have investigated the adverse 

effects of misplacement and disorientation of the inertial sensors on the recognition and classification process 

(e.g. [Mathie et al., 2004], [Gyorbiro et al., 2009] and [Olguin and Pentland, 2006] ). Figure 3 shows how the 

variation in position and orientation of a device affects the sensed acceleration data while walking. For inertial 

sensors, the problem of misplacement is usually solved by providing a position detection stage before preparing 

the data for feature extraction or classification or else by training the classification algorithms for all possible 

positions of the device. In some studies, the users are even asked to keep their mobile device in a particular 

position. This makes the resolution of disorientation errors easier to accomplish and requires a minimum amount 

of involvement from the user. In case of device orientation, the samples are combined to an orientation 

independent form or data from the magnetometer and accelerometer sensors are processed to perceive the 

orientation of a device. An introduction to a variety of these techniques is presented in the following part of the 

section.  

 

                                                           
[5] For example when colours in an arbiter picture from the environment are used for user localization [Ofstad et al., 
2008], information about the orientation of the phone can determine whether the colours belong to the ceiling or floor 



 

Figure 3.  Variation in accelerometer orientation and position affects the measured acceleration pattern. Magnitude, 

frequency of the components and the axis of major components differs based upon the sensors‘ relative position and 

orientation relative to the user. 

 3.1.1. The effects of device position 

The dependency between magnitude and the frequency of measured acceleration to the position of 

accelerometer on user‘s body was already highlighted in Section 2.1. Different studies have attempted to address 

the effects of inertial sensor positioning. Researchers in the area of BSNs, for example, have looked at the 

placement of sensors from the perspective of wearability and user convenience by letting the user decide about 

the body position of the sensors [Kunze et al., 2005]. These related methods and algorithms can be classified 

into the following three cases:  One set of methods trains the classification algorithm on all possible positions, 

which subsequently try to directly detect the context regardless of a mobile‘s position. These methods usually 

require large databases and are less accurate as compared to other models. However classification is achieved 

more quickly. Calibration is not required with this method because all of the possible positions are predefined. 

In the other words, the observation is assumed to always be performed in one of the predefined references that 

the classifier is trained for. For example, in [Lester et al., 2006], training the device with generalised data from 

different locations has shown that a reasonable accuracy can be achieved regardless of phone‘s position. 

However, the accuracy of the model increases significantly with the number of individual training data sets. The 

authors concluded that if the appropriate data from different individuals with different characteristics is 

available, the model can be used as a generalized model. Another example of such methods is presented in 

[Brezmes et al., 2009]. Here the classification method is trained based upon the user‘s preferred mobile position. 

The model can then distinguish between different user activities.  

The second set of methods first infers the device position and then calibrates the data and features based upon 

the detected position for use in the classification algorithm. In contrast to the previous methods, the specific 

characteristics of the pattern of movement during certain activities are used for inferring the device‘s location. 

These methods rely upon extracting a number of features, which can be used to differentiate between different 

positions of the device during a certain activity. Although these methods are more efficient in memory 

consumption and give better accuracy during classification, they are usually more computationally expensive 

and require more time for recognition. The techniques are typically limited to a set of particular activities and 

corresponding positions of the mobile phone and are very susceptible to misdetection if they fail to determine a 

position correctly. For instance, if the positions of the mobile phone during an activity changes, or a particular 

activity is not performed in a specific amount of time, the system is unable to calibrate itself.  In [Kunze et al., 

2005], the accelerometer signals during walking are used for recognizing the device position. Walking has been 

chosen as the example activity because it can be detected regardless of accelerometer position and orientation 

and it is a very frequent activity in everyday life. Examining several positions on the body, such as wrist, head, 

trousers‘ pocket and chest pocket, this technique is reported to provide very high classification accuracy. 

Nevertheless, each segment takes more than three minutes to prepare for activity recognition. Kunze and 

Lukowicz [Kunze and Lukowicz, 2007], have then extended the previous work to sense the device position 

through a range of activities using accelerometer signal features ( such as standard deviation, zero crossing, 

mean of the norm of the acceleration vector minus gravitational pull and the absolute value of the number of of 

peaks along the three axis).  Kawahara et al. [Kawahara et al., 2007] have exploited the unique behaviour of 

accelerometer signals in multiple situations so as to infer the phone‘s position. Their threshold-based device 

position and activity recognition model is reported as giving a very high accuracy.   In order to determine the 



position of the phone when worn in the chest pocket, accelerometer patterns caused by a person when stooping 

forward in the chair were used. For the trouser pocket position, fluctuations of the tilt angle during walking 

when were utilised. Furthermore the variance of the signals provided sufficient clues to determine when the 

phone was not with the user. Finally, Miuzzo has exploited vocal signals from mobile phone‘s microphone to 

extract a set of required features to estimate the device position.  Here a sophisticated classification algorithm 

(Gaussian Mixture Model with 20 components) is adopted to classify the position of the device as in the pocket 

or out of the pocket. 

The third set of methods considers a fixed position for the sensing device in order to avoid an arduous 

calibration process; these methods give better computational efficiency and accuracy than previous methods at 

the cost of losing the generic applicability of the system. In order to find a proper position for such techniques, a 

number of positions have been proposed with different perspectives.  

A review of the related literature in activity recognition with accelerometers suggests positions near the Centre 

of Gravity (COG) of the subject (see, for example, [Mayagoitia et al., 2002], [Sekine et al., 2002], [Evans et al., 

1991]) as suitable positions. A study in [Murray, 1967] shows that the applied force near the COG of the human 

body while walking is almost deterministic and undisturbed by individual characteristics
[6]

. The human centre of 

gravity , also referred to as the body‘s centre of mass, is located within the pelvic region in a standing position 

[Mathie et al., 2004].  COG is depicted in Figure 3 

Recent studies [Kawahara et al., 2007], [Ichikawa et al., 2005] have identified the bag, chest and trousers 

pockets as the most common locations where a user would typically carry a mobile phone during the daytime. In 

[Ichikawa et al., 2005], the researchers report that women are more inclined to using bags where men typically 

place their phones in their trouser pockets. However, the closeness of trouser pockets to a human‘s COG has 

made it a more attractive place for activity recognition tasks based on the inbuilt sensors (e.g. [Bieber et al., 

2009], [Kwapisz et al., 2010]  and [Ofstad et al., 2008]). For example, Bao and Intille  [Bao and Intille, 2004] 

have investigated the effect of sensor position on mobile-centric activity recognition and suggested that 

positions near the hips are ideal positions. Inspired by Bao‘s findings, Miluzzo et al.‘s study about different 

aspects of a mobile user‘s behaviour [Miluzzo et al., 2008] has encouraged the participants to place their mobile 

phones in their front or back trouser pocket. 

 

 

Figure 4.  Demonstration of a body‘s coordination system and rotation planes. The intersection of the planes shows the 

position of CoG. 

 3.1.2.  The effects of device orientation 

Not only the position but also the orientation of the sensors has an impact on measurements of the 

magnetometer and the inertial sensors along their sensitive axes. In other words, considering the same user 

context and position of device, the values that are sensed on a sensitive axis of a sensor would not be repeated 

unless the same orientation is used. Consequently, a major challenge of mobile phone-based sensing systems is 

the effect of frequent change in orientation of the mobile phone during everyday phone use and transport. 

One common solution in overcoming the problems caused by disorientation is to transform the measured data 

into a scalar value and consider only the magnitude of the samples (i.e. omit the directional data) (e.g. [Gyorbiro 

et al., 2009], [Yang, 2009], [Santos et al., 2010], [Brezmes et al., 2009], [Kwapisz et al., 2010] and [Fleury et 

al., 2009]). However, such techniques discard the valuable information that sensing in multi-dimensions could 

provide. Rather, some studies have developed some calibration techniques to have higher dimensional data, 

while trying to avoid the errors caused by disorientation. Particularly, for activity recognition, information 

should ideally be known in terms of a coordinate system oriented with respect to the user‘s body and aligned to 

his forward motion [Mizell, 2003]. Figure 4 depicts the user body coordinate system. The user coordinate axes 

                                                           
[6] . This fact has been also utilized for reducing computational cost for activity recognition since no learning 
algorithm for absorbing individual characteristics is required any more (e.g. [Kourogi and Kurata, 2003]) 



are denoted as V (for vertical vector), F (for the user forward directional vector) and S (for the user side 

direction vector) which is the cross product of F and V. 

One of the key parameters in detecting a mobile phone‘s orientation is gravitational acceleration, which is 

parallel to the V direction of the user‘s coordinate system (see Figure 4) with a constant magnitude. In particular, 

as indicated in Section 2.1.1, the main variability of acceleration measurements in daily activities is in a user‘s 

vertical direction. As a simple and computationally efficient model, averaging accelerometer samples in a 

window of a few seconds provides a proper estimation of the gravitational vector [Mizell, 2003]. A better 

approximation for the gravitational accelerations is obtained by averaging the accelerometer samples at the 

moments when their variation in the sample window is almost zero [Kunze et al., 2009]. Another approach 

determines the gravity acceleration by separating out the body movement acceleration [Allen et al., 2006] by 

means of a low pass filter with a cut-off frequency of approximately 0.25 Hz from the overall measured 

acceleration signal. In [Luinge et al., 1999] and [Kourogi and Kuratta, 2003], the gyroscope measurements have 

been used for determining the device‘s orientation. Its orientation is calculated by passing accelerometer and 

gyroscopes measurement values through a Kalman Filter. According to [Zhang et al., 2008], the processing of 

gyroscope signals typically requires a large number of sine/cosine and coordinate transform operations, which 

puts a heavy computational burden on the processor, making it less suitable for mobile computing environments. 

Consequently, the authors in [Zhang et al., 2008] concluded that if a task could be identified only by 

accelerometers, the use of gyros should be avoided. Detecting the gravitational vector in-turn gives an 

estimation of the vertical component of user motion (parallel to gravity) and the magnitude of resultant of 

horizontal components. However, the direction of the horizontal components remains undefined. Taking into 

consideration only the magnitude of the horizontal and vertical components as a two-dimensional measurement 

has been shown to provide a good accuracy for activity recognition on mobile phones [Yang, 2009]. Despite the 

success with two-dimensional measurements, some studies have even developed techniques that provide the 

direction of the axes (F and S) in the horizontal plane. For example, the application of Principal Component 

Analysis (PCA) to accelerometer signals has been proposed in [Kunze et al., 2009] in order to determine the 

forward direction of users (i.e. F in Figure 4) in the horizontal plane. The resulting accuracy is reported to be 

comparable to those approaches using GPS. The PCA method, which uses only the identities of multiplication 

and addition, is considered a computationally efficient method and in this study has been successfully 

implemented in a mobile device (in particular a Nokia 810). A novel semi-analytical approach has been recently 

presented in [Hoseinitabatabaei et al., 2011] where the dynamic model of the movement of the body segments 

corresponding to the position of the device is used for recognizing the coordinate of the user. The model has 

shown to outperform the conventional PCA and GPS based approaches. Combining these techniques with the 

vertical direction identification provided a calibration method for transferring the observations into the user 

body coordinate system. 

