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1. INTRODUCTION

Virtualization is a powerful technology for increasing the efficiency of computing ser-
vices provided to private and business users in terms of performance, maintenance, and
cost. Essentially, virtualization provides an abstraction of physical hardware resources
that allows for the operation of the same services on a multitude of different physical
hardware platforms. By controlling access to the physical resources, virtualization can
also be used to run different services in parallel on the same physical hardware. It
allows, for example, for the execution of multiple operating systems simultaneously on
the same physical host. In this way, resources can be utilized more efficiently, and users
can decrease their expenditures on computing services significantly. For these very
same reasons, virtualization plays a key role in cloud computing, which allows distinct
customers to hire online computing resources for their own purposes. By doing so,
specific applications (Software as a Service—SaaS), development platforms (Platform
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as a Service—PaaS), or complete virtual machines with networking components and
storage capabilities (Infrastructure as a Service—IaaS) can be requested from the
cloud operator on a pay-per-use basis.

While the advantages of virtualization are pretty much clear to everyone, one must
also be aware of the fact that it gives rise to a number of security issues. Some of
those issues exist in traditional computing environments as well, but they need to
be addressed with special care in virtualized environments, while some other issues
are specific to virtualization and hence require novel solutions. One such example is
multitenancy, which allows for cross-platform information flow between customers hir-
ing virtual machines over the same physical host [Ristenpart et al. 2009] in an IaaS
cloud. Other issues entitle adversaries to execute arbitrary out-of-the-guest code ei-
ther locally [Wojtczuk 2008b] or remotely [Shelton 2005] without owning the required
access rights. Virtualized storage systems also have special security requirements
[Dwivedi 2003, 2004, 2005] in order to keep data secure. Due to the increasing pop-
ularity of using virtualization technologies, it is important to discuss these security
issues and hence raise the awareness of the potential users of virtualized services and
infrastructures.

For this reason, in this article, our objective is to provide a thorough survey of security
issues in hardware virtualization. We focus on potential vulnerabilities and existing
attacks on hardware virtualization platforms, but we also briefly sketch some possible
countermeasures. As it turns out, the number of reported vulnerabilities and attacks
on different virtualization platforms is quite large, so we structure the presentation of
those based on their target; hence, we introduce vulnerabilities and attacks targeting
the guest, the host OS, the hypervisor layer, the management interfaces, and the differ-
ent networks within a virtual infrastructure. The detailed discussion of vulnerabilities
and attacks is preceded by the definition of an adversary model and a short overview
on virtualization detection and identification techniques.

More specifically, the content of this survey is structured as follows: We first present
a taxonomy of virtualization concepts in Section 2; this helps to understand the scope
of our survey, which is focused on hardware virtualization. After that, in Section 3,
we introduce an adversary model,where we distinguish different types of adversaries
based on their available privileges and the targeted resources. Since, as a first step of an
attack, the adversary needs to detect and identify the virtualized environment, we give
a short overview on existing techniques for virtual machine detection and identification
in Section 4. Then, we describe vulnerabilities and attacks aimed at compromising the
guest, the host operating system, and the hypervisor in Sections 5, 6, and 7, respec-
tively. In addition to studying the security issues at the main software layers, we also
survey vulnerabilities and attacks on the management interfaces in Section 8, and
on the various networks and storage services used in a typical virtual infrastructure
in Section 9. Some miscellaneous threats related to virtualization are mentioned in
Section 10. Finally, we provide a brief overview on possible countermeasures against
the discussed attacks in Section 11 and conclude the paper in Section 12.

To the best of our knowledge, this is the first survey of security issues in hardware
virtualization with this level of details. Moreover, the adversary model and the struc-
turing of the attack vectors are original contributions, which have not been published
before. We believe that they are sufficiently general to be used to classify not only
existing but also future vulnerabilities and attacks in virtualized environments.

Note that the sources from which we compiled this survey are not limited to papers
published in journals or conference proceedings, but we extensively relied upon the
Common Vulnerabilities and Exposures (CVE) database hosted by MITRE (available
online at http://cve.mitre.org/). References to CVE records do not appear in the
reference list at the end of the article, but they can be easily resolved online.
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Fig. 1. Taxonomy of virtualization concepts.

2. OVERVIEW OF VIRTUALIZATION CONCEPTS

A virtual machine (VM) is an abstraction of computing resources presented to services
to allow them to operate simultaneously on the same physical hardware infrastructure.
VMs can be classified into two main categories: process and system virtual machines, as
Figure 1 depicts. A process VM executes an individual process, and thus its lifetime is
identical to the lifetime of the corresponding process. Examples for such VMs are found
in well-known development platforms, such as Microsoft. NET and Java VM. Extending
this concept, system virtualization corresponds to a VM that provides a complete op-
erating system with multiple processes. The process or system being executed in a VM
is called the guest, while the underlying platform that allows a VM to run is defined as
the host. System virtualization provides a complex layer to services implementing both
hardware virtualization! and hardware emulation. Hardware virtualization includes
approaches where the hardware and the software are built upon the same instruction
set, while hardware emulation can apply different instruction sets. In this article,
we focus on the security issues of hardware virtualization. We note, however, that
some platforms, for example, Xen [Takemura and Crawford 2007] and Kernel-based
Virtual Machine (KVM) [KVM 2007] heavy-use hardware emulators, for example,
QEMU [Bellard 2005; 2008], for device virtualization, therefore security of hardware
virtualization cannot be discussed fully separately from hardware emulation.

Note that operating system-level virtualized platforms, such as OpenVZ [OpenVZ
2005], FreeBSD jail [FreeBSD 2000], and Oracle Solaris Containers [Oracle 2004],
cannot be placed into Figure 1, as they do not allow for the running of VMs with a
kernel version that is different from that of the host system. As a consequence, they do
not provide true virtualization. KVM is also an interesting technology, as it virtualizes
the Linux kernel but also supports hardware assisted virtualization.?

Another combined solution is the VMware ESX/ESXi platform, which either uses
binary translation or hardware-assisted virtualization, depending on both the guest

Wirtualization of operating systems or computers.

2Enables a proprietary execution scheme: nonsensitive instructions are executed on the physical processor
directly, while sensitive ones are intercepted by the hypervisor, residing at a higher privilege level (ring -1)
and executed by the virtual processors implemented in the hypervisor.
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Fig. 2. Main types of hardware virtualization.

operating system and the processor architecture, in order to achieve optimized per-
formance [VMware 2009a, 2011a]. Furthermore, both native (also known as bare-
metal) and hosted virtual platforms can use paravirtualization?, binary translation?,
or hardware-assisted virtualization to reach greater throughput and CPU utilization.
For instance, VMware installs paravirtualized drivers, for example, paravirtual SCSI
adapters (PVSCSI) for ESX/ESXi guests [VMware 2012], while the new MS Virtual PC
exploits the rich feature set of hardware assisted virtualization [Microsoft 2012].

A unique and interesting idea is presented by NoHype [Keller et al. 2010], which
assigns dedicated physical resources to VMs (processor core, memory partition, etc.) by
removing the hypervisor. Therefore, NoHype eliminates the attack surface exposed by
the hypervisor but offers a viable solution for secure cloud computing, as it supports
multitenancy and resource utilization. See sources [Smith and Nair 2005; Adams and
Agesen 2006; Scope Alliance 2008] for more detailed information about virtualization.

Hardware virtualization allows the sharing of hardware resources via hypervisors,
which are software components that intercept all hardware access requests of the
VMs and mediate these requests to physical devices. In many cases, a hypervisor is
commonly referred to as the host, which should not be confused with the host operating
system responsible for managing guest VMs and controlling hardware resources. We
use a high-level system model depicted in Figure 2(c) in order to handle various system
virtualization platforms uniformly. Note that this is a certain type of generalization,
as the location of these layers differs from implementation to implementation. Later,
in Section 2.3, we explain the figure in details. Here we separate three software layers:
guest VMs, the host operating system, and the hypervisor. In the rest of the section,
we discuss the main components of a hardware virtualized environment extended by
network virtualization functionalities.

3Paravirtualization is a type of virtualization that requires modified guest OSs to replace their nonvirtual-
izable instructions to special hypervisor system calls (hypercalls).

4Binary translation is the only solution that uses neither CPU hardware virtualization extension nor OS
assist to virtualize sensitive or privileged instructions. Similarly to the concepts of other binary translators,
the VMM (or hypervisor) translates privileged OS requests and caches them for repeated use, while user-
mode instructions are executed natively.
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2.1. Guest Environments

Each single virtual machine, which comprises a stack made up from an operating
system and its applications, defines a guest environment. All the guests are isolated
from each other, while they use the same virtual platform provided by the hypervisor.
The interface published by the physical platform is uniform and used by all the VMs
to access real hardware resources. An important feature of this environment is that
guests must run at reduced privilege level in order to allow the hypervisor to control
their operations.