To summarize, using the mobile phone as a sensing platform, requires detection and compensation of 

disorientation and misplacement, especially when inertial sensors and magnetometers are involved. A variety of 

techniques were introduced in this section to tackle these problems. Table .1 summarizes the mentioned 

techniques along appropriate examples of available approaches. Having all the sensor data from the predefined 

references after the calibration process, the next step in pre-processing is to extract features from the calibrated 

data. 

Table.1. Calibration process: aspects and available techniques 

Calibration 

Position Orientation 

Training on all 

possible 

positions 

Detecting device 

position 

Using a particular 

position 

Invariant(one 

dimension) 
Two dimensions 

Three 

dimensions 

[Lester et al., 
2006] 

[Brezmes et al., 
2009] 

. [Vahdatpour et al., 

2011] 

[Kunze and Lukowicz, 
2007] 

[Kawahara et al., 2007] 

[Miluzzo et al., 

2008] 
 [Mayagoitia et al., 

2002] 
 [Sekine et al., 2002] 

[Evans et al., 1991] 

[Santos et al., 2010], 

[Brezmes et al., 

2009] 
 [Kwapisz et al., 

2010] 

[Yang, 2009] 

[Lu et al., 2010] 

[Kunze et al., 
2009] 

[Hoseinitabatabaei 
et al., 2011] 

 

3.2.  Feature extraction 

Feature extraction is the process of distilling the raw sensor data and converting it into a more computationally 

efficient and lower dimensional forms  called  features. Typically, the raw sensor data is first segmented into 

several windows and features are extracted from a window of samples. It should be noted that the window size 

is an important parameter, which affects both computation and power consumption of sensing algorithms 



[Himber et al., 2001] and is also required for minimizing jitter [Santos et al., 2010]. However, a detailed 

analysis of the effect of window sizes is beyond the scope of this article. 

The generated features represent the gist of information from a window of raw samples. Features from sensor 

readings are often used as inputs into the classification algorithms (Section 4) for recognizing user context. In 

this section a variety of feature-generation techniques are introduced within a number of different subcategories. 

Firstly, heuristic features refer to features that are derived from a fundamental and often intuitive understanding 

of how a specific aspect of a user‘s context would be determined from a sensor‘s readings.  It is worth 

reminding the reader that we have described user context as a physical activity, environment and/or social 

interaction. Other subcategories of features are time and frequency domain. In contrast to heuristic features, time 

and frequency domain features, are simply used to characterise the information within the time varying signal 

and are not typically related to specific aspects of context. Compared to the time domain, the frequency domain 

features require a further pre-processing stage of transferring sensed data from the time domain to the frequency 

domain. Due to this added process, generating the frequency domain features is regarded as more 

computationally demanding than the time domain features [Miluzzo et al., 2008] [Gyorbiro et al., 2009]. 

However, very fast and efficient domain conversions are now achievable with different computationally 

efficient versions of Fast Fourier Transforms (FFT) such as the Fastest Fourier Transform in the West (FFTW) 

[Frigo, 1999]. 

There are a large number of features that can be generated through different mathematical and statistical 

procedures. This is particularly true when offline processing in back-end servers with no limitation in processing 

time, memory and energy consumption is available. However, for processing data on mobile phones, these 

limitations must be carefully considered. Accordingly, we focus our discussion on features for user context 

recognition that have been successfully examined in miniaturized processors used in mobile phones or PDAs. 

Selecting the most informative feature and sensors is critical to reduce power consumption, learning and 

classification problems [Choudhury and Consolvo, 2008]. For that reason, a sensing system should ideally be 

able to dynamically select between different features and sensors in different situations. Meanwhile, the level of 

information that is conveyed by the generated features from a particular sensor is closely related to the desired 

context. For instance, while determining the standard deviation from a window of accelerometer samples can 

provide a substantial amount of information about a user‘s physical activity, it would be less useful for 

determining user social interactions. Therefore, we have further classified features based on their main context 

of application, namely user physical activity, social interactions and environment. 

 

3.2.1.  Features used in physical activity detection   

Methodologies from the realm of mobile-centric sensing have taken advantage of the ubiquitous presence of 

mobile devices in order to observe fragments of user physical activities in unfettered conditions. In the case of 

young adults and children, the main fragments can be categorized into a few groups. Based on the reported 

results of a comprehensive survey in [Bieber et al., 2009], the most commonly performed activities during a day 

are lying down (ca. 9 hours), standing (ca. 5 hours), sitting (ca. 9 hours) and being active (e.g. walking, running, 

etc.) (ca. 1 hour). In an effort to observe at least a subset of these fragments, many studies have exploited the 

mobile embedded sensors for activity recognition. The main contributing sensors for capturing these contexts 

are inertial and positioning sensors. While the inertial sensors can discriminate between a variety of daily 

physical activities, the position-based method can distinguish between different modes of movement. 

Accelerometers are especially considered to provide the most discriminative information for activity recognition 

[Choudhury and Consolvo, 2008], [Lester et al., 2006]. Respectively, accelerometers have been extensively 

utilized for determining  a variety of activities such as walking, running, standing or sitting, (e.g. [Miluzzo et al., 

2008], [Yang, 2009], [Ravi et al., 2005], [Azizyan et al., 2009]) sometimes  additionally climbing (e.g. 

[Kwapisz et al., 2010]), cycling or driving [Bieber et al., 2009], [Ermes et al., 2008]. Diverse studies concerning 

the accelerometer features in different activity recognition systems demonstrate that simple time domain-based 

features are usually adequate for detecting the majority of demanding activities (e.g. [Allen et al., 2006]). 

Despite the remarkable potential for detecting user rotational movements, magnetometer samples have been less 

frequently used for mobile-centric activity recognition to date (e.g. [Choudhury and Consolvo, 2008]). In this 

section, the main features generated from different mobile embedded sensors are presented.  

Time domain features.  Mean and standard deviation are the most commonly used time domain features for 

accelerometer signals [Miluzzo et al., 2008], [Ermes et al., 2008], [Santos et al., 2009], [Kunze and Lukowicz, 

2007] and [Sashima et al., 2008]. The signal average is often taken so as to differentiate between different body 

postures of a person. In such cases, the deviation from the mean is used in distinguishing standing from sitting 

[Yang, 2009] [Miluzzo et al., 2008]. The signal variance is also utilised as a natural choice for estimating the 

intensity of activity. For example, [Ermes et al., 2008] has calculated the variance of samples in order to 

distinguish running from walking and averaged the variance over all the axes of accelerometer data in order to 

identify the standing state [Ofstad et al., 2008]. Yang [Yang, 2009] has also used the mean and variance of 

horizontal and vertical acceleration for activity recognition. Another common feature is the number of peaks per 



unit of time along the three axes of the accelerometer for distinguishing between walking from running 

[Miluzzo et al., 2008] [Kunze and Lukowicz, 2007]. In another approach researchers have used the intensity of 

the signal as a feature claiming that it is directly proportional to the acceleration [Gyorbiro et al., 2009]. The 

intensity is calculated as the sum of numerical derivative of a window of samples, normalized to the length of 

the window. The derivative of the acceleration samples in calculating intensity reflects the volatility of the 

samples during the performed action.   

Apart from the above accelerometer-based features, logging the pattern of user locations over time is often 

sufficient to detect the user‘s activity motion. Consequently, all the sensing systems that are introduced for 

localization techniques, in principle, are able to provide such information about the user. However, the 

recognition level varies from very abstract states such as ‗moving‘ or ‗stationary mode‘ to finer grained levels 

such as walking, driving and running based on the accuracy of the implemented technique. Some examples of 

such systems for mobile phone-centric sensing are now provided.  

The GSM signals received on mobile phones has been a conventional source for inferring different states of user 

motion (e.g. [Sohn et al., 2006] and [Anderson and Muller, 2006]). By means of different features such as signal 

strength and cell tower fluctuations, user movement activity is estimated within a time window of few tens of 

seconds. In [Anderson and Muller, 2006] and [Anderson et al., 2007] the change in the number of unique LACs  

along with the fluctuation of signal strength and the rate of change of  cells has been used for identifying 

different modes of movement. GPS is also widely used for detecting movement. In [Miluzzo et al., 2008], the 

GPS positioning information over time is used for inferring the user‘s mode of movement such as being in a 

vehicle, running or stationary by estimating their speed. It is worth noting that since the activity recognition with 

localization techniques requires a comparison of the several subsequent locations of user, typically these 

techniques require a greater amount of time to determine the state of the user than systems that take advantage 

of inertial sensors.  

Frequency domain features.  Because of the computationally efficient and sufficiently informative features that 

can be generated in the time domain, converting sensor data into the frequency domain has been less popular in 

mobile phone-centric sensing. In [Santos et al., 2010], FFT is performed on a window of accelerometer samples 

and the amplitude and frequencies within the range from 0.5 Hz to 2 Hz are summed. The resulting feature 

(which corresponds to the energy of movement) is compared to a predefined threshold in order to distinguish 

fast movements from regular ones. In [Ermes et al., 2008] the peak frequency of the power spectral density of 

the accelerometer signal served as a clue for detecting cyclic activities such as cycling, walking and running. 

Heuristic features.  In the absence of motion, the accelerometer samples are equal to the cosine of the angle 

between the gravitational acceleration and the sensitive axis. Similarly, a magnetometer is able to detect the 

cosine of the angles between geomagnetic fields and its sensitive axis. The fact that different activities change 

these angles in different ways has attracted the interest of researchers to use this type of features for activity 

recognition. Examples include the use of angles that are directly calculated from accelerometer measurements 

(e.g. [Kawahara et al., 2007]), magnetometer measurements (e.g. [Fleury et al., 2009]) or even the rate of 

change of a gyroscope (measurements (e.g. [Lee and Mase, 2002] ). 

 

3.2.2.  Features used for detecting social interactions.   

Perceiving social signals by mobile phones to attain insight into one‘s daily social interactions has gained the 

attention of various researchers. Social signals refer to the non-verbal behaviours that represent the expression 

of a person‘s attitude toward a social situation and interplay [Viniciarelli et al., 2009]. For an extensive 

overview on social signal processing the reader is referred to [Viniciarelli et al., 2009]. Amongst the different 

features that have been used for mobile centric detection of social interactions, the detection of social proximity 

has been given most significance, as the presence of other people in the proximity of a user is considered a main 

clue for having a social interaction. 

Time domain features.  In order to determine the presence of a social interaction as the first and foremost step 

for understanding social interactions, a number of techniques have been proposed. Lu et al. in the SoundSense 

project [Lu et al., 2009] have used Zero Crossing Rate (ZCR) and low energy frame rate (defined as the number 

of frames with an RMS value less than 50% of the mean of an entire window) for distinguishing human voice 

(presence of conversation) from music and ambient noise on a mobile sensing platform. Here, ZCR or number 

of zero crossing within a time frame can determine the human voice from music and ambient noise [Lockheed 

and Nashua, 1996]. Calculating the low energy frame rate is also relevant since human conversations have more 

moments of silence than music and ambient noise [Lockheed and Nashua, 1996].   

The physical and non-verbal behaviour of individuals conveys a significant amount of information about their 

behaviour in social interactions. A study by Viniciarelli [Viniciarelli et al., 2009], has identified the most 

important features of vocal and non-verbal behaviour as voice quality, turn talking and silence/pauses during 

speaking. These features can be extracted with a simple microphone, without directly analysing the user‘s 

speech. Such information‘s is used in persuasive applications (e.g. a personal tutor) for detecting the user‘s role 

in different interactions and by providing proper feedback [Pentland, 2009]. For instance, microphones are used 



in Sociometer badges (e.g. [Olguin and Pentland, 2008] [Kim et al., 2008]) in order to detect social roles, the 

dominance in conversations and the level of excitement and interest. Integration of these sociometer badges with 

mobile phones allows direct feedback to the mobile phone user. The samples obtained from the accelerometers 

are also used to understand user social interactions. In [Kim et al., 2008], average of body movements within a 

fixed unit of time during a conversation is proposed to help the analysis of behaviour (e.g. the level of 

involvement) during social interactions.  

Frequency domain features.  Converting the microphone samples into the frequency domain for extracting 

features has been widely used for determining the presence of a social interaction. For instance, Miluzzo et al. in 

[Miluzzo et al., 2008] have made use of the variance and the mean of a Discrete Fourier Transforms (DFT) of 

the recorded signal from a mobile phone microphone, in order to differentiate the conversation moments from 

ambient noise. Researchers in [Lu et al., 2009] have introduced and implemented a number of frequency domain 

features for differentiating the human voice from music as well as the ambient noise on a mobile phone device. 

These features are described in the following. Spectral Flux (SF) is defined as a vector of 2-norm of frame-to-

frame spectral amplitude difference [Scheirer and Slaney, 1997]. SF has a different shape for typical music and 

voice signals as music usually has less SF. Another feature is Spectral Roll-off Frequency (SRF), which is 

calculated as the 95
th

 percentile of power distribution [Scheirer and Slaney, 1997]. A larger number of high 

frequency components in music compared to  human voice lead to higher SRF. Spectral Centroid (SC), is 

defined as the balancing point of a spectral power distribution [Scheirer and Slaney, 1997]. The use of SC relies 

on the difference of the spectral power distribution between the human voice and music. A further feature, 

namely the normalized weighted phase deviation as introduced in [Dixon, 2006], is determined by a weighting 

of the phase deviation of frequency bins in the spectrum by their magnitude. Ambient sound and music have less 

phase deviation than the human voice. Finally, Relative Spectral Entropy (RSE), which is simply the KL 

(Kullback-Liebker) divergence between the current spectrum and the local mean spectrum ( [Basu, 2003]). It is 

calculated from sound signals in order to differentiate the human speech form other sounds.  

Heuristic features.  Bluetooth scanning is the most popular technique for detecting social interactions. Bluetooth 

scanning makes use of periodic invocations of the Bluetooth device discovery function in order to determine the 

devices (and other users) in proximity of the user. The presence of another user in proximity is considered as a 

potential social interaction. The technique exploits the uniqueness of the BTID which is transmitted by mobile 

phones together with Bluetooth-personal area network capabilities when queried. The logged BTID in [Miluzzo 

et al., 2008] is compared with a database of MAC addresses in order to infer whether a user is proximate to 

his/her friends. The proximity information is further used for identifying persons in ones vicinity, in order to 

subsequently establish correlations between people with the same application and calculating social status 

metrics (e.g. being popular). A case study by Eagle and Pentland [Eagle and Pentland, 2006] of the social 

interactions of students utilizing the logging of Bluetooth proximity, has reported that there is a significant 

correlation between social interactions and the number of logged BTIDs when senior students were studied. 

However, for new incoming students the correlation was not significant. An example of applications relying on 

such observations is the BlueAware platform [Eagle and Pentland, 2005], in which the discovered BTIDs of 

neighbouring mobile devices are time stamped and are reported to a back to an end server. The collected data is 

then analysed to extract patterns of social relations thereby demonstrating the networks of social relations. 

Another example is the Jabberwockies system [Paulos and Goodman, 2004], which uses Bluetooth scanning by 

mobile phones to demonstrate the relationships between commuters, who do not know each other but see each 

other daily at public places such as bus stops and railway stations.  

 

3.2.3.   Features from environmental sensing.  

The user environment has been observed from a diversity of perspectives. Conventional approaches in the 

mobile opportunistic sensing realm are mainly identifying the user environment from a set of predefined classes 

of locations. Types of location classes range from absolute geographical locations to semantic and logical 

locations. The most common techniques take advantage of  absolute positioning of users from GPS (e.g. [Cho et 

al., 2007], [Gaonkar et al., 2008]) or GSM signals  (e.g. [Eagle and Pentland, 2006], [Laasonen et al., 2004], 

[Bhattacharya and Das, 1999] and [Bar-Noy and Kessler, 1993] ) to infer the user‘s location and overlay it onto 

a map using a Geographic Information System (GIS). The inertial sensors such as accelerometers and 

gyroscopes are also utilised to detect the user‘s movement pattern in a known topology (i.e. dead reckoning) 

(e.g. [Blanke and Schiele, 2008]
[7]

, [Lee and Mase, 2001]). Information about user direction is typically obtained 

from magnetometers (e.g. [Lee and Mase, 2002]). Compared to the first two categories of user context sensing, 

determining qualities of a user‘s environment is typically carried out using heuristic features. The reduced use of 

time and frequency domain features for determining environmental context such as location can in part 

explained by the reliance on absolute positioning systems, which usually do not require an analysis over time (or 

frequency). 

                                                           
[7]Relative positioning is used in contrast to absolute positioning systems such as GPS and UWB 



Time domain features.  Probability Density Functions (PDF) of the locations of cell towers over specific periods 

of time have been used for inferring the user location [Eagle and Pentland, 2006]. In [Santos et al., 2010], a 

window of samples from sensors such as sound, light, temperature and humidity have been averaged and 

mapped into a specific category using different thresholds. Each category corresponds to a specific location (e.g. 

indoor or outdoor). Patterns of the acceleration samples generated in different locations are also used as 

fingerprints of the locations for logical localization. For example, in [Ofstad et al., 2008] the percentage of time 

that a user is in a standing state is used for localization (e.g. being in a coffee shop or shopping centre), where 

the standing state is determined from the accelerometer samples. 

Frequency domain features. Only very few environment-sensing approaches have utilized frequency-based 

features on mobile devices. A recent approach in [Lu et al., 2009] has exploited a number of frequency domain 

features from signals of a mobile microphone, in order to distinguish between ambient noise from music and the 

identification of distinct sound events. One such feature is bandwidth, which in spite of its conventional 

definition can be regarded as a measure of the flatness of a FFT spectrum. While ambient noise has a limited 

spectrum, music is typically spread across a wider range of frequencies. Other features worth mentioning are 

Mel Frequency Cepstral Coefficients (MFCC). MFCCs are compact representations of a spectral envelope of 

audio signals and mimic the human perception of pitch in their calculations [Lerch, 2009]. Although MFCC 

features extraction is a computationally demanding process, they have been effectively used on mobile phones 

for recognizing distinct ambient sound events in the user‘s environment. 

Heuristic features.  Heuristic features, which are usually assigned to the characteristics of different locations, are 

used to provide a logical localization. Some examples of the recent approaches are provided in the following 

discussion. Various approaches for recognising a user‘s environment make use of features from camera pictures, 

such as illumination (e.g. [Azizyan et al., 2009]) or the colours (e.g. [Ofstad et al., 2008] and [Miluzzo et al., 

2008].) and even sometimes the contents extracted from the picture (e.g. [Kansal and Zhao, 2007]). 

Microphone samples for sensing the ambient noise level is used for logical localization (e.g. [Miluzzo et al., 

2008], [Ofstad et al., 2008] , [Santos et al., 2010], [Azizyan et al., 2009] ). For instance, Aziziyan et al. [Azizyan 

et al., 2009] have used the noise level as a location fingerprint while Santos et al. have used the noise level 

captured on a mobile phone‘s microphone as a clue for indoor or outdoor location in [Santos et al., 2010]. The 

noise level indicates in another study whether the user is attending a party [Miluzzo et al., 2008]. Here the noise 

level is then combined with other data obtained from accelerometers and Bluetooth to give a better indication of 

the social context of a user.  

The absolute position of a user determined by  GPS or Cell ID and corresponding cell tower signals, is mapped 

to the nearest pre-determined positions indicating user location with segment labels [Anderson and Muller, 

2006], [Laasonen et al., 2004], [Arikawa et al., 2007]. This feature may then be used for detecting user 

landmarks [Cho et al., 2007]. A similar method in [Miluzzo et al., 2008] has estimated user location based on 

manually labelled traces of GPS. Another approach uses a static Bluetooth beacon [Eagle et al., 2009] or Wi-Fi 

( [Miluzzo et al., 2008] transmitters, to detect the presence of a user in a pre-determined location. Here the 

reception of signals from several transmitters each with a particular MAC addresses indicates the location of a 

user. 

The received signal strength from different radio systems has also been widely used for user localization 

recognition (e.g. [Meeuwissen et al., 2007] and [Laasonen et al., 2004]). For instance, in [Eagle et al., 2009] the 

GSM signal strength has been logged on mobile devices in order to determine the cell towers in the vicinity and 

consequently the location of device. 

 

3.2.4. Summary.  

In this section, we have introduced the recent techniques that have been successfully implemented on mobile 

phones for converting raw sensor data into a variety of features useful for user context recognition. Classifying 

the features into three subcategories of time domain, frequency domain and heuristic features, the most relevant 

features for different aspects of user context have been presented. Conceptually, our discussion could have also 

included time-frequency-based features such as wavelets. As discussed in [Iso and Ymazaki, 2006], frequency 

and time domain-based features from sensor data have less time-frequency resolution than wavelet 

transformations and consequently are not able to identify localized wave data present in sensor data streams. 

The research community has taken advantage of these features in a variety of context recognition applications. 

Examples include wearable device context recognition [Kunze et al., 2005], detection of transitions between 

physical activities [Fleury et al., 2009] and classification of walking on level surface from stairs climbing for 

healthcare approaches [Sekine et al., 2000]. However, in case of mobile phones where in contrast to wearable 

sensors the computational resources are utilised concurrently for a variety of different tasks, the realization of 

these computationally demanding features have been primarily limited to offline modes in the past (e.g. [Iso and 

Ymazaki, 2006]). The recently emerging powerful microprocessors for mobile phones make however the 

utilisation of time-frequency based features on mobile phones now feasible. Consequently the research 

community has started to move toward using such powerful features for different aspects of user context 



recognition. As one of the few existing examples Wittke [Wittke et al., 2009] has used the Harr-like features that 

are computed similar to coefficients in Harr wavelet transform for detecting user activities and device 

movements. However, work in this area is still very limited and has therefore not been prominent in our 

previous discussion.   

Different from the discussed signal oriented features,   model based features have recently started to attract 

researchers in the wearable research community, providing a more reliable alternative for physical activity 

recognition. Here the features are generated according to the model of the body when performing a certain 

action. These features may include several sub actions, body posture or relative position of user and objects. 