2.2. Host (Privileged) Operating System

A host operating system always has a more privileged role than guest VMs to be able
to manage them and control hardware resources either directly or via the hypervi-
sor. Note that management functionalities are not bound to host operating systems;
therefore, we discuss them separately in Section 2.4. The host operating system can
either be a native operating system, for example, in the case of VMware WS, or a priv-
ileged VM, for example, in the case of Microsoft Hyper-V [Microsoft 2008] or Xen. In
addition, certain virtual platforms, for example, VMware ESXi [VMware 2007], Citrix
XenServer [Citrix 2007], do not employ real host operating systems; only a small hy-
pervisor and a management interface are provided to allow administrators to remotely
configure the virtual server. Note that the term host operating system can be confus-
ing in case of native platforms, as it refers to a privileged guest VM (e.g., Xen (domO0),
Hyper-V (root partition)). However, we use this nomenclature in order to handle specific
security issues (e.g., guest-to-host OS escape) conveniently in the rest of the article.
See Sections 2.4 and 8 for more details.

2.3. Hypervisor and Virtual Machine Monitor

As has been introduced, the hypervisor is a software component that intercepts all
hardware access requests of the VMs and mediates these requests to physical devices.
A hypervisor typically implements a virtual machine monitor (VMM) component as
well to manage VM hardware abstraction.

The tasks of the VMM include the selective control of hardware resources, the pro-
vision of replicated platforms, and the sharing of hardware resources between guest
operating systems. Moreover, VMMSs can manage and maintain the applications on the
guests. If a guest invokes privileged instructions, they are first intercepted by the VMM,
which checks the authenticity of instructions and performs them on behalf of the guest.
It is the VMM'’s responsibility to ensure that these aforementioned operations remain
transparent for guests. It is important to emphasize that there exist hypervisors, for
example, SecVisor [Seshadri et al. 2007], that do not involve VMM functionalities.

Hypervisors and also hardware virtualization come with two main types: native (type
1) and hosted (type 2). Native (bare-metal) hypervisors (see Figure 2(a)) run directly on
top of the hardware; thus they have full control over hardware resources such as CPUs,
memory, devices, and so on. Therefore, they have to provide an abstraction layer for
guests by adding virtual processors that allow guest codes to be executed. Furthermore,
CPU scheduling, interrupt handling, I/O control, and memory management are also
essential tasks to fulfil. A hosted hypervisor (see Figure 2(b)) runs as a process on top of
an existing host operating system. It monitors the requests of the guest and dispatches
them to an appropriate API function. Thus, the architectural position of the hypervisor
and the host operating system is swapped in case of native and hosted virtual platforms.
This is the reason why the boundaries of the hypervisor are indicated with a dotted line
(see Figure 2(c)) in the rest of the article. Examples of native virtual platforms include
VMware ESX/ESXi, Xen, Microsoft Hyper-V, while hosted virtual platforms include
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VMware Workstation/Server/Player [VMware 1999], Microsoft Virtual PC [Microsoft
2006], Oracle VirtualBox [Oracle 2007], etc. At the same time, KVM raises hot debates
whether it is a hosted or a native (bare-metal) platform [VirtualizationReview 2009].
Note that VMware ESXi replaced VMware ESX a few years ago and only legacy systems
still use it, however, most of their concepts are the same. See VMware [2009c] for more
information about VMware ESX/ESXi.

2.4. Management interface

In order to configure and manage guest VMs, vendors provide management interfaces
for their products. These allow privileged users to create, delete, and modify both vir-
tual machines and virtual infrastructures. Management interfaces reside at various
levels in the software stack depending on the virtualization technology. One possible
way of classifying management interfaces (and also virtualization technologies) is to
examine whether they can be bound to a host operating system or not. In the first case,
the management interface is a component of the host operating system, for example,
VMware ESX, KVM, Xen, Microsoft Hyper-V, hosted virtual platforms. In the second
case, the virtualization technology provides a management console (and a small local
console with decreased functionality) to which the administrator can remotely connect
with a management client, for example, VMware vSphere Client (formerly VI Client),
so as to configure VMs of the virtual server. Examples for this include technologies
such as VMware ESXi, Citrix XenServer, Microsoft Hyper-V Server. Furthermore, a
management interface might also have a Web front end for an increased availabil-
ity. These different management interfaces allow administrators to manage a virtual
infrastructure at different levels. See Section 8 for more details.

2.5. Network

Virtual servers are not meant to be isolated nodes running multiple VMs simulta-
neously, but they are networked in order to add higher efficiency and performance.
In virtual networks, one can connect VMs in the same way as one does with physi-
cal networks; in addition, networking is feasible within a single virtual server host
and across multiple hosts, too. That is, network virtualization abstracts traditional
networking components, for example, switches, routers, etc, as virtual appliances® in
order to interconnect VMs. For example, virtual switches can reside in the hypervisor
(VMkernel in case of VMware) or in the host operating system (DomO in case of Xen),
each of them is mapped to a physical interface of the virtual server host and intercon-
nect multiple VMs to communicate over the same protocol. More precisely, hypervisors
provide host-only (internal-to-host) virtual networks that allow for network communi-
cation between guests on the same virtual server. This is realized by means of virtual
switches inside the hypervisor (or DomO in case of Xen). However, these internal net-
works can have operational disadvantages, because traditional network tools designed
for physical switches and nodes may not work properly with them.

Virtual security appliances (VSA) typically consist of a hardened operating system
and a security application, for example, IDS, firewall, anti-virus software, and they
aim at guaranteeing the same level of trust as their physical counterparts. In some
cases, they can be plugged into the hypervisor in order to make the virtual platform
more secure.

Similarly to physical networks, one can also construct VLANs® in virtual networks. In
addition, VMs can come with one or multiple virtual Ethernet adapters, each with dis-
tinct IP addresses and MAC addresses providing flexibility, scalability and redundancy.

5A prepackaged software component that runs inside a VM with specific functionality.
6Logical grouping of stations or switch ports to form separate LAN segments.
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In the following, we distinguish multiple types of networks that typically appear in
well-designed virtual infrastructures. See Figure 3 for an illustration of the different
types of networks as they may appear in a virtual infrastructure. We further distin-
guish virtual servers from virtual management servers, as the latter have management
interfaces for remotely controling other VMs.

—Public Network (PUN). A public network provides an interface to reach VMs and
their exposed services from the public Internet.

—Production Network (PDN). A production network carries the data traffic that belongs
to customer VMs in the internal network of the virtual environment.

—Physical Management Network (PMN). Virtual server hosts provide physical man-
agement ports which allow administrators to manage the systems remotely. Thus,
they can reboot, halt, and reinstall their system. Note that physical management
communication differs from its virtual counterpart.

—Virtual Management Network (VMN). Refers to any virtual network that carries traf-
fic between VMs, support services (e.g., databases, directory services, update services,
etc.), and management interfaces. Basically, it transports management information
to remotely configure a virtual infrastructure through added services. Note that a
VMN typically enables customers to configure multiple VMs that can even run on
top of different virtual servers.

—Restricted Virtual Management Network (RVMN). A restricted virtual management
network allows for only one VM to be manipulated; thus the customer cannot carry
out infrastructure-level configurations, such as managing virtual switches, VM mi-
gration, and so on.

—VM Migration Network (VMMN). For easier system deployment virtual solutions
support VM migration between virtual server hosts. That is, the state of VMs can
be snapped and moved to another virtual host to create the same identical virtual
environment.

—Physical Production Storage Network (PPSN). It is responsible for transmitting
selected customer data located on the physical hard disks of virtual servers to a
network-based storage, for example, network attached storage (NAS) or storage area
networks (SAN).

—Physical Management Storage Network (PMSN). Used to transport physical manage-
ment traffic to archive them on a network-based storage dedicated to management
data. Note that we suppose a separate storage for management data, as it is highly
sensitive; thus, physical separation is suggested here.

—Virtual Storage Network (VSN). It is used to transport customer data, for example,
virtual machine disks, to a network-based storage for the sake of a more resilient,
redundant, and convenient data storage, recovery, and backup.

More details about the security issues of these network segments are discussed in
Section 9.

2.6. Storage

Storage virtualization abstracts away physical storage components and provides a sin-
gle storage device that can be reached directly or over the network. However, this
conceptual simplicity comes with the price of enhanced data management and dis-
tributed access requirements. Due to the high complexity and diversity of different
physical storage subsystems (Fibre Channel (FC) SAN, iSCSI SAN, direct attached
storage (DAS), and NAS), virtualization has to cover a huge semantic gap in order to
present them uniformly to guest OSs. For example, VMware implements datastores
that enable the allocation of storage space for VMs to transparently access a wide
variety of physical storage technologies. A VMware datastore physically can either be

ACM Computing Surveys, Vol. 45, No. 3, Article 40, Publication date: June 2013.



G. Pék et al.

40:8

Virtual Management Server 2,

_t——

& Hypervisor
Host OS

\
\
1
1
|
1
I
I
1
1
I
I
I
i
4

Virtual Server 1
Public Network
Production Network
Physical Mgmt Network _~_
Virtual Mgmt Network
Res Virual Mgmi Network
VM Migration Network
]Tys'i'cal pmmrage Network

Physical Mgmt Storage Network
Virual Storage Network | _
Fig. 3. System architecture including different types of networks and adversaries.