Being driven from body model these features are more robust and less variant to variability of performing 

different activities [Zinnen et al., 2009]. For example, Zinnen in [Zinnen et al., 2009] have utilized various 

motion primitives such as moving the hand up or down or turning the hands  along some postural features such 

as relative orientation of the hand to gravity or relative position of the hands to each other and location 

information for activity recognition. As a result the model based features provide more reliable results than 

conventional signal oriented features. However, this approach is limited to situations where sensors have to be 

attached to the body segments of a user. In addition, their heavy computational burden has still remains an issue 

for implementation on mobile devices. Table.2 in appendix 1 comprises the type of features that have been 

utilized in a variety of different mobile centric context recognition systems. 

Features generated from sensor data are used in classification algorithms to identify the user context. In the next 

section, a variety of context inference techniques that have been implemented on mobile phones are described. 

 

 

 

4. CONTEXT INFERENCE 

Once the features are derived from sensor data, they are inserted into a classification algorithm (see Figure 1). 

Initially, each classifier requires a learning phase where it learns the requisite patterns within the input features 

with each dimension of the desired user context. Once the learning phase is completed, the classification 

algorithm is able to assign an unknown window of data to a particular user‘s context class. Different 

classification algorithms are characterized with different degrees of complexity, starting from simple threshold-

based algorithms to advanced models such as Neural Networks (NN) and Hidden Markove Models (HMM). 

However, the classification methods that are implemented on handheld devices must be adapted to the limitation 

in computational capabilities of microprocessors and available memory and respective energy constraints of the 

battery-powered devices. Moreover, in many cases when real-time feedback is required, the delay in context 

inference process is a further distinctive parameter.  

 

4.1. Learning techniques  

Based upon learning characteristics, classification techniques can be divided into supervised and unsupervised 

learning models. Supervised learning refers to learning through example algorithms where data and its 

corresponding classes were presented during the learning process.  Alternatively, in unsupervised learning, true 

examples as solutions are not given [Pietquin, n.d.]. Selecting each type of learning model affects the design of 

the labelling process, which is explained in Section 4.3. Normally the aim of a learning technique is to minimize 

the generalization error. The generalization error refers to the expected error of the real testing data and not 

necessarily the training data. One major problem which arises during training (or learning) classification models 

that causes significant generalization errors is the bias-variance trade-off. According to [Friedman, 1997], the 

mean square of classification error (MSE) can be decomposed into three terms: 
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Where x is the input feature vector and f(x) is the estimation of the classification model for the class of x (where 

a particular class is of user contexts). In (1) Noise, represent the irreducible error due to noise in the system. Bias 

is the error related to the selected method of learning (linear, quadratic, etc.) and the variance (Var) is the error 

related to the sensitivity of the classification model to the training set. In order to reduce the generalization or 

MSE error, both the variance and bias errors must be minimized which unfortunately is not possible due to the 

natural bias-variance trade off. For example, while a learning model may suffer from under-fitting problems 

(high bias error) due to training on very large data sets, it is also susceptible to over-fitting (variance error) on a 

small training set and hence may lose its generality. This explains why sometimes simpler classifiers outperform 

more complex ones. Stable classifiers normally have high bias and low variance while unstable classifiers have 

the reverse [Lotte et al., 2007]. While often constrained to simple classifiers such as implementations on mobile 

phone devices and access to a limited data set for the training process, researchers have been faced with variance 

error and unstable classifier problems.  



A key to this issue is to have a stable classifier that scales to a larger number of users so as to improve the 

generalization of the training dataset. Particularly when user-dependent parameters are learned (e.g. thresholds), 

the number of participants has a significant effect on the training procedure of models for general usage. A 

straightforward solution for this problem is to increase the number of participants during the collection of 

training data [Lester et al., 2006]. For instance, in [Kwapisz et al., 2010] the model is generated and tested on 29 

people, which gives it greater reliability as compared to similar studies with a small set of users such as reported 

in [Yang, 2009]. One of the main drawbacks of these approaches is the estimation of the number of required 

participants to have adequate varieties in the database for training. Despite involving wider ranges of people, 

researchers have tried to develop different, less time consuming, and more efficient approaches. One example is  

active learning where the initial labels from training data are used as a soft guess.  By asking the user to check 

and even correct the misclassified results, the classification parameters are adapted to user characteristics during 

an online learning (e.g. [Könönena et al., 2010] or [Brezmes et al., 2009]). Community-Guided Learning (GCL) 

[Peebles et al., 2010] is another available approach for generalizing classification methods. This work 

demonstrates that the classification accuracy of the available techniques can improve using crowd-sourced 

labelled data for training, while the probable mislabelling errors (e.g. humanistic errors) are addressed by 

utilizing the data similarity. A combination of community guided learning and active learning is proposed by 

Berchtold [Berchtold et al., 2010] where a service-based recognition architecture is utilized for recognizing user 

physical activities. Here on a backend server a Global Trainer Service trains different combinations of classifier 

module sets from user community data which are then personalized by another service called Personalized 

Trainer Service using user annotated data. The personalization information is then transmitted as a bit vector to 

the device for personalization of the available classifiers modules on the device.  A different approach is to use 

features that do not change significantly among different users during learning process [Kawahara et al., 2007] . 

The learning techniques are determined according to the classification technique of the choice. In the next 

section, different classification techniques used in mobile centric applications are introduced.  

 

4.2. Classification techniques 

As discussed by Ye in [Ye, 2004], almost all the classification algorithms are solving an optimization problem. 

Based upon an optimization approach, they can be categorized as discriminative or generative algorithms. The 

generative models assume a probabilistic pattern, dependent on certain parameters, between data and classes, 

and specify a joint distribution over features and recognized classes. It can provide a direct model or a 

conditional distribution of data through Bayes rule. A generative classifier tries to estimate the underlying 

parameters and uses them to update the data classifications. Here Maximum Likelihood (ML), Maximum a 

Posteriori (MAP) or mean posteriori techniques usually perform parameter estimation. In the case of 

deterministic models, the only assumption made is that a well-defined distance and similarity measure exists 

between any pair of patterns. In other words, samples corresponding to one class may have a high similarity but 

are dissimilar to samples that belong to other classes, corresponding to a memory-based and nonparametric 

approach. Generative models have not been very popular due to their computational costs in contrast 

discriminative models have been widely implemented on mobile phone devices. 

While many studies have used mobile phones only as a portable sensing system and then performed the data 

analysis and classification on back end servers, our emphasis for a mobile-centric sensing system is on 

classification techniques that have been implemented on mobile devices.  Figure 5 shows taxonomy of the 

algorithms that will now be presented, analysing the recent approaches in developing classification algorithms 

on mobile phones.  



 

Figure 5.  A taxonomy of the classification techniques that have been  successfully implemented for context recognition  

4.2.1.   Discriminative models.   

A variety of discriminative models have been implemented on mobile devices. The most popular models include 

decision trees, neural networks and clustering techniques. The major problem with many discriminative models 

is the susceptibility to over-fitting (Variance) [Deselaers et al., 2008] when creating rough boundaries between 

different classes of data during the training process. An introduction to the discriminative algorithms that have 

been successfully implemented on mobile devices is now presented. While discussing the different 

characteristics of classification algorithms, pertinent examples from mobile-centric sensing systems are 

provided.  

 

  4.2.1.1. Decision tree.  Typically a decision tree consists of several nodes, branches and leafs where, during 

classification, each node examines an attribute. Each branch corresponds to an attribute value and the leaves are 

classified context. Decision trees use rigorous algorithms that automate the process and create a compact set of 

rules [Webb, 1999]. A sample for a decision tree which determines four classes is depicted in Figure 6.  

Once the tree structure has been created, using a learning algorithm such as ID3 (Iterative Dichotomiser 3), 

C4.5, or J.48, the process of classification with the decision tree is very fast. For example, the computation time 

required for a J48 decision tree algorithm, used in user social context recognition and  feature extraction (the 

mean standard deviation and a number of peaks in acceleration samples), together has been less than one second 

on a Nokia N95  [Miluzzo et al., 2008]. A comparison between ID3 and C4.5 reported in [Santos et al., 2010] 

has shown that ID3 is superior to C4.5 on a Nokia N95, when classifying activities such as walking, running, 

sitting and standing and logical location such as inside or outside. Here again, relatively fast classification (< .04 

s) and high accuracy has been achieved. Decision trees are one of the most popular methods due to 

computational efficiency especially when using trees of smaller scales. A comparison in [Yang, 2009] between 

different classifiers of a user‘s physical activity using simplified features suitable for mobile applications has 

shown that decision trees can obtain higher accuracy than Naive Bayes and K-nearest neighbour approaches. 

Moreover, compared to threshold-based models, which are similar in concept, decision trees require less user 

intervention. 

Implementing decision trees requires the consideration of several aspects: first, like many other algorithms, the 

learning process is time consuming. As a result, many studies perform offline training and only implement a 

final decision tree classifier on mobile devices (e.g. [Kawahara et al., 2007], [Santos et al., 2010], [Miluzzo et 

al., 2008]). This limits the retraining process that may change the structure of the tree. Moreover, although 

decision trees with small sizes are computationally efficient and can be used effectively in real-time [Maurer et 

al., 2006], increasing the tree‘s size can be computationally expensive since their evaluation is based on logical 

operations [Atallah et al., 2009]. Finally, decision trees are very prone to over-fitting problems( [Blum et al., 

2006], [Santos et al., 2009]) and cannot be used for generic applications unless large data sets are available for 

training. 

 



 

Figure 6.  Decision Tree: structure of a decision tree with 3 attributes which classifies the input into 4 different classes 

  4.2.1.2. Neural Networks.  The work undertaken on artificial neural networks is motivated from complex, non-

linear and parallel computation methodologies of the human brain. Neural networks use a connectionist 

approach to compute outputs through a network of inputs, hidden states and possible outputs. Typically, neural 

networks can be divided into feed-forward networks, where signals can only move forward, and feedback 

networks, which also allow feedback loops in the network.  The correct number of hidden neurons, is found by 

comparing the performance of classifiers with different number of hidden neurons. A feed forward network with 

3 hidden states is depicted in Figure 7.  

Bruns [Bruns et al., 2007] has successfully trained and implemented a two-layer neural network on a mobile 

device in order to recognize objects taken from a Smartphone camera. Another example in [Anderson et al., 

2007] has implemented a neural network with 8 hidden neurons (states) to map the pattern of signal strength 

fluctuations and changes in number of unique cell IDs to a user‘s state of activity. 

In physical activity recognition, the neural networks perform particularly well when only one activity needs to 

be detected [Gyorbiro et al., 2009]. Instead of using a large network for the recognition of various physical 

activities Gyorbiro et al. have proposed a novel technique that allocates one neural network to each activity. 

Then, the network with the highest confidence determines the recognised activity. Similar to the decision trees, 

training neural network is usually considered computationally expensive and consequently performed offline 

(e.g. [Gyorbiro et al., 2009] [Anderson and Muller, 2006]). Therefore the neural networks are not the suggested 

when the system is subject to frequent retraining. 

 

 

    

 

 

 

 

 

 

Figure 7.  Structure of a feed-forward neural network with four inputs, three hidden states and two classes of outputs 

    4.2.1.3.  Hierarchical models.  A hierarchy of thresholds has been used as a simple and computationally 

efficient model for mobile-centric applications (e.g. [Kawahara et al., 2007], [Siewiorek et al., 2003] ). 

Hierarchy models are very similar in principle to decision trees with the exception that the training process is 

performed in supervised mode. For example, the ―E-coaching‖ application [Kawahara et al., 2007] has 

implemented several thresholds based on the characteristics of different body movements in order to infer user 

activity and mobile device position. Although the thresholds are learned from empirical experiments, the 

variation of these thresholds between different subjects was found to be small enough so that they could be used 

in a generic solution. Similar to decision trees, the main weakness of this technique is over-fitting susceptibility.  

Additionally, its dependency on user supervision during training (or retraining) is another constraint for the 

application of this method. 

 

4.2.1.4. Fuzzy logic.  Similar to a human‘s understanding of a physical process, fuzzy logic is able to embed 

imprecise and approximate reasoning (instead of precise quantities that are used in computers) for solving 

complex problems [Ross, 2004]. Fuzzy logic maps a set of inputs to one or more outputs with an assigned 

membership value or fuzzy truth via a set of if-then rules. Normally, the output with the maximum fuzzy truth is 

then taken as the result. Considering that the reasoning is based upon imprecise concepts, fuzzy logic seems  

more appropriate for real-world applications than conventional logical reasoning in the hierarchical or decision 

trees [Preece et al., 2009]. In spite of this, only a limited number of studies have applied fuzzy logic in their 

classification problems. For instance, in [Haykin, 2009], fuzzy logic is used for selecting the most probable state 

Hidden states Outputs Inputs 



from outputs of a group of neural network classifiers for physical activity classification on a mobile device. A 

combination of decision trees and fuzzy logic has been used in [Lee and Mase, 2002] for indoor localization 

applications, where the fuzzy model is able to classify walking movements as slow, normal or fast by defining 

several thresholds for acceleration and angular features. 

 

  4.2.1.5.  Clustering.  Despite the aforementioned issues with supervised learning algorithms
[8]

 which require 

labelled data during training, some studies have used clustering as unsupervised leaning algorithms for both 

classification (e.g. [Brezmes et al., 2009]) and calibration (e.g. [Anderson and Muller, 2006]). The clustering is 

described as an unsupervised classification of patterns (observation, data items, or feature vectors) into groups 

of clusters. [Jain and Murty, 1999] . For an extensive discussion about different clustering techniques, refer to 

[Jain and Murty, 1999]. 

    KNN Clustering.  Naturally, our intuitive notion of a cluster is a group of entities in proximity of each other. 

In that sense, the nearest neighbour distance serves as a basis for clustering procedures for K Nearest-

Neighbours (KNN) algorithms. In KNN, unlabelled data is processed in multidimensional feature space 

containing all training data points corresponding to different contexts. The new data is labelled based upon its 

distance to a particular labelled data. Figure 8 represents a schematic of the KNN classification process. 

 

 

 

 

 
 
 
 
 
   
 
 
 

Figure 8.  KNN clustering: The input is the unknown data and its four nearest neighbours. The clustering is performed in a 

two-dimensional feature space. 

The activity recognition technique in [Brezmes et al., 2009], has used the K nearest approach which is trained 

based upon user preferred mobile position and a specific set of activities. The data is classified based upon the 

Euclidian distance of present record towards predetermined data. The reported accuracy after full training was 

more than 70% for all activities. In another approach, the KNN classifier is used to classify the users‘ locations 

[Ofstad et al., 2008]. 

    K-means clustering.  In [Mirkin, 2005] Mirkin has described the K-means algorithm as a major clustering 

technique which is fast and straightforward. Based upon this technique a multi-dimensional space of features is 

divided into K clusters through a recursive algorithm of finding the optimum position of cluster centroids. 

Although the K-means algorithm is fast and computationally efficient, it relies on saved data and its 

implementation on mobile phones is faced by memory constraints. In addition, the K-means algorithm is 

susceptible to local minima‘s and attaining a global result may require several iterations of the algorithm. Due to 

these shortcomings, some studies (e.g. [Blum et al., 2006]) have deemed that the K-means algorithm is not a 

proper choice for classification on mobile phones. In the Shakara project [Anderson et al., 2007], the K-means 

algorithm is used as an unsupervised calibrating approach to  learn the distribution pattern of the data which is 

used for quantizing the inputs of another classifier (HMM). 

Another work reported in [Yang, 2009] uses mobile phone sensing for generating a user‘s physical activity 

diary. In this study, K-means clustering is used for smoothing out the classification results of a decision tree. 

Using k-means clustering, the magnitude of the mean and standard deviation of accelerometer signals are 

divided into six clusters. The clustered data are then labelled based upon the distance between their 

corresponding centroids to different classes of decision trees. It is however unclear as to whether the algorithm 

has been actually implemented on a mobile phone. 

  

4.2.2. Generative models. 

Generative analysis such as a Hidden Markov Model (HMM) or its hierarchical extensions demonstrate 

significant potential for the classification of everyday activities. However there is a significant challenge for 

                                                           
[8] The learning process for artificial neural networks can be both supervised and unsupervised. 
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porting resource-intensive HMMs to a mobile device. As a generative model which does not involve many 

mathematical calculations, discrete HMM has widely been used for smoothing the classification results by 

finding the most probable output, considering one or number of  previous states [Wu et al., 2007], [He et al., 

2007]. For a detailed discussion of related issues the reader is referred to [Attalah and Yang, 2009]. The same 

resource requirement problem exists when Conditional Random Fields (CRF) and Dynamic Bayesian (DB) 

networks are used. Despite this issue, excellent classification results for offline implementation of CRF and DB 

have been reported (e.g. [Gyorbiro et al., 2009]). When computational resources are limited, the use of Bayesian 

classifiers (BN) represents a valid option for classification [Atallah et al., 2009].  

Providing a probabilistic classification, generative techniques are more resilient to data variations as compared 

to models with logical if-then rules such as decision trees and hierarchical models. Some examples of the 

generative techniques that have been successfully implemented on mobile phones  are presented in the following 

section. 

 

 4.2.2.1.  Hidden Markov Model.  Cappe et al. [Cappé et al., 2005] informally introduce Hidden Markov Models 

(HMM) as a Markov chain that is observed in noise. This Markov chain is often assumed to take a finite set of 

states which are not observable (hidden states). Each state is associated with a probability distribution and state 

transitions are governed by a set of probabilities. Observations as another stochastic process are linked to the 

Markov chains and an observation can be generated for each state. Most of the HMMs can be divided into two 

principally different classes of models: left-to-right and ergodic models [Cappé et al., 2005]. Figure 9a shows a 

left-to-right HMM, where the Markov chain starts in a particular state and after number of transitions terminates 

in a final state. The transitions are limited to the forward direction (towards an end state). An ergodic HMM, in 

contrast as shown in Figure 9b, allows all possible transitions between states and consequently it can produce an 

infinitely long sequence of outputs. When the distribution of observations is defined on finite spaces, the model 

is called discrete HMM.  

In their work [Anderson and Muller, 2006] [Anderson et al., 2007]  [Anderson and Muller, 2006], Anderson et 

al. have implemented a discrete HMM model on mobile phones for recognizing user activity from GSM signals. 

Here, the observation data is based on signal strength fluctuation and cell fluctuations, which is mapped onto a 

set of fifteen discrete observations. The hidden states describe the user‘s status (e.g. walking, driving, remaining 

stationary, etc.). The prediction is made based upon the sequence of five previous states. Markov models have 

been also used for smoothing out the classification results of other techniques, where the conditional 

dependency of the outputs is taken into account by training a Markov chain. For example, researchers in the 

SoundSense project have used a first-order Markov model to smooth the discrete classification results of a 

decision tree [Lu et al., 2009]. 

 

 

 

 

  

 

(a)                                                                     (b) 

Figure 9.  Markov chain: (a) Structure of Left-to-Right HMM where transitions happens in the forward direction, (b) 

Structure of the Ergodic HMM where all possible transitions between states are allowed. 

  4.2.2.2. Bayesian Classifiers.  As was mentioned in the introduction of this chapter, generative models can 

produce conditional distributions of data through Bayes rule.  Cakmaci and Coutaz [Cakmaci and Coutaz, 2002] 

have represented the Bayes rule formula for the context recognition as follows: 

 

ta)p(sensorda

p(context)*)context tap(sensorda
)sensordatap(context       (2) 

 

At this stage, different approaches have assumed different distributions for sensor data in each class. For 

example, Naive Bayes considers data points to be locally independent while Gaussian Discriminant Analysis 

considers a Gaussian distribution in each class.  

It should be noted that Bayesian classifiers are considered computationally efficient (containing only 

multiplication and additions) and can be also retrained by changing a few parameters instead of reprogramming 

the whole classifier (as it is the case for decision trees).   

    Discriminant Analysis.  Gaussian Discriminative Analysis considers a multivariate distribution in n-

dimension as: 
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Where, the subscript k indicates the class and µ is the mean vector       and Ʃ is covariance matrix        
  .  

Blume et.al in [Blum et al., 2006], have implemented Gaussian Discriminant Analysis (also regarded as Naïve 

Bayes with Gaussian distribution) to determine a user‘s  speech, posture and activity recognition. The model is 

claimed to be faster than HMM while providing comparable results and is also immune to over-fitting problems 

in contrast to decision tree (C4.5) approach. The reported results show that the model has been able to 

distinguish between a majority of activities with high accuracy. 

Note that since not all of the data sets can be approximated with a Gaussian distribution, it is sometimes 

required to extrapolate data with a statistical function such as the Kernel Density Estimation (KDE). For 

example, Ofstad  in [Ofstad et al., 2008], has used KDE during implementing a Bayesian classifier on a mobile 

device in order to infer the users sitting and standing  modes from the mobile‘s accelerometer data. As a result, 

very high classification accuracy has been achieved. 

In contrast to Gaussian Discriminant Analysis, Linear Discriminant Analysis considers the same covariance 

matrix (Ʃ) for all classes. As an example, discriminant analysis of audio samples for distinguishing human voice 

from ambient noise has been implemented in [Miluzzo et al., 2008]. In this work, the targeted classes are 

learned over different samples of human voices (most of the energy between 0-4 kHz) with the mean and 

standard deviation as input features.  

    Bayesian Networks.  Cho et. al [Cho et al., 2007] have exploited modular Bayesian networks to recognize 

relevant or novel landmarks during movement in daily life and visualize them as cartoon images. In order to 

implement a Bayesian Network on a mobile device, a Bayesian network library for mobile devices called 

SMILE (Structural, Inference and Learning Engine) is introduced. However, since monolithic models are 

susceptible to interference coming from large networks, an ensemble of multiple Bayesian Networks specialized 

for each activity is proposed as modular Bayesian Networks. 