LAN SW = LAN Switch
strSW = Storage Switch
wSW = Virtual Switch

BB = Black Box
GGB = Guest Grey Box
IGB = Infrastructure Grey Box

Production Storage Management Storage  WB = White Box

ACM Computing Surveys, Vol. 45, No. 3, Article 40, Publication date: June 2013.



A Survey of Security Issues in Hardware Virtualization 40:9

a virtual machine file system (VMFS) volume or a directory mounted as a network
file system (NFS). VMFS is a clustered file system (CFS) that can be accessed simul-
taneously by multiple physical servers. Furthermore, VMware supports raw device
mappings (RDM) technology that allows virtual machines to read and write to an ex-
isting volume (iSCSI or FC) directly’ [VMware 2008a]. A VMFS volume can contain
several virtual disks, representing a virtual hard drive for a virtual machine that can be
distributed on one or more physical storage subsystems [VMware 2010]. Each virtual
disk appears as an SCSI device for the virtual machine without taking into account
the real physical connection (RAID, SCSI, iSCSI, NFS, or FC). Any file access to the
virtual hard drive initiated from the guest OS results in the physical access to the
virtual disks [Scarfone et al. 2011]. Note that various vendors use various file format
extensions for virtual disks: .vmdk for VMware, .vhd for Xen and Microsoft Hyper-V,
.vdi for Oracle VM VirtualBox, and so on.

In the following, we discuss the types of physical storages supported by VMware
ESX/ESXi that can either be accessed through a VMFS volume or an NFS-mounted
directory.

—Local. Stores files locally on a direct attached storage (DAS) that can be an internal
or an external SCSI device and is abstracted as VMFS volume. Note that other DAS
devices (ATA, SATA, eSATA, SAS, etc.) are also presented as SCSI devices to the
guest.

—iSCSI SAN. Stores files remotely on Internet SCSI (iSCSI) storage devices that can
be accessed over TCP/IP networks. iSCSI storages are abstracted as VMFS (RDM)
volumes.

—Fibre Channel (FC) SAN. Stores files remotely on a Fibre Channel SAN through a
VMFS (RDM) volume. FC was originally defined as a fast data transfer technology
in order to replace SCSI/iSCSI. An FC SAN uses fabrics (switched topologies) to
interconnect physical storage nodes and client nodes (e.g., virtual servers in our
case).

—Network Attached Storage (NAS). Stores files remotely on file servers that can be
accessed over TCP/IP networks using NFS (*NIX) or CIFS (Windows).

3. ADVERSARY MODEL

In this work, we classify attackers into two main categories: network and local at-
tackers, though the two may overlap. In our taxonomy, we also adopt the traditional
hacking models, black box and grey box, where the former refers to an attacker without
any network or physical access to the target system, while the latter supposes an inter-
nal attacker with certain privileges (LAN or computer access). We further distinguish
white-box attacks, where a malicious user is an insider who has administrative privi-
leges. In the following, we define the corresponding terms for virtualized environments.

3.1. Network Adversary

We suppose that a network adversary is able to sniff, block, inject, or modify the network
communication; however, he is unable to break cryptographic primitives. That is, we
build upon the traditional Dolev-Yao network threat model [Dolev and Yao 1981]. In
the remainder of the article, we refer to attacks initiated by a network adversary who
resides outside of the target system with no prior information about it as black box
(BB) attacks.

"RDM can work either through a VMFS mapping file or directly without using the datastore.
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3.2. Local Adversary

The distinction of local adversaries requires a more fine-grained approach, as their
capabilities highly depend on the access rights granted to them. For this reason, we
define three separate attack models according to the access rights of the local adversary.

—Guest Grey Box (GGB). An adversary who owns privileged rights to one designated
guest VM can initiate guest-grey-box attacks against the virtual infrastructure. Note
that he does not access any management interfaces and does not have any prior
information about other customers or the organization of the target system.

—Infrastructure Grey Box (IGB). In an IaaS model, customers typically hire multiple
VMs at the same time, which they can control through a management interface (e.g.,
VMware vCenter) provided by the cloud operator. Thus, a malicious customer may
get access to multiple VMs that he can control at will. A local adversary with these
rights can initiate infrastructure-grey-box attacks to compromise other customers or
the whole system.

—White Box (WB). The malicious user can be an employee of the cloud operator, as
well, who has either physical access to internal resources (e.g., virtual server hosts)
or he can manage certain servers remotely. This is a practical problem, as large
systems are supervised by multiple administrators. Thus, it is important to examine
the attack that a malicious privileged user can carry out against the system.

Table I gives a detailed overview of the possible attack vectors according to the access
rights of the adversary. One can see vertically the possible targets, while horizontally
the adversary’s access privileges are indicated in accordance with the type of attack
he can initiate. In this article, we structure the discussion of these threats accord-
ing to the targeted system. These can be the guest OS, the host OS, the hypervisor,
the management interfaces, and various networks (communication, management, and
storage). Figure 3 depicts adversaries who can launch various attacks (BB, GGB, IGB,
WB) depending on their access rights to resources.

4. VIRTUAL MACHINE DETECTION

Since the appearance of hardware virtualization technologies, a considerable amount
of effort has been devoted to making virtualized environments transparent. First of all,
transparency is important for interoperability reasons, that is, to ensure that legacy
software runs smoothly in the virtual environment. A second, more important reason
for our discussion stems from the fact that anti-virus vendors heavily use virtual-
ization to identify state-of-the-art exploits and rootkit techniques. There are several
VMM-based malware detectors [Sidiroglou et al. 2005; Dagon et al. 2004] and malware
analyzer environments [iSecLab 2007; Song et al. 2008; Offensive Computing 2003;
Dinaburg et al. 2008] which leverage transparency in order to detect the presence of
malware and observe its behavior. Therefore, detecting if an execution environment is
virtualized became an important objective for malware writers, as they can prepare
their code to refrain from running or to behave differently in a virtualized environment.

In recent years, virtualization has gained a huge slice in the server deployment
market as more and more people and organizations turned to use it. Hence today,
it is no longer in the interest of malware writers to avoid virtualized environments,
because virtualization is so wide-spreadly used. Thus, malicious programs tend to
operate normally in virtual environments in order to spread widely and cause large-
scale infections. Consequently, anti-virus vendors keep moving their products into
the hypervisor address space, for example, McAfee DeepSAFE [McAfee 2011], to
operate at higher privilege levels (ring -1) than the infected VMs and stay transparent.
In this situation, instead of simple detecting virtualization, malware writers have
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Table I. Threat Model

ACCESS/ATTACK
Target Internet/ BB Guest OS/GGB,(IGB) Host OS/WB
CVE-2012-0392 [Ristenpart et al. 2009]
Cuest OS5 | vR-9012-0392 [Suzaki et al. 2011]
Self Guest CVE-2009-2267
CVE-2007-4591
CVE-2007-4593
Host OS [Shelton 2005] CVE-2007-4993
[Wojtczuk 2008]
[Kortchinsky 2009]
CVE-2010-4295
Self Host CVE-2010-4296
Hypervisor [Wojtczuk 2008b] [Wojtczuk 2008b]
Mgmt if. CVE-2007-4993
Comm., [Oberheide et al. 2008]
Mgmt., and L. [Dwivedi 2003]
Stirage [Dwivedi 2004] [Dwivedi 2005]
Networks [Dwivedi 2004]
ACCESS/ATTACK
Target Mgmt if /IGB Networks/ GGB,IGB Physical, PMN/WB
Guest OS | CVE-2009-3731 [Oberheide et al. 2008]
Self Guest
Host OS CVE-2009-3731
Self Host
Hypervisor [Wojtczuk and Rutkowska 2009]
[Wojtczuk et al. 2009]
. CVE-2009-3731
Mgmt if. CVE-2009-0518
Comm., [Oberheide et al. 2008]
Mgmt., and [Dwivedi 2003]
Storage [Dwivedi 2005]
Networks [Dwivedi 2004]

Note: See vertically the possible targets that can be compromised by an adversary with access privileges
enumerated horizontally. Note that the type of attack (BB—black box, GGB—guest grey box, IGB—
infrastructure grey box, WB—white box) that an adversary can launch is remarked after each access
privilege. Cells contain references to practical examples.

the additional objective of identifying the virtualized environment in order to initiate
attacks that are specific to the given virtual environment, for example, by exploiting
known vulnerabilities in a given hypervisor product. We summarize the main results
on the detection and identification of virtualization in a tabular form. Table II contains
references to practical examples that demonstrate that both a remote and a local ad-
versary residing in the guest OS can detect and identify the virtualized environment.
Different techniques use different information obtained from the environment, ranging
from simple version information (e.g., the VMware “get version” command [Kato 2003;
Klein 2008; Holz and Raynal 2005]) to resource discrepancies (e.g., PCI IDs and
storages). It has been demonstrated [Pék et al. 2011] that even hardware-assisted
virtualization can be detected in practice using timing discrepancies and CPU errata.
Indeed, we maximally accept the key conclusion of Garfinkel et al. [2007] that a
completely transparent VMM resistant to local detection methods is fundamentally
infeasible to build. Thus, miscreants are capable of determining if the environment

ACM Computing Surveys, Vol. 45, No. 3, Article 40, Publication date: June 2013.



40:12 G. Pék et al.

Table Il. Virtual Machine Detection and Identification

VIRTUAL MACHINE DETECTION AND IDENTIFICATION

VM Reference Access Based on

[Franklin et al. 2008] Remote Fuzzy benchmarking

High Precision Event Timer (HPET) and

[Klein 2010] Remote Time-Stamp Counter (TSC)

[Quist and Smith 2008] Local Local Descriptor Table (LDT)

[Quist and Smith 2006] Local CRO Machine Status Word field
VMware WS /g i1 swska 2004] Local Tnterrupt Descriptor Table (IDT)

VMware Server Interrupt Descriptor Table (IDT)

Local Descriptor Table (LDT)

[Klein 2008] Local Global Descriptor Table (GDT)
VMware “get version” command
VMware “get memory size” command

[Omella 2006] Local Store Task Register (STR) inst.
[Klein 2008] Local %Ware “get version’ Cf)m,fnand .
VMware ESX() ware “ge n{xemory size” comman
[bert 2010] Local Get BIOS version via DMI
. High Precision Event Timer (HPET) and
[Klein 2010] Remote Time-Stamp Counter (TSC)
[Chen et al. 2008] Remote Skew in the c}ock frequency of TCP times-
Xen tamp generation
[Franklin et al. 2008] Remote Fuzzy benchmarking
[Quist and Smith 2008] Local Local Descriptor Table (LDT)
[Quist and Smith 2006] Local CRO Machine Status Word field
MS Virtual PC . High Precision Event Timer (HPET) and
[Klein 2010 Remote Time-Stamp Counter (TSC)
[Rutkowska 2004] Local Interrupt Descriptor Table (IDT)
VirtualBox [Ferrie 2006] Local Invalid opcode
QEMU [Raffetseder et al. 2007] Local CPU errata

Note: The table summarizes the references of virtual machine detection and identification of various
virtual platforms discussed in the literature. Furthermore, both the access rights (local/remote) to the
virtual machine and the base of detection are also remarked.

is virtualized. The interested reader is referred to Garfinkel et al. [2007] and Ferrie
[2006, 2007] for more information on the topic.

5. COMPROMISING THE GUEST

Up until this point, the adversary could detect and identify the virtual system he is
about to compromise. From now on, we distinguish two types of attacks that can affect
the sanity of a guest VM according to its state. First, dormant VMs are inadvertently
neglected in most of the cases, which is a serious problem, as they can still contain
encryption keys, authentication data, or other sensitive information that could be stolen
by a rogue user. Moreover, inactive images are typically left out of security measures,
such as security patches, access policies, or sensitive configurations. In addition, when
a VM is inactivated, its memory content is often stored on the hard drive to be able to
resume its state upon reactivation. This virtual image can be easily exposed to a data
breach if it is not protected appropriately.

Active guest images can be compromised in various ways as well. One of the most
threatening issues is cross-VM information flow, which allows an attacker to steal
information from other guest VMs residing on the same physical host [Ristenpart et al.
2009]. Moreover, sensitive keys can be extracted from public virtual machine images
(e.g., API keys from Amazon Machine Images (AMI) [Bugiel et al. 2011]) that allow a
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Fig. 4. An adversary can compromise a guest OS in various ways, depending on the access privileges he
has. Thus, he can launch an Internet-to-guest (i2g), a guest-to-guest (g2g), a virtual machine migration
network-to-guest (vmmn2g), a guest-to-self (g2s) or a management interface-to-guest (m2g) attack.

remote adversary to destroy virtual infrastructures and build one for his own nefarious
purposes at the expense of the compromised customers. Another problem arises when
a guest OS adversary gains extra privileges by exploiting VM-specific vulnerabilities
[Ormandy and Tinnes 2009]. This section classifies these security weaknesses with the
corresponding attack vectors depicted in Figure 4.

5.1. Internet to Guest (i2g)

A guest VM is exposed to external network attacks just like conventional server hosts.
As a consequence, a network adversary with some black-box technique can compro-
mise guests and gain privileges if he can successfully exploit existing vulnerabilities in
the exposed services (e.g., Web (CVE-2012-0392), SSH (CVE-2010-4478), DNS (CVE-
2008-0122), etc.). Note that there exist critical OS-level vulnerabilities, for example,
the TrueType Font Parsing Vulnerability (CVE-2011-3402) used by the Duqu malware
[Bencsath et al. 2011], that can be exploited remotely by simple social engineering tech-
niques, such as convincing the user to open an infected Word Doc file or visit a website
with malicious content. It is reasonable to assume that such remote exploitations will
remain successful in the future; therefore, internet-to-guest attacks represent a real
risk. Moreover, the intruder can take advantage of the virtualized nature of the sys-
tem and exploit the virtualization specific flaws in it. For example, CVE-2010-1141
discusses that VMware Tools (in specified VMware products) do not access libraries
appropriately, which enables a remote adversary to run arbitrary code by deceiving
guest OS users to click on the specified files being shared. However, even an attacker
with this knowledge base should first fingerprint the remote system to detect if it is
virtualized and attack accordingly if so. Section 4 enumerates a few references for
remote virtual machine detection and identification.

5.2. Guest to Guest (g2g)

Guest-to-guest attacks suppose that the adversary has already gained access to a guest
VM either by compromising it or hiring one in a cloud infrastructure. These attacks are
typically indirect: first a rogue user should escape from a guest environment and then
compromise other guests through privileged access to the host. In the following, passive
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attacks are discussed, thus other guest VMs are not compromised directly. There can
be active ones as well, where a guest user has the ability to manipulate other VMs
directly, but until the writing of this survey, we could not identify any such attacks
in practice. Note that accomplishing a direct guest-to-guest attack could mean that a
basic principle of hardware virtualization, for example, the perfect isolation of guest
VMs, is violated. This could be due to an unresolved issue in the memory management
module (MMU) of the hypervisor that allows a malicious user to access memory pages
of other guest VMs. In that case, an adversary could manipulate those pages in ac-
cordance with his access rights (read/write/execute). Naturally, other examples can be
imagined as well, but till now, we lack this type of attack.

Considering passive attacks, Ristenpart et al. [2009] examined the threat of cross-
VM information leakage in Amazon EC2 clouds. This is a real threat, as many providers
allow multitenancy where the VMs of disjoint customers can reside at the same phys-
ical hardware. The risk of memory deduplication attacks in virtualized environments
is highlighted in Suzaki et al. [2011]. Memory deduplication is a well-known optimiza-
tion technique applied by, for example, VMware ESX [Waldspurger 2002], Xen [Gupta
et al. 2010], and KSM (Kernel Samepage Merging) for the Linux kernel [Arcangeli
et al. 2009], where the VMM shares same-, or similar-content memory pages of various
guests. In the case of content-based page sharing, the VMM scans the memory peri-
odically (20 msec by default for KSM) in order to create fingerprints from pages and
to check if they are identical. If so, pages are merged and shared by the guests until
one of them issues a write access. In that case, the merged page is duplicated by the
VMM, and the write access is given to the copied new page. This feature of the VMM,
known as copy on write (COW), gives rise to a certain level of latency, thus the access
time of the new page is slower than normal. Consequently, an attacker could exploit
this behaviour by co-residing at the same host with the victim in a different VM, due
to multitenancy or a compromised guest, so as to measure the access time of pages and
reveal the presence of applications started by other VMs. By doing so, the adversary
prepares its guest by installing and launching applications that are supposedly started
by another VM. He waits until the periodic memory scan of the VMM realizes identical
pages with other guests and merges them. The adversary issues a write access to one
of the pages of the supposedly started application and measures the access time. High
latency confirms the presence of the supposed application in the other VM.

5.3. Virtual Machine Migration Network to Guest (vmmn2g)

Virtual machine migration makes system deployment fast and easy by copying runtime
memory images of VMs between virtual server hosts through the virtual machine
migration network. Albeit, all the utility is in vain if this network traffic is not protected
by secure channels, such as TLS or IPsec. A malicious user with access to the migration
network could passively snoop the packets transmitted over the cable, thus stealing
complete virtual images. An active network adversary could furthermore compromise
the system by manipulating the guest images (e.g., embedding rootkits, keyloggers)
that are going to be installed into an allegedly sanitized virtual server. A tool that
demonstrates this is called Xensploit [Oberheide et al. 2008], which initiates a man-
in-the-middle (MITM) attack to get access to the transferred VMware or Xen guest
images. The authors emphasize that vendors and system administrators should pay
more attention to this threat.