 

4.2.3 Classifiers performance  

When a classification algorithm is developed, it can be used for detecting a variety of aspects of  the user 

contexts. Here, the performance of a classifier in recognizing the demanded context determines the classifier of 

the choice across other classifiers. In mobile sensing typically the performance of the classifiers are studied in 

terms of their accuracy and computational complexity.  

A comprehensive study about the performance of different classifiers of physical activities is presented in 

[Preece et al., 2009]. According to Preece et. al an initial inspection of a variety of recent studies suggests that 

decision trees and neural networks are providing the highest level of classification accuracy. However in some 

studies, the difference between classifier performances was not statistically significant and some classifiers such 

as Bayesian networks that were found to provide an acceptable performance for particular activities in one study 

have been reported as poor classifiers in another for the same activities. The same problem has been reported in 

a study about empirical evaluation of supervised learning algorithms by Caruana et.al [Caruana and Mizil, 

2006]. In this study, neural networks generally perform better in comparison with decision trees and Naive 

Bayes. Here again, the results have shown significant variability between the performance of classification 

algorithms across problems and matrices.  

This problem can be extended to other user contexts including the detection of environment and user social 

interaction. Actually the performance of classifiers is to a great extent affected by the context and the 

discriminative information in features that are used. Consequently, there is no classifier that performs optimally 

for all user context classification problems. Instead, one can always select a proper algorithm that provides the 

best classification accuracy with extracted features amongst all available classifications by evaluating 

techniques such as cross validation [Duda et al., 2000]. Although the required performance varies with different 

applications, there are some criteria that must be considered in assessing the classifiers. 

The nature of the application is also a very important parameter in determining required accuracy and evaluating 

classifiers. In some applications such as physical activity recognition  evaluating the overall prediction accuracy 

of the classifier is enough for selecting a proper classifier. Here the distribution of the classes in evaluating data 

set is compared with outcomes of classifiers as a result of quadratic loss functions or Cross Entropy 

measurements or as a confusion matrix. An optimal choice is the one which minimizes the loss or off diagonal 

figures in the confusion matrix. However, in another type of applications such as fall detection for elderly 

people the cost of error in detecting the fall (TRUE Negative (TN)) is by far greater than the cost of error in 

detecting the normal movements (False Negative). Meaning the priority is with the classifications that minimize 

the TN.  These situations the cost of making different error should be taken in to account. Cost sensitive 

classification or cost-sensitive learning techniques are different techniques for incorporating the cost into 

classifiers. Through the former technique the costs are ignored during learning and are then applied to 



predictions as a cost matrix and the later one considers the costs during the learning procedure.  The required 

cost matrix in the first technique and the weights (costs) in the second one are defined according to the 

application. Other widely used techniques for accessing the performance of classifiers when costs are taken into 

account are to visualize them with Receiver Operating Characteristic (ROC), Cost curves or calculating the F-

measure score . 

When the model is aimed to be developed on mobile devices with limited computational resources, it is very 

important to minimize the computational complexity of the algorithm. One common method for choosing 

between different models is to penalizing the model complexity and minimizing the following expression. 

 

 P+-2logL            (4) 

 

Where L is the maximum likelihood and P is the penalty for complexity. Example of proposed form for P is 

Bayesian Information Criterion (BIC) where P is equal to nm log . Where m is the number of estimated 

parameters and n is the sample size. 

It is worth mentioning that the stated classification techniques are usually referred to as base-level classifiers. In 

addition to the base-level classifiers, Meta and Hybrid classifiers are also widely used. According to [Ravi et al., 

2005], Meta classifiers can be divided into voting, stacking and cascading. Ravi et al. claim in [Ravi et al., 2005] 

that the performance of base-level classifiers for activity recognition can be improved by using Plurality voting 

technique. However, the real-time implementation of these techniques remains an open research issue.  

 

4.3. Labelling 

Until recently, supervised learning techniques have typically been the algorithms of choice in building mobile 

inference systems [Lane et al., 2010]. Supervised learning requires all the possible classes of input data to be 

labelled before training. There are various ways to perform labelling on training data. Approaches have been 

developed by collecting user diaries or by making video tapes of them (e.g. [Fleury et al., 2010]), personal 

online labelling while data are gathered for learning (e.g. [Kwapisz et al., 2010]) and performing routine 

activities at particular times (e.g. [Mathie et al., 2004]). In other cases, participants in experiments have been 

asked to repeat the particular activities in the lab (e.g. [Kawahara et al., 2007]).  

Performing a routine set of activities is susceptible to inserting bias in the data which  may result in producing 

optimistic data and thereby degrade the classification technique in reality [Azizyan et al., 2009]. Due to the 

dependency on hand-labelled data for training classifiers, applications that exploit these techniques are typically 

constrained to a small set of pre-defined aspects of user context (classes). Accordingly, a more challenging 

approach is to perform online learning and labelling in order to scale the available classes to a larger number of 

distinctive classes as required. Current efforts for labelling the new events that have not been covered during 

initial training utilize the user‘s intelligence when an unknown context is recognized. For example, in [Lu et al., 

2009] a hybrid approach for supervised and unsupervised learning is proposed, where after failing to 

recognizing the data by the supervised model, the unsupervised technique is used to learn a set of unlabeled 

classes that are frequently occurring. The user is then brought into the loop to provide a textual description 

(label) of the newly learned classes. A further example is [Santos et al., 2010], in which the users are authorised 

to add (to label) their current contexts as a new context. Here, after user authentication, the device automatically 

learns the characteristics of the new context and retrains its classification algorithm.  

 

 

5. COMPARISON OF DIFFERENT APPROACHES 

Numerous options are available for selecting and integrating the aforementioned calibration, feature extraction 

and classification techniques together to create an opportunistic sensing and context recognition system on 

mobile phones. However, careful considerations in selecting the functionalities and algorithms can both fulfil 

the application requirement while minimizing the adverse effects on the user‘s phone experience. In this regard, 

a comparison of the suggested options and combinations of the available techniques is provided, aiming to 

provide further insights for researchers in this area.  

Effective user context recognition on the mobile phone requires proper sensor and sampling frequency selection 

and sensor position and orientation calibration.  It also requires noise reduction along with extracting 

informative features and selecting proper classification methods.  Calibration can be done easily and with low 

amounts of computational cost. The calibration process is required to handle the daily life usage of mobile 

phones and can be divided into orientation and position calibration. The orientation calibration should ideally 

transfer sensor readings into a user‘s coordinate system. The necessary information can typically be derived 

from sensing the gravitational acceleration with an accelerometer and process those acceleration samples in a 

plane perpendicular to the direction of gravity. In order to determine the position of a mobile phone on the 



user‘s body, a variety of solutions have been proposed. Examples of these solutions are the collection of training 

data from all possible locations or even restricting applications to the most probable places where the device 

may be located. A popular example of the latter case is in a trouser pocket, as it presents a preferred location 

amongst men and is also in proximity to the humans‘ CoG. Moreover, when calibration is performed, the 

settings can be kept for a period of time and hence frequent updates are not required (e.g. until the user changes 

the position or orientation of the phone).  

Simple time domain statistical features such as variance, mean, intensity and number of peaks in a window of 

samples seem to be essential inputs to infer user physical activity. The most distinctive and informative features 

available for determining user social interactions are the user‘s proximity and vocal behaviour. Finally, user 

environment can be characterized by combining absolute positioning data with heuristic features such as colour 

or typical user behaviour such as a location fingerprint.  

Selecting a proper context recognition technique is one of the challenges that still require further addressing. 

Before selecting a classification technique, an appropriate strategy for training and labelling is needed. Training 

the classifier may be performed either online or offline. Online training can provide a personalized training 

dataset and consequently higher classification results while also imposing heavier computational burdens on the 

system. Alternatively, offline training is more computational efficient but requires a careful consideration about 

the generality of the training data set in order to avoid over-fitting problems. A hybrid combination may be 

achieved by providing a soft guess of the classes in offline training mode and then refining the misidentified 

classes with online training. The approach can be further enriched by community guided data that is gathered 

and prepared in a backend server. 

Once an online training mode is enabled, the system can be configured to learn the new classes of user context. 

However, still labelling the new context requires user intervention, which must be minimized in an opportunistic 

sensing system. Implementing unsupervised learning techniques to distinguish the most important unknown 

contexts, before involving the user is proposed to mitigate this problem. 

In case of the classification techniques, an initial review about the introduced classification methods 

demonstrates that the decision trees and the neural networks provide satisfactory results for most of the 

applications. In addition, in small network (or tree) sizes they can be easily trained and implemented on mobile 

devices. However, they are prone to over-fitting problems. Developing hierarchical thresholds for hierarchical 

approaches is time consuming. However similar to the decision trees; they can be executed with minimum 

power and computational cost and therefore are suitable for real-time applications. Neural networks also work 

well for complex pattern recognition, although usually the training stage is too burdensome to be performed on 

the mobile device. The Bayesian classifiers are simple to develop and can be executed rapidly and are also less 

susceptible to over-fitting problems. However, they are based on weak assumptions about data distribution and 

predictions are consequently not very accurate. Finally, HMM is a good choice for smoothing the prediction of 

other classifiers including the effect of interdependency between different aspects (or classes) of a user‘s 

context. It should be noted that although many studies have compared different classification techniques for 

different purposes, there is no classifier that can optimally detect all aspects of a user‘s context. 

Generally speaking, a two level classification model consisting of both a mobile device and a backend server 

can fulfil the requirement of most of applications. Inferring the context on the phone has been emphasized to 

provide a number of advantages [Miluzzo et al., 2008]. It present resilience to cellular or Wi-Fi dropouts and 

minimizes the data transmitted to the backend server which in turn improves the system communication load 

efficiency. In addition, performing the context recognition process on the phone reduces the energy 

consumption of the phone and the monetary cost by merging consecutive phone uploads and also protects user 

privacy and the data integrity by keeping the raw data on the phone. Finally, it provides an opportunity for 

creating user labelled contexts. 

When a two-stage model is used, the inferred context or the learned parameters from user behaviour can be 

provided to the backend servers for further processing. Especially in case of real-time sensing applications, 

uploading the data to a backend server may help to reduce the frequency of read and write events to the device. 

Note that writing to and reading from a data store can sometimes be the most time consuming process of a 

mobile context recognition system [Santos et al., 2010]. The backend server can also provide the required 

connection (as a network) between other devices along with computational and storage support. Many studies 

have already exploited the more powerful computational capability of the backend server for further analyzing 

the data (e.g. [Miluzzo et al., 2008], [Azizyan et al., 2009], [Kanjo et al., 2009], [Gaonkar et al., 2008]).  

Finally, in order to control and minimize the power consumption of the sensing applications, a judicious 

selection of the different power saving functions based upon application requirements, residual battery power, 

and a phone‘s current energy consumption profile is required. For example, when the locality of a user is 

required, one can take advantage of the energy-accuracy trade-off between different techniques. Where, as 

described in [Gaonkar et al., 2008], energy consumption increases form GSM to Wi-Fi-based localization and 

GPS schemes while the accuracy decreases from GPS to Wi-Fi and GSM methodologies. As another example, 

updating data on backend server can ease the execution of burdensome tasks when an appropriate strategy   



controls the impact of the communication load and handset energy consumption (e.g. [Herrera et al., 2010]). A 

number of communication options are available for transferring the results to the back-end server of a typical 

mobile phone device (e.g. Bluetooth, HTTP+3G, HTTP+ Wi-Fi); the battery level of the device, the energy cost 

of the connections along with the available data rate and connection coverage are the parameters needed to 

determine the connection of the choice. Some other suggestions  are methods such as letting the user switch off 

the screen [Kanjo et al., 2009], selecting a proper sensor based upon the power demands and the required 

accuracy (e.g. [Gaonkar et al., 2008]), changing the sampling rate [Miluzzo et al., 2008], adapting the 

communication type (e.g. Bluetooth) to the user‘s activity [Crk et al., 2009] and offload part of the data 

processing from the phone onto a backend server [Kanjo et al., 2009] to help to reduce the power consumption. 

The proper application of such methods leads to developing a power aware duty cycle for both sensing and 

uploading while the application responsiveness is not affected. The table.2 in Appendix.1 provides an overview 

of all the aforementioned aspects, from sensing to context recognition, for various applications. 

    

6. CHALLENGES AND FUTURE OPPORTUNITIES 

Technological advances in sensing, computation and communications have turned mobile phones into pervasive 

observers. However, realising the capabilities of such observers in real life situations creates several challenges 

in terms of data acquisition and processing which need to be addressed. As mobile phones were not originally 

designed for sensing purposes, the main challenge is how to embed the required intelligence for pervasive 

observation without jeopardizing the phone experience. The following are some of the most significant 

challenges identified and some recommendations are given. 

 

6.1. Sensing 

Despite the improvements in processing and storage capabilities, continuous sensing and context recognition 

can have an adverse effect on the responsiveness of the other applications. Optimization of the sensing process 

to adaptively select sensor and sensing frequency on the phone would allow for a more efficient platform for 

pervasive observation. The other important challenge represents the limited control of sensors that is provided 

by device vendors in their SDKa (Software Development Kit) and APIs (Application Programming Interface). 

For example, it is currently difficult to establish a consistent sensing frequency that does not change with CPU 

load.  Effective programming for managing the sensing process can, to some extent, mitigate the problem. In 

case of sensing frequency problems for instance, some people have tried to interpolate the missing data caused 

by variations in sensing frequency [Bieber et al., 2009]. Finally, inspired from the fast growth of mobile-centric 

sensing applications, some researchers have determined that the sensing capabilities of neighbour devices can be 

utilized to improve the quality of the data [Mobile sensing group, n.d.]. Such methods would help to access to 

sensing data from other devices when the sensors are not available or the phone status is not appropriate for 

using them (e.g. not calibrated).However, it requires the devices to be able to establish a secure connection to 

other devices which may be using different APIs thereby creating an open software issue [Lane et al., 2010].  

 

6.2. Feature selection  

Feature selection is a decision-making process that connects raw sensor data to available feature generation 

techniques. Serving as a corridor between sensing and processing stages of a system architecture, an appropriate 

scheme of feature selection can substantially improve the energy and computational efficiency of the system. 

Performing a decent feature selection demands a precise consideration of a number of parameters.   

Typically, it is preferable to use as few features as possible in mobile phone applications. This is because of two 

reasons: first the computational burden of feature extractions as the number of features increases , and second, 

the risk of obtaining suboptimal results due to classifier confusion when too many features have been used 

[Könönena et al., 2010]. While appropriate sensors are selected in the sensing stage, feature selection can 

confine the features to the most informative ones for a given sensor and the available classification technique.  

In addition, the performance of different classifiers in terms of accuracy and their overall associated 

computational cost varies for a particular set of features. For instance, Kononena et.al [Könönena et al., 2010] 

have found that a relatively small difference between the accuracy of complex classification methods and a 

simple method can be achieved when features are properly selected. Moreover, there is a compromise between 

the computational (and memory space) burden of the classification algorithms and the feature extraction 

procedure. The overall processing cost of implementing a complex algorithm can be comparable to a simple 

one, when simpler features are being used.  

Finally, the extraction procedures of the features may overlap or depend upon each other.  By ignoring the 

repetition in common processes, evaluating the required overall computational and storage costs for feature 

generation would be different in comparison with a linear addition of separate processes.  For example, once 

FFT of the window of samples is calculated for deriving the spectral variance, many other features such as 



energy and bandwidth can be simply computed. Therefore, the feature selection system must be able to 

accurately consider the interdependency and overlap in the various combinations of features.  

The current feature selection approaches proposed for mobile-centric sensing (e.g. Sequential Forward 

/Backward Selection (SFB/S), Sequential Floating Forward Selection (SFFS) in [Könönena et al., 2010]  or the 

boosting-based technique in [Choudhury and Consolvo, 2008]), although effective, are mainly from the realm of 

data mining to improve the classification results, and ignore a number of the aforementioned relations. 

Developing a technique targeting an optimal set of features, while applicable with mobile phones computational 

constrains, has remained a major challenge in this area.  

 

6.3. Labelling 

Distinguishing and labelling different contexts forms another major challenge. In the real world, drawing 

boundaries between different aspects of user behaviour is difficult. It is likely that people at home sometimes 

exhibit the same behaviour as they do in their office or even perform different activities at the same time. The 

complex social behaviour that people may exhibit in different conditions should be added to these facts. In this 

regard, providing a hierarchical context inference system that performs several levels of recognition with 

different time granularities and aspects of behaviour appears to be essential for such systems in order to be 

useful in real-world situations. Another important shortcoming in current labelling techniques is their 

dependency on user intelligence when a new context is to be learned. Although when managed properly, these 

techniques are considerably less intrusive they still add a user bias into the data. Novel techniques built upon 

logical labelling from available clues in user context such as common sense reasoning [Havasi et al., 2009] 

seems  improve the functionality of current systems to a large extent. One intuitive example is the unsupervised 

recognition of activities from motifs, as frequent repeated patterns, in times series of activities and labelling 

targeted activities (e.g. walking) according to their expected pattern(e.g. relative frequency of presence in a 

period of daily life time) [Vahdatpour et al., 2009]. 

 

6.4. Privacy 

Another remaining challenge is to determine how best to sense and exploit the data from the everyday lives of 

users, both locally on the device and globally on backend servers while maintaining user privacy.  

Kapadia et al. in [Kapadia et al., 2009] have envisioned some of the related security challenges in opportunistic 

sensing. The authors argue that the new characteristics of sensing architectures, including high mobility, 

opportunistic networking, strong but discontinues connectivity and relatively plentiful power in one hand and 

dealing with very personal information in other hand has posed new challenges for information security.  These 

challenges cannot be addressed with previous security solutions such as cryptography and privacy-pre-serving 

data mining. The act of being sensed with other people in proximity, which is known as the second hand smoke 

problem [Lane et al., 2010], is also a challenge in mobile phone based sensing. In addition, mobile phone 

devices are perceived as very personal items [Hakkila and Chatfield, 2005] and publication of the context 

information requires strict privacy and security considerations. Researchers have envisaged that privacy will 

remain a significant problem in mobile phone-based sensing for the time being [Lane et al., 2010] and solving 

the privacy issue appears to be a significant step toward harnessing the potential of mobile-centric opportunistic 

sensing for real world applications. 

 

6.5. Identifying potential applications  

The applications that could benefit from mobile phone-centric observations present exciting opportunities for 

further research. In the case of personalized applications, pervasive sensing technology can help the user to 

make more sophisticated decisions across a range of potential activities in order to  select services and products 

considering the profile of user or/and her goals.  

More and more personalized applications based on opportunistic sensing are being introduced into mobile 

phones. A key question in this respect is what are the most likely upcoming applications in the next few years? 

The significant achievements of the wearable computing community in recent years provide some clues. We 

believe that with the continuous incorporation of new sensors into the mobile phones and advances in their 

computational resources a wide range of these approaches will be available on mobile phones in near future. 

The diversity of these applications will be very large: Ranging from techniques for accurate relative indoor 

positioning (e.g. [Lee and Mase, 2002]) to different approaches for enhancing the interaction of the user with 

smart environments such as detecting and exchanging the user physical state and orientation (e.g. [Ghiani and 

Paternò, 2010]). An important role will play the detection of the social and physiological context of a user such 

as e-motions (refer to [Picard and Healey, 1997]), social functioning and interactions or even monitoring 

different health parameters (e.g. blood pressure, body temperature). Furthermore, the longitudinal data from user 

context that is gathered through these applications can be used to identify the pattern or profiling the users for 

targeted advertisement or optimization of different service delivery to a user‘s the handset. Recognizing the 



patterns and profiling different aspects of user behaviour is currently a very fast growing research area and 

includes different perspective of user behaviour. One interesting existing example is the study of routines of 

physical activities of elderly people in [Huynh and Schiele, 2008] where topic modelling technique is used to 

detect the patterns form longitudinal data that is generated via an activity recognition application. Another 

recent study profiles  user‘s according to the dynamics of their social networks in [Candia et al., 2008] It is 

likely that in the near future the similar researches extends the current binderies to other aspects of user context 

and even to the of study the interconnections between different contexts. 

In large-scale applications, network providers can take advantage of user context data for modelling user 

behaviour in order to manage their resources and service allocations more effectively.  Environmental 

monitoring applications are another type of the emerging applications on mobile phones. Here each mobile 

phone acts as a sensor for monitoring particular parameter of the user environment (e.g. noise level [Santini et 

al., 2009]and CO2 footprints [Mun et al., 2009], traffic monitoring [Mohan et al., 2008]) which is then 

aggregated with data from other users to cover a larger area. As new sensors become available on mobile phones 

more environmental metrics is envisioned to be monitored with these platforms phones.  Currently health care 

applications can be easily extended from personal monitoring to large-scale monitoring for epidemiological 

purposes. Particularly, recent advances in Social Signal Processing (SSP) have paved the way for a new class of 

socially intelligent applications. The potential of what can be achieved by combining these techniques with 

mobile phone-centric observations have been highlighted in a variety of recent studies (e.g. [Zhang et al., 2008], 

[Eagle and Pentland, 2006], [Onnela et al., 2007]). Pioneers in the SSP field such as Alex Pentland and Nathan 

Eagle have emphasised that the ―very nature of the mobile phone makes them an ideal vehicle to study both 

individuals and organizations‖ [Eagle and Pentland, 2006]. Applications can take advantage of data captured by 

mobile phone-centric sensing for analysing a spectrum of social networks ranging from personal and small 

groups to large-scale communities. The pervasive data entailing user behaviour that can be gathered through 

such opportunistic sensing applications (e.g. reality mining [Eagle and Pentland, 2006]) is an invaluable 

resource for human studies applications. It is more likely in the near future that the use of mobile phones with 

pervasive sensing and social signal processing capabilities, share the current multi-million pound market of 

social surveys. Examples range from smaller scale studies such as organizational behaviour to  [Cross et al., 

2002]. to large-scale ones such as International Social Survey Programme [GESIS – Leibniz Institute for the 

Social Sciences, 2009] and European Social Survey [European Social Survey , 2009]. 