5.4. Guest to Self (g2s)

In case of guest-to-self attacks, the adversary can compromise the guest OS in a way so
as to gain extra privileges in it. Note, here we suppose that the adversary can exploit a
weakness in the virtual environment, and thus conventional privilege escalations are
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out-of-the-scope now. The Google security team discovered a vulnerability in several
VMware products that allowed for such an attack (CVE-2009-2267 [Ormandy and
Tinnes 2009]). Practically, when the processor operates in protected mode, the two least-
significant bits of the code segment (CS) register represent the current privilege level
(CPL). However, in Virtual 8086-mode, the CPL is always least privileged (3) regardless
of the LSB bits of the CS register. Furthermore, when a page fault (#PF) is generated,
the processor pushes the actual value of the CS register and the instruction pointer
onto the top of the stack, together with an error code referring to the circumstances of
the exception. The error code is represented by several flags indicating, for example,
if the CPU was operating in user or supervisor mode (U/S bit is set or not). When a
VMware guest is in Virtual-8086 mode and the adversary executes a far call or a far
jump to an invalid address, a page fault is generated, and the registers are pushed to
the stack using supervisory access (U/S bit is cleared) causing an invalid error code
report to the guest kernel. Additionally, the Virtual-8086 mode allows a userspace code
to set the two LSB bits in the CS register to supervisory access, which can trick the
page fault handler to jump to a previously inserted shellcode in kernel mode, causing
a transition from the lowest privilege level to a higher one (ring3 — ring0).

5.5. Management interface to Guest (m2g)

An attacker with access to a management interface can gain extra privileges and
misconfigure other customers’ guest VMs. In that way, he can reroute management or
storage traffic to unsecured network segments or open backdoors for external black-box
attacks.

6. COMPROMISING THE HOST OS

One of the most appealing targets for an adversary is to access the host operating
system. This can have unpredictable consequences, as not only the VMs running on
top of it can be manipulated, but the adversary can reach and exploit other hosts in
the virtual/physical network. Practically, if a host operating system is compromised, an
intruder could stop/start/revert its virtual machines and/or steal sensitive information,
such as unencrypted virtual hard disks, or get access to the traffic of network adapters.
By doing so, he can snoop and/or manipulate storage data and virtual machine migra-
tion data transmitted over the cable and gain privileges to restricted resources, such
as storages. More information about storage security is discussed in Section 9.2.4

In most of the cases, however, compromising the host OS is not a straightforward task,
as OS vendors guarantee a relatively high level of protection that can be circumvented
only by experienced adversaries. Yet, compromising the host OS is not impossible.
Typically, the host OS provides multiple interfaces, and any vulnerability on these
interfaces may be exploited, so special attention should by paid on their security.
Figure 5 depicts the attack vectors of host OS compromises.

6.1. Guest to Host OS (g2h)

Guest-to-host OS attacks are one of the most luring challenges that an adversary could
achieve. This threat is even more severe in a cloud computing infrastructure where
miscreants can easily hire virtual machines so as to get access to a guest environment
without any effort. Additionally, in such an environment, Internet-based services (e.g.,
Web servers, DNS servers, file servers, etc.) are virtualized; thus any of their exploitable
vulnerabilities can grant access to the guest operating system with the privileges of
the compromised service. Once the adversary opens a shell, he can control the guest in
accordance with his privileges. That is, the privileges he escalated during the compro-
mise enables him to initiate guest-to-host OS attacks by exploiting a vulnerability in
the host OS process which shares common resources with one of the components of the
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Fig. 5. An adversary can compromise a host OS in various ways, depending on the access privileges he has.
Thus, he can launch a guest-to-host (g2h), a host-to-self (h2s),or an Internet-to-host (i2h) attack.

guest OS. In that way, the attacker has a communication/covert channel between the
guest and the host OS through which he can escape to the host OS. In the following, a
few realistic threats are demonstrated for guest-to-host OS attacks.

6.1.1. Local DoS. Denial of service is a well-known technique for making a service
incapable of replying to the requests of clients. Technically speaking, an adversary
exposes a targeted system to a large number of requests in order to overload it to such
a degree that it cannot serve other clients. Although, there are proposed techniques
[Peng et al. 2007; Yau et al. 2005] for mitigating the impact of such threats, we still
lack practical implementations. The terminology of local DoS is not a newborn concept,
but it poses a real security risk to the host OS executing various VMs in parallel.
That is, a malicious user with access to the guest operating system could exploit a
vulnerability in the virtualization platform that makes the host operating system
crash, practically causing denial-of-service conditions for all other guests. Examples
include CVE-2007-4591, which allows a malicious unprivileged guest user to mount
a denial-of-service attack against the host OS and possibly gain kernel privileges for
arbitrary code execution by reporting a small buffer size (and using a large one) to the
VMware virtual image mounter driver (vstor-ws60.sys) of VMware Workstation 6.0.
A nearly identical security flaw is the CVE-2007-4593, where a guest user can carry out
a DoS attack via the vstor2-ws60.sys device driver. Note that there are several other
known vulnerabilities that can be used for a DoS attack, for example, CVE-2008-4916.

6.1.2. Information Leakage. Information leakage is a general problem where an unau-
thorized party, also known as an eavesdropper, obtains information from a supposedly
protected system without any permissions. This definition is meaningful for virtualized
systems as well, where an unprivileged attacker in the guest can get access to sensitive
information of the host OS. One such example is a VMware I/O backdoor [Kato 2003;
Holz and Raynal 2005] residing at the VMware binary, the original intent of which is
to configure VMware during runtime. However, a local guest user can command the
backdoor by setting corresponding registers appropriately to read data from the host’s
clipboard. This poses a real security threat that allows for sensitive information flow
from the host OS to the guest OS.
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if (laccess(file, W_OK)) { // On success, zero is returned
f=fopen(file, "wb+");
write_to_file(f);

} else {
fprintf(stderr, "Permission denied, cannot open %s.\n”, file);

}

Fig. 6. Race condition in a set-user-ID program.

6.1.3. Arbitrary Code Execution. The attacks against the host OS discussed previously
were passive in the sense that the attacker could not directly manipulate the operation
of the host OS, that is, he could only freeze it or make it unstable. In contrast, arbitrary
code execution is an active and realistic threat that can compromise the host OS to
a large extent. Namely, it allows an attacker with unprivileged access to the guest
operating system to execute arbitrary code on the host OS by exploiting a vulnerability
in the virtualized environment. Once he had succeeded, control over the host and
other guests is granted. For of example, Kortchinsky [2009] explored a vulnerability in
the display function inside the vmware-vmx binary, which allows its users to launch
arbitrary code on the host OS. This flaw is referred to as Cloudburst (CVE-2009-1244),
and it affects both hosted and native VMware products. The attack can be accomplished
with minimal preconditions (guest-grey-box), as the adversary has only to instruct the
VMware SVGA II driver inside the guest VM to copy arbitrary code snippets into the
memory (framebuffer) of the host’s vmware-vmx process. By doing so, he can embed
any code there and launch it with the privileges of the vmx process.

6.1.4. Arbitrary File Write. An adversary in the guest might be capable of gaining write
access to an arbitrary file on the host OS. By doing so, he can manipulate critical system
resources at will, possibly with fatal consequences. CVE-2007-1744 reveals a directory
traversal vulnerability in the Shared Folder feature of VMware, where a guest user can
utilize the I/0 Backdoor, discussed previously in Section 6.1.2, to write to an arbitrary
file on the host OS when a directory is shared.

6.2. Host OS to Self (h2s)

There are circumstances when an adversary could somehow compromise a host with
several VMs atop it and gain restricted access to the resources of the host OS. The
attacker could reveal a vulnerability in the virtualization software running on the host
by means of which he can escalate privileges. Host OS-to-self attacks include such
problems. In the following, two real-life examples are given to underline the existence
and severity of this issue.

6.2.1. Race Condition. Race condition is an existing security problem for many software
products not following safe code writing practices. Generally speaking, race condition
is an alternative term for indeterministic behaviour which stems from parallel task
execution. The common problem is that an operation or sequence of operations are con-
sidered to be atomic; however, in reality, this atomicity is not enforced in the software.
A well-known case of race condition is called a time-of-check-to-time-of-use (TOCTTOU)
problem, which includes the examination of a predicate (e.g., authenticity of a user) and
then operates on the predicate. However, the adversary can change the state between
the time of check (t.) and the time of use (t,). Even a narrow time window [z, #,] could
allow an attacker, possibly after thousands of probes, to slide into that window at time
t, (¢, <t, < t,) and get access to resources with the privileges of the process. TOCTTOU
problems are typical, for instance, in UNIX file system accesses.

For a better understanding, take a look at the code sample in Figure 6.
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In this example, the access() system call is used to check the user’s permission
for a file opened by the fopen() system call. More precisely, access() checks the call-
ing process’s real UID and GID instead of the effective IDs used by fopen(). This
enables set-user-ID programs (i.e., any root-owned program with the setuid file per-
mission bit set, e.g., passwd) to determine if the invoking user owns the required access
rights. However, this leads to a race condition, because the attacker may change the
file reference returned by the fopen() function to a restricted resource, such as the
/etc/shadow file, before calling the write_to_file() function. As a consequence, race
conditions carry real threats which emerge in virtualization softwares as well. CVE-
2010-4295 refers to this bug in the mounting process vmware-mount of hosted VMware
products, which allows a host OS user to gain extra privileges. In our definition, this is
a certain type of white-box attack, as the adversary has restricted access to the host.
Another flaw in the vmware-mount suid binary is reported by Martin Carpenter and de-
scribed in CVE-2010-4296. It similarly allows a local adversary on the host to escalate
privileges.

6.3. Internet to Host OS (i2h)

This section demonstrates a relatively old (2005) black-box attack where a remote
intruder can exploit a heap overflow vulnerability in the VMware natd module (vm-
nat.exe) so as to execute arbitrary userland commands on the host [Shelton 2005].
The significance of this attack is that an adversary can directly access the host with-
out compromising a guest VM. The problem is that vmnat cannot process specially
crafted PORT and EPRT FTP commands. The former defines the local PORT on which
the client listens for data communication, while the latter refers to Extended Data
Port, defined in RFC 2428, and allows for an extended address (network protocol, net-
work/transport address) for data connection. By constructing an evil buffer content,
the attacker can gain control over registers ECX, EDI, and EBX, which allows him to
overwrite an available heap header FLINK (pointer to the next free memory chunk)
and PLINK (pointer to the previous free memory chunk). Finally, this can result in the
opening of a reverse shell on which the attacker could connect to the host OS with user
privileges.

7. COMPROMISING THE HYPERVISOR

Compromising the hypervisor is a luring goal for miscreants; however, quite strict
preconditions have to be met to be successful. In the following, we discuss two possible
ways to compromise hypervisors; these attacks vectors are illustrated in Figure 7.

7.1. Guest to Hypervisor (g2hy)

Guest-to-hypervisor escapes are possibly the most frightening security issues related
to hardware virtualization. That is, an intruder with access to the guest OS can com-
promise the hypervisor directly and execute arbitrary code with root privileges. A
proof-of-concept example is the Xen FLASK exploit [Wojtczuk 2008b], which was the
first public attack against a hypervisor that allowed for a guest-to-hypervisor escape.
More precisely, an adversary could load malicious buffer content into the input pa-
rameter of FLASK-specific hypercalls. This malicious content caused a heap overflow
that enabled the adversary to write zeros to the upper half of hypercall addresses.
In this way, he could redirect these hypercalls to usermode functions, which resulted
in a guest-to-hypervisor (DomU-to-hypervisor) escape. Note that FLASK is an XSM
(Xen Security Modules) implementation allowing fine-grained control over security
decisions; however, it is not compiled into Xen by default.

Other guest-to-hypervisor escapes [Wojtczuk and Rutkowska 2011] exploit the rich
feature set of Intel’s I/O virtualization technology (Intel VI-d) that enables the creation

ACM Computing Surveys, Vol. 45, No. 3, Article 40, Publication date: June 2013.



A Survey of Security Issues in Hardware Virtualization 40:19

LTI T TP T AT

Hypervisorm

",

Host OS
h2hy

VM1
(Mgmt1)

Virtual Management Server

Fig. 7. An adversary could compromise the hypervisor in various ways depending on the access privileges he
has. Thus, he can launch a guest-to-hypervisor (g2hy), a host OS-to-hypervisor (h2hy), and a pyhsical/pyhsical
management interface-to-hypervisor (p2hy) attack.

of driver domains or driver virtual machines (guests). The only difference between a
driver domain and a traditional guest is that the former has direct access to certain
physical resources, such as network cards or disk controllers. The introduced (theoreti-
cal and practical) attacks send specially crafted message signaled interrupts (MSI) from
an untrusted driver domain via a network interface card (NIC) to one of the processors
in a multiprocessor (multicore) system. These malicious MSIs allow the adversary to
execute code in the context of the Xen hypervisor or access arbitrary physical memory
locations. Note that these attacks are either limited to paravirtualized domains (e.g.,
in Xen) or processors without Interrupt remapping capabilities.

All in all, these exotic attacks perfectly demonstrate that even hypervisors and the
x86 architecture can contain serious vulnerabilities, which can be exploited from the
guest both theoretically and practically.

7.2. Host OS to Hypervisor (h2hy)

The runtime modification of hypervisors is an appealing problem for many adversaries,
as they could insert silent backdoors and rootkits underneath the operating systems. In
the Xen Owning Triology [Wojtczuk 2008b], the author presents several ways to modify
the Xen hypervisor via DMA transfers. The attack supposes that the adversary has
root privileges on the host OS, which is not impossible to achieve (see Section 8.1 for
demonstration). Furthermore, we cannot exclude the existence of white-box attacks.
One way to succeed is to use the loopback mode of network cards which allows an
adversary to copy arbitrary data between two locations in the RAM. Note that I/O
virtualization solutions (AMD IOMMU, Intel VT-d) can limit the address range that a
DMA device can access; however, these technologies are not supported in every case.
In addition, the author of Wojtczuk [2008b] could present another attack at the same
time, where even an Intel VI-d-aware architecture could be tricked.
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7.3. Physical/Physical Management Interface to Hypervisor (p2hy)

Physical white-box attacks are not so frequent in reality, yet they present a serious
threat due to rogue malicious system administrators and employees. In a complex IT
infrastructure, multiple system administrators supervise the system, and each of them
may have a specially assigned role. Thus, we can suppose the existence of a malicious
admin with role-specific tasks. Such an administrator could shutdown, reboot, etc. a vir-
tual server host with multiple VMs on top of it. Furthermore, guest-to-host escapes (see
Sections 6.1.3 and 8.1) could allow a guest user to execute arbitrary privileged instruc-
tions on the host. Wojtczuk et al. [2009; Wojtczuk and Rutkowska [2009], supposed such
preconditions when constructing evasive attacks for Intel Trusted Execution Technol-
ogy (TXT). Intel TXT builds upon a trusted platform module (TPM)2 to give hardware
support for trusted operating system/VMM load and execution. However, Intel TXT
does not provide runtime protection; thus a vulnerability in a hypervisor could still be
exploited after it is launched. The first attack [Wojtczuk and Rutkowska 2009] consists
of two stages: hooking the CPU’s system management mode (SMM)? handler and com-
promising the securely-loaded hypervisor (here Xen) via that attack vector. Note that
the focal point of the attack is the embedded SMM code, which is notoriously known to
be executed at a higher privilege level, in ring -2, than the hypervisor itself. The second
attack [Wojtczuk et al. 2009] could misconfigure the TXT chipset in such a way that a
securely loaded hypervisor could be compromised via traditional DMA attacks.

8. COMPROMISING THE MANAGEMENT INTERFACE

Access to the management interface can be critical, considering the overall security of
the virtual environment. As has already been introduced in Section 2.4, management
interfaces can reside at different locations in a virtualization software stack depend-
ing on the virtualization technology. That is, management interfaces can either be
bound to an existing host operating system, or the virtualization technology provides
only a small management console to which the administrator can remotely connect
by means of a management client. In the following we give examples for these two
categories.

—With host operating system. In the case of Xen, the management interface is part of
the host operating system (Dom0).!° DomO is a paravirtualized VM that has privi-
leged and direct access to all I/O devices (e.g., disks, network devices, PCI devices,
etc.). It has two key roles: administering other domains (creating, destroying, saving,
and so on), which is realized by the control panel component (management inter-
face), and making an abstraction layer on top of the hardware devices to the hyper-
visor and hence to virtual machines. Thus, a guest-to-management interface escape
can correspond to a guest-to-host OS escape in the case of Xen. However, we do
distinguish these two categories, because the adversary has the potential to control
guest VMs with such an attack (see Section 8.1.1 for an example).

—Without host operating system. In the case of VMware ESXi, the vendor provides
a management client called vSphere (formerly VI Client) which can either be used
to connect directly to the exposed management console, or to a central manage-
ment interface called vCenter (formerly Virtual Center). Using vSphere/VI Client,
one could configure and control a standalone VMware ESXi server, or by means of
vCenter/Virtual Center, one could manage a whole VM infrastructure with multiple

8Both the name of the specification of a secure cryptoprocessor that stores cryptographic keys and the
implementations of that specification.

9An operating mode on the x86 CPU that is responsible for the low-level hardware control.

10A]s0 referred to as control domain.
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Fig. 8. An adversary can compromise the management interface in various ways depending on the access
privileges he has. Thus, he could launch a guest-to-management interface (g2m) or a network-to-management
interface (n2m) attack.

virtual servers and network capabilities. Furthermore, VMware provides a Web-
interface for these products for an increased availability. An attacker with access to
a central management interface could compromise a whole virtual infrastructure.
See Sections 8.1.2 and 8.2 to demonstrate the reality of these threats.

In the rest of this section, we suppose a local adversary who has the capability to
perform an infrastructure-grey-box attack by compromising a management interface.
See Figure 8 for the representation of attack vectors.

8.1. Guest to Management Interface (g2m)

As has already been mentioned previously, a potential attack surface is the manage-
ment interface that could be compromised from a guest VM, for example. This section
discusses two examples of this case.

8.1.1. Arbitrary Code Execution. CVE-2007-4993 is one example where a privileged guest
user over Xen 3.0.3 can craft a malicious boot config file (grub.conf) to execute arbitrary
commands in the host operating system during system launch. By doing so, he can
control other guest VMs or compromise the host OS at will. Note that this is an indirect
attack against the OS of the administrator, so in Table I, the threat is classified as a
guest OS-to-management interface/host OS attack as well.