 

 

7. CONCLUSION 

The recent advances in computing, storage and wireless technology, together with the introduction of MEMS 

sensors have made mobile phones ideal candidate platforms for ubiquitous observation of user context.  

While today‘s smart phones have become increasingly multi-purpose platform, it is still a challenging task to 

add opportunistic sensing and context processing capabilities, without jeopardizing the user‘s mobile phone 

experience. 

A large diversity of different opportunistic sensing techniques and applications utilizing those have been 

developed in the recent years. This paper analysis these approaches and represents a first attempt to classify the 

utilised techniques and methodologies as distinct components of a mobile sensing architecture.  The resulted 

architecture comprises three major stages, namely sensing, pre-processing and context recognition involving a 

variety of techniques to fulfil one or more tasks inside each of the stages. For each of the stages a thorough 

analysis of advantages and shortcoming of the currently implemented techniques has been provided. Ensuring 

an adequate quality of context while considering device constraints for user context-recognition requires a 

deeper understanding of these and how they interplay with each other. The paper has contributed towards this 

understanding by deriving recommendation from the former analysis on how these techniques at different stages 

of the architecture should be combined to build more reliable mobile sensing platforms. 

The paper concludes with highlighting remaining challenges for mobile phone based opportunistic sensing 

system. Examples are the development of techniques for resource and context-aware sensing and feature 

selection, labelling of complex and unknown events and the preservation of user privacy of the user during 

sensing process. Developing concrete solutions for these issues will open the doors to countless novel 

applications exploiting those capabilities, making opportunistic mobile sensing systems key elements of future 

service environments. 
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APPENDIX.1 

Table.2. Comparison of several systems prototypes for user context recognition 

System Sensor(s) Sensor node 
Processing 

Units 

Sampling  

rate(Hz) 
Pre-processing 

Context 

inference 
Context Accuracy Goal 

SurroundSense 
[Azizyan et al., 

2009] 

Camera, 

Microphone, 

Accelerometer, 
Wi-Fi 

Nokia N95 Nokia N95 

Accelerometer 

(<4 ), Camera( .2), 

Microphone 
8Khz, Wi-Fi (.2) 

Normalization, Average,  
Variance, HSL, Colour, 

Light, Noise level 

SVM, k-means 
clustering, 

thresholds 

Environment, User 

motion 
87% 

Localization via ambient 

fingerprints 

UPCASE 
[Santos et al., 

2009]  

Tri-axial 

Accelerometer, 

Humidity, 
Light, 

Temperature, 

Microphone, 
GPS 

Blue Sentry 

module 

Smartphone(

Nokia N95, 

Sony Ericson 
W910i) 

(<20, <4) 

Accelerometers 

Variance ,FFT, 

Thresholds mean  

Decision tree C4.5 

ID3 

Walking, Running, 

Standing, Lying, 

Being inside or out 
side 

C4.5>90 %, 

ID3>91% 
Recognizing user context 

CenceMe  

[Miluzzo et al., 

2008] 

Microphone, 

Accelerometer, 
Bluetooth, GPS, 

Camera 

Nokia N95 

Smartphone + 

back-end 

server 

Using power 

aware duty cycle, 
Audio and 

accelerometer(.1 

to .01) GPS and 
Bluetooth(.01 to 

.001) 

DFT, Mean, Standard 

deviation, Number of 

peaks, 

Decision tree J48 , 

K-mean clustering, 

(on Smartphone 
)thresholds, JRIP 

rule learning(on 

backend server) 

Walking, Running, 

Standing, Presence 

of  conversation, 
Mobile phones in 

vicinity, Mobility, 

Social context 

Classification of 

different features 

Varies with 
different position 

of the phone and 

environment. 

Detect user social 

presence to publish on 
social networking 

applications 

[Kwapisz et al., 

2010] 
Accelerometer Smartphone 

Back end 

server 
20 

Average, Standard 
Deviation, Average 

Absolute Difference, 

Average Resultant 
Acceleration, Time 

Between Peaks, Binned 

Distribution. 

J48, Logistic 

Regression, 

Walking, Jogging, 
Upstairs, 

Downstairs, Sitting, 

Standing 

Walking and 

jogging >90% 
generally ,  

Activity recognition 

using mobile phone 
embedded accelerometer 

[Lester et al., 

2006] 

Microphone, 

Compass, 
Accelerometer, 

Temperature, 

Humidity 
sensor and etc. 

Multi-Modal 

sensor 
board(MSB) 

Back end 

server 
4Hz 

Cepstral Coefficients, 
Log FFT Frequency 

Bands, Spectral Entropy, 

Energy, Mean, Linear 
FFT Frequency Bands, 

Correlation Coeffs, 

Integration 

HMM 

Walking down 

stairs, Sitting, 
Riding elevator 

down, Riding 

elevator up, 
Brushing Teeth 

90% 

Providing genetic, 

personal activity 
recognition system. 

 EEMSS [Wang 
et al., 2009] 

Accelerometer,        

Microphone, 

GPS 

Nokia N95 Nokia N95 

0.1s 

(Accelerometer), 
0.5-10sec 

(Microphone). 

Standard Deviation, FFT Decision Tree 

Walking, Vehicle, 
Resting, Home 

talking, Home 

entertaining, 
Working, Meeting, 

Office_ loud, Place_ 

quiet, Place _speech 
and Place_ loud. 

92.56% with a 

standard deviation 

of 2.53% 

Providing An Energy 

efficient sensing system 

for mobile phones. 



System Sensor(s) Sensor node 
Processing 

Units 

Sampling  

rate(Hz) 
Pre-processing 

Context 

inference 
Context Accuracy Goal 

SenSay  [Siewiorek 

et al., 2003] 

Microphones, GPS, 
2-axis 

Accelerometer, 

Blue- Spoon 
headset, Internal 

clock 

Sensor box as 
central hub and 

wearable sensors 

Notebook - 

Average, SAD, FFT, 

Normalization, 

Principal component 
analysis. 

Hierarchy of 

thresholds 

User states as Idle, 
Uninterruptible, 

Active and default. 

- 

Provides a context aware 

mobile phone with 

dynamic adaptation to 
environment 

Reality Mining  

[Eagle and Pentland, 

2006] 

Bluetooth (BTID), 

GSM (cell towers 

ID)  

Nokia 6600 
Smartphone+ 

backend server 

Once every 

5 min 

Distribution 

(PDF),Entropy 

HMM, Bays rule, 

GMM 

Location pattern, 

Proximity pattern 

(95 % )Identify 

next location, 

90% (face to face 

contacts), 90% 

(relationships) 

Social pattern in daily 

activity, infer 

relationship, Human 

landmarks, Model 

Organizational rhythm 

Serendipity [Eagle 
and Pentland, 2005] 

Bluetooth (BTID), 

GSM (cell towers 

ID)  

Nokia 3650 
Smartphone + 
back-end server 

Once every 
5 min 

Updating thresholds 

and weights sent by 
user o backend 

server  

GMM, Thresholds  

Social Location 
Pattern, Social 

relation,  Proximity, 

Similarity in 
profiles, 

Classification of 

different features 

Varies with 
different position 

of the phone and 

environment. 

Detect user social 

networks of relationship, 
Cueing informal face-to-

face interactions 

[Anderson and 

Muller, 2006] 
GSM receiver 

Mobile 

phone(SPV c500) 

SmartPhone(SP

V C500) 
.06  Mean, Variance  HMM, K-means 

Walking, stationary, 

Driving  
80% 

Context awareness by 

GSM signals 

[Sohn et al., 2005] GSM receiver 

Mobile 

phone(Audiovox 
SMT 5600) 

Back end server 1 

Euclidean distance, 
Correlation 

coefficient, Number 

of common cells 
between two 

measurements, 

Mean, Variance  

Boosted Logistic 

regression 

Walking, Running, 

driving 
85% 

Recognizing high-level 

activities with coarse-
grained GSM data 

AniDiary  [Cho et 
al., 2007] 

GPS, Phone usage Smartphone Smartphone/PC - 

Average, Maximum, 

minimum and 

frequency 

Bayesian 
Networks 

Context as Place-

activity, 

Emotional/condition
al, 

Circumstantial/situat

ional, Events. 

75% 

To represent user daily 
life with a cartoon based 

information collected via 

mobile devices like 
Smartphone. 



System Sensor(s) Sensor node Processing Units 
Sampling  

rate(Hz) 
Pre-processing 

Context 

inference 
Context Accuracy Goal 

[Gyorbiro et al., 

2009] 

Accelerometer, 

Magnetometer, 
Gyroscope 

Motion band 
Smartphone(Nokia 

6630) 
50  

Intensity, 

normalization 
Neural networks 

Sitting, Typing, 

Gesticulating, Walking, 
Running, Cycling 

79.76% 

Recognizing 

motional activities 
via mobile phone 

[Yang, 2009] Accelerometer 
Smartphone(Noki
a N95) 

Mobile phone/PC 
36 , 0.1 
  

Moving average 

filtering, Mean, 

Standard deviation 
From Horizontal and 

Vertical axis(for 

mobile use) 

Decision 

tree(C4.5), K-
means clustering, 

HMM  

Standing, Running, 

Walking, Biking, Driving, 

Sitting 

66% With 

simplified 

features   

Detecting 

physical activity 

with mobile 
phone to provide 

physical activity 

diary. 

[Kawahara et 

al., 2007] 
Accelerometer  mobile phone Back end Server 20  

Variance, Average, 

FFT, Sensor angle 
Thresholds 

Physical activities: Sitting, 
Standing, Running And 

Leaning. 

Phone position: chest 
pocket , trousers pocket 

and not taken by user 

96% > 
Detecting user 
activity with 

mobile handset 

InSense  [Blum 

et al., 2006] 

Accelerometer, 

Microphone, 
Camera, Wi-Fi 

External sensors 
PDA(Sharp Zaurus 

SL6000L) 

Accelerometer 

(90), 

Microphone(8), 
Wi-Fi(.01) 

Camera(.16) 

Mean, Variance, 

Spectral entropy, 

Energy maximum and 
number of 

autocorrelation peaks 

Naïve Bayes 

classifier using 

Gaussian 
probability 

distribution. 

Location, Activity, 

posture, speech 
>73% 

Real-time context 
recognition and 

user interest 

prediction 

MobSens 

[Kanjo et al., 
2009] 

Air pollution 
sensor, 

Microphone, 

GSM,GPS 

Smartphone(Noki

a N95,N80) and 
External sensors 

Smartphone - Filtering, Mapping - 
Pollution, Noise, Common 

Location 
- 

Enabling 

environmental 

data collection 
from mobile 

phone 

Soundsense [Lu 

et al., 2009] 
Microphone Apple Iphone Smartphone 8000 

Zero crossing rate , 

Low energy frame 

rate, Spectral Rolloff, 
Spectral centroid, 

Bandwidth, 

Normalized weighted 

phase deviation, 

Relative spectral 

entropy and Mel 
frequency ceptral 

coefficient, Spectral 

variance 

Markove model, 

Decision tree 

(J48) 

Gaussian 

discriminative 

model 

Human Voice, music, 

ambient 
>78% 

Recognizing 

everyday life 

sound events on 

mobile phone. 

  