8.1.2. Information Leakage. Another security problem is described in CVE-2009-0518,
where the VMware VI Client retains the server-side password in its process memory
after connecting to the virtual center that might allow a guest user to read it out. In
this way, a malicious user, intruding the guest via a black-box attack, could read the
management password of the legal guest user. Figure 3 illustrates how an adversary
on the virtual management servers could launch infrastructure grey-box attacks via
the compromised management interface.

8.2. Network to Management Interface (n2m)

Management interfaces often provide Web surfaces for more convenient system mon-
itoring and controlling. However, similarly to any other Web applications, these sites
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may not meet the sufficient security requirements. CVE-2009-3731 reports multiple
cross-site scripting (XSS) vulnerabilities in various VMware products, which could al-
low a remote attacker to inject arbitrary script or HTML code into the Web surface. By
doing so, when a system administrator opens the Web interface next time, the script
embedded there is executed on his local computer, causing a system attack. From
that point on, the impact of the attack depends on the intruder. He could open a root
shell, for example, which might allow him to compromise other servers in the virtual
architecture with the privileges of the administrator.

9. COMPROMISING NETWORKS

Network virtualization comes with a diverse and useful feature set; however, it still
cannot provide the same security level as physical networks. First of all, virtual net-
work components can suffer from the same software weaknesses (e.g., buffer overflows,
integer overflows, etc.) as traditional applications do. In that way, virtual network
traffic can be rerouted to unsecured paths or circumvented somehow to leak out infor-
mation. Second, network threats can be mitigated by virtual security appliances (VSAs)
(e.g., firewalls, anti-viruses, IDSs); however, these carry the same risk as conventional
approaches. Moreover, VSAs are still not strong enough to prevent or contain sophisti-
cated attacks and malcodes. Third, ten years ago, L2 switches suffered from many fatal
security issues due to VLAN hoppings, ARP spoofing, spanning tree attacks, and so on.
Nowadays, these issues are successfully resolved by many products, so most of these
attacks are ineffective on a factory default installation. However, virtual networks with
virtual switches do not hold such premises. By compromising a network segment via L2
(virtual) switches, an attacker can sniff and manipulate the traffic, snoop information,
and so on.

In the rest of this section, we give a broader overview on traditional L2 attacks that
an internal adversary could use in virtual networks. Here we suppose that different net-
works discussed in Section 2.5 are segregated into different VLANs/network segments,
as best practices suggest. Then we detail the specific threats of various networks.

9.1. Attack Surfaces of Physical and Virtual LANs

Each network segment, discussed in Section 2.5, has its own proprietary goal of physical
or virtual separation, so segregation should be a focal point in guaranteeing the basic
level of security. Theoretically, all the various network communications are put into
a distinct physical port; however, most of the time this is not feasible due to the lack
of physical ports in virtual servers or other restrictions. Practically, different network
traffics are bundled into a common physical port that is represented by a virtual switch
in the hypervisor by trunking, and different VLANSs are created for each of them (see
Figure (3)). That is the reason why there can be situations (e.g., vulnerability in a
virtual switch, VLAN hopping in switches or virtual switches) when an adversary
escapes its VLAN to compromise other communications.

9.1.1. VLAN Hopping. VLAN hopping exploits networks with multiple VLANs by en-
abling an attacker to escape from his VLAN segment and intercept or modify network
traffic transmitted in other VLANs. VLAN hopping attacks are typically conducted
within Cisco’s proprietary Dynamic Trunking Protocol (DTP) which negotiates trunk-
ing between two VLAN-aware switches. Primary targets are the 802.1q or InterSwitch
Link (ISL) trunking encapsulation protocols. The adversary creates network traffic
tagged with VLAN ID destined outside the VLAN he resides at. A rogue guest VM
over a VMware ESX server can also generate such frames if virtual guest tagging
(VGT) is allowed for an 802.1q trunking. Note that ESX/ESXi hosts support three
types of VLAN tagging modes: external switch tagging (EST), virtual switch tagging
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(VST), and virtual guest tagging (VGT) that define whether VLAN tagging of packets
is performed by the physical switch (EST mode), the virtual switch (VST mode), or
the virtual machine (VGT mode). In the case of the VGT mode, for example, VLAN
tags are preserved between the virtual machine networking stack and the physical
switch when L2 frames are transmitted to/from virtual switches. Furthermore, phys-
ical switch ports must be set to a trunk port that makes the routing feasible between
virtual and physical switches (see [VMware 2006] for more information). The attacker
can also mimic a switch/virtual switch which negotiates trunking, enabling himself to
not just send, but to receive network traffic of other VLANSs.

9.1.2. CAM/MAC Flooding. Switches contain content-addressable memory to store
VLAN, port, and MAC address mappings in CAM tables so as to forward frames to
appropriate egress ports. These CAM tables have size limitations that an adversary
could exploit. Each frame with a different MAC source address is mapped to a corre-
sponding port and inserted into a different row in the table. However, when this table is
completely populated, the switch acts as a hub and broadcasts the frames to all ports,
except for the one the frame came from (loop prevention).

9.1.3. ARP Spoofing. ARP (Address Resolution Protocol) spoofing is a worrisome prob-
lem to defend against even in virtual LANs. Here, an adversary residing in a LAN
segment can modify the ARP table of the LAN hub/switch so as to redirect the network
traffic to himself. He can use Gratuitous ARP!! or other ARP messages to poison the
segment, causing the hub/switch to associate the adversary’s MAC address with the IP
address of another host. Thus, he can mediate and launch man-in-the-middle attacks
between any two parties by forwarding the intercepted and/or modified traffic to the
original target (e.g., edge gateway).

9.1.4. Spanning Tree Attacks. Malicious users can exploit the Spanning Tree Protocol
(STP) to conduct a DoS attack against a network segment by generating bogus Bridge
Protocol Data Units (BPDUs)!2 to become the root bridge or enforce certain ports to be
blocked.

9.1.5. DHCP Address Range Starvation. An adversary on the LAN can starve the local
DHCP server out of free addresses by continuously requesting new dummy leases in
the DHCP range. As a result, requests from other clients are refused. Effectively, this
results in a DoS attack, which lasts until the leases expire.

9.1.6. MAC Address Spoofing. By MAC address spoofing, an attacker can impersonate
another host. This is a valid problem also for virtual environments, as the attacker
may change the MAC address of either the guest VMs or the host operating system in
order to access restricted resources.

9.1.7. Promiscuous Mode. An attacker with access to management interfaces or a sys-
tem administrator who is about to monitor virtual network traffic can enable promis-
cuous mode for virtual switches in case of VMware ESX/ESXi. This means that either
physical or virtual hosts connecting to the same network can sniff its entire traffic,
posing a severe security threat. Unfortunately, in certain cases, promiscuous mode is
inevitable, as it makes error detection and correction much simpler for administrators.

11t assists to update other machines’ ARP tables. See Wireshark [2006] for more information.
12A special data frame used by bridges to exchange information about the network so as to determine the
root bridge.
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9.2. Compromising Networks of Virtual Systems

9.2.1. Compromising the Physical Management Network. Accessing the physical manage-
ment network enables an adversary to completely compromise a deployed system. By
doing so, he can shutdown, reboot, configure both physical and virtual machines at
will. That is the reason why hosts to be managed are interconnected via dedicated
management ports that only highly privileged super users can access.

9.2.2. Compromising the VM Migration Network. VM migration communication is typically
segregated into a distinct LAN or VLAN, because highly sensitive plaintext data is
transmitted here. Compromising the VM migration network [Oberheide et al. 2008]
allows an attacker to steal sensitive data about guests that can even be manipulated.
The threat is valid as most of the migration solutions still do not encrypt the traffic.
Note that recent versions of VMware’s migration product (vMotion) solves this issue by
means of SSL; however, only a few deployed virtual environments employ this feature.

9.2.3. Compromising the Virtual Management Network. Virtual management communica-
tion should also be put into a separate network segment due to the critical nature of
information. By accessing management communication, an adversary can modify the
virtual network topology, manipulate port-to-VLAN mappings, set the virtual switches
into promiscuous mode (thus allowing the interception of other network communica-
tions in the same VLAN), open ports to create backdoors, and so on. Consequently,
virtual management communication should always have a dedicated segment that is
secured against L2 attacks. Additionally, default virtual machine ports can be enabled
when installing a VMware ESX host, although these are created at the same network
interface as the one used by the service console. Thus, virtual machines can get access
to plaintext and sensitive management data.

Management clients (vCenter, VI Web Access), in case of VMware, access the ESX
server hosts via self-signed SSL certificates. This poses another threat: self-signed
certificates are not issued by a trusted third party; thus, anyone can generate new key
pairs and sign the public key with the private one. By doing so, innocent users simply
accept these certificates too, as they usually do.

9.2.4. Compromising the Storage Network. Storage virtualization also has strong secu-
rity requirements, because, first of all, stored data may contain all sorts of sensitive
application data, and second, it may contain system data that allow the adversary
to compromise the virtual environment. Note that local storage attacks, for example,
accessing .vmdk files on a hosted virtualization platform, can result from known com-
promises, such as guest-to-host escapes (discussed earlier); therefore, we do not address
them in detail here. Instead, we focus on the attacks against virtualized storage ser-
vices based on network storage solutions. In the sequel, we assume that the adversary
has already obtained all the required privileges, for example, by escalation techniques
previously discussed, to perform the following attacks against storage networks.

General Problems. The most threatening issues considering storage network secu-
rity are snooping attacks where a malicious user can passively sniff the data being
transmitted. The problem stems from the fact that neither the hardware nor the soft-
ware layer offers real solutions for addressing this issue. For example, Fibre Channel
(FC) transports all data in clear text, and thus appropriate access control and isola-
tion from unprivileged resources should be ensured by other means. Moreover, software
vendors such as VMware provide a storage migration solution (Storage vMotion) which
can move active virtual machine disks from one storage to another without downtime.
However, storage migration transfers virtual disks in plain format, thus a man-in-
the-middle attacker could steal or modify entire disks or infrastructures. In addition,
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virtual disks on shared storages can also be accessed by anyone with the necessary priv-
ileges [VMware 2011b]. In the case of Xen, too, the storage traffic is unencrypted and
goes through the control domain (Dom0) if one uses IP-based storages (NF'S, iSCSI).
Both for security and availability reasons, it is necessary to be segregated from the
management communication. That is, the IP addresses of dedicated storage network
interfaces should belong to different subnets than those of the management networks.
File-based storage repositories mount a dedicated NFS repository into DomO, where
each storage repository is a directory on the NF'S server. This server furthermore stores
virtual disks in .vhd file formats that are not encrypted either, so only highly privileged
administrators should access them.

Another problematic issue is the DoS. Similarly to any other networks, DoS attacks
represent a valid threat against storage networks, too, with no effective solution for
addressing them.

Compromising the Fibre Channel SAN. FC was always considered as a general stor-
age mechanism; however, its performance-to-security trade-off always raised debates.
Furthermore, Fibre Channel SANs face many other serious security problems that
could be valid in virtual environments [VMware 2011b] as well. Attacks against FC
SANSs can be classified into three main groups: compromising the FC HBA, the FC
Switch, or the FC Frame. Due to page limitations, we introduce only one example for
each class; however, interested readers can find more information in [Dwivedi 2003].

—WWN Spoofing (FC HBA Attack). Each node in the FC SAN has a 24-bit address
administered by the fabric, and a 64-bit World Wide Name (WWN)!? determined by
the host bus adapter (network interface card.). An adversary with access to the HBA
can spoofits WWN, which allows him to gain unauthorized access to data that should
have been accessed only by client nodes with the spoofed WWN.

—Zone Hopping (FC Switch Attack). Zoning is a segmentation tool that allows system
administrators to separate data stemming from various sources. Zoning is often
considered to be an effective solution for storage security problems; however, we
note that it lacks enforcement capabilities, which actually limits its effectiveness.
Basically, there are two types of zoning defined: hard (enforcement based) and soft
(information based), each of which supports both WWN-(zones are based on WWNs)
and port-based zoning (zones are based on the physical ports of FC switches).
Depending on the zoning technique being used, an attacker can hop between zones
to access data residing in a zone he should not have access to. More precisely, by
spoofing the WWN, an adversary can subvert the zoning table and evade both
hard and soft zones. In the case of port-based zoning, WWN spoofing is ineffective;
however, if an attacker knows the route to another WWN in a different zone, soft
zoning grants the access. As a consequence, only hard zoning based on port numbers
can eliminate both types of hopping attacks.

—Session Hijacking (FC Frame Attack). Each layer 2 FC frame transmitted over
the cable belongs to an FC sequence, which is defined as the series of related
frames passed unidirectionally from one port to another. Each frame within the
same sequence contains an identical SEQ_ID value and is identified by a counter
(SEQ_CNT) being incremented by 1 after every frame transmission. This type of
operation allows the recipient to arrange frames into the right order and to deter-
mine if all the required frames have arrived. These conditions allow an adversary to
accomplish a session hijacking attack as follows. He can capture the SEQ_ID value
of a sequence being transmitted in plaintext and also predict the SEQ_CNT value.
In addition, there is no integrity check on frames, so the adversary can fabricate

I3WWN represents the same concept as the MAC address in Ethernet.
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frames with modified SEQ_CNT, and by doing so, hijack existing sessions and get
access to sensitive resources.

Compromising the iSCSI SAN. iSCSI (Internet Small Computer System Interface)
is another SAN protocol that, similarly to FC, allows block-level access to storages;
thus entire LUNSs (logical unit numbers)'* can be accessed by iSCSI clients. In contrast
to FC, iSCSI is used over IP networks by carrying SCSI commands (CDBs) between
an initiator (iISCSI client—NIC with an installed iSCSI driver) and a target (iISCSI
storage device). The main advantage of iSCSI is that it does not require any special
hardware and works over existing LANSs; however, it is also an unencrypted protocol.
In the following we introduce some practical attacks on iSCSI; more examples are
discussed in [Dwivedi 2005].

—CHAP Attacks. In 2009, VMware introduced new iSCSI software initiators with
more enhanced security [VMware 2009d]. By means of bidirectional authentication,
both the initiator and the target can authenticate each other via the Challenge-
Handshake Authentication Protocol (CHAP). Therefore, an adversary should know
the preshared secret to impersonate either the initiator or the target of the com-
munication. However, by configuring VMware to not authenticate both the initiator
and the target, an adversary could potentially impersonate either side of the con-
nection and accomplish a man-in-the-middle attack. Furthermore, by capturing the
credential hash, the adversary is not required to know the current credentials in
order to hijack the CHAP session. This is also referred to as the “Pass the Hash”
attack [Butler and Vandenbrink 2009].

—iSNS Man-in-the-Middle. iSNS (iSCSI Simple Name Services) is an optional iSCSI
component with similar roles to DNS. It maintains a table in order to group initiators
and targets into separate domain sets for logical segmentation. iSNS servers are
used to register initiators and targets and inform initiators about specific events, for
example, the availability of targets on the network. In an iSNS man-in-the-middle
attack, the adversary identifies the iSNS server listening on port 3205 in the first
place. By using ARP poisoning, he can impersonate the valid iSNS server with a fake
one which is used as a mediator. That is, the fake iSNS server captures and relays
all the traffic sent to the valid iSNS server, so the adversary has full control over the
plaintext packets being transmitted.

Compromising the NAS. NAS (network attached storage) is a remotely attached
storage that supports local file systems being accessed over IP networks via CIFS (for
Windows), NFS (for *NIX), HTTP or FTP. Similarly to the aforementioned storage
solutions, NAS also comes with weak security guarantees. A few corresponding attacks
are discussed next. A more detailed discussion can be found in [Dwivedi 2004].

—Export/Share Enumeration. First of all, NAS exports (e.g., /dev/dsk/server), NAS
shares (e.g., C$), and NAS usernames (e.g., administrator) can be enumerated by an
adversary easily and can be used later to launch even more specific attacks.

—Authentication Attacks. After enumeration, an attacker might access CIFS shares
and NF'S exports by anonymous access rights. If that is the case, an attacker could
easily access sensitive resources.

—Bypassing Permissions. This attack supposes that a network share supports both
CIFS (Windows) and NFS (*NIX) access. The attacker X wishes to get access to a
share he has no file permission to, but he knows that user Y has full control (rwx)

14Logical unit numbers are used to identify a logical array of storage units that can be any device addressable
by the SCSI protocol. Note that the term is a bit misleading, as an LUN usually refers to the logical unit
itself.
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over that. X can access that folder neither from Windows nor from *NIX, but he
can check the UID and GID of Y from a *NIX console (Is -al). As X has local root
access, he can edit the local password file (/etc/passwd) to change the UID and GID
of his account (X) to the UID and GID of Y. By doing so, the CIFS permissions are
subverted by means of NF'S, and access is granted to the restricted resource.

As just demonstrated, storage virtualization carries potential risks into virtual infras-
tructures; thus dedicated attention should be paid to their appropriate configuration.

9.2.5. Compromising the Production Network. The production network transmits
customer-specific traffic, including Web access, VPN, and so on. Best practices suggest
isolating production networks as well, which are typically connected to the internal net-
work via the data management zone (DMZ). That is, DMZ servers should be secured
in order to contain malicious users (either network or local). In addition, as nowadays
DMZ services are preferred to be virtualized as well, more enhanced countermeasures
have to be applied to secure them [Cisco and VMware 2009]. More information about
networking issues can be found in VMware [2008b, 2006, 2009b].

10. MISCELLANEOUS THREATS

Up until now, a considerably wide spectrum of attacks on hardware virtualization has
been introduced with detailed description of flaws or design vulnerabilities. Albeit,
there are other threats called virtual-machine based rootkits, which install a VMM
underneath an existing operating system and execute the original OS in a guest system.
By doing so, the rootkit can mediate between the hardware and the OS in order to
perform naughty activities, such as key logging, opening a backdoor, and monitoring the
0OS. In 2006, three such projects emerged—Bluepill [Rutkowska 2006], Subvirt [King
et al. 2006], and Vitriol [Zovi 2006]—each of which targeted different platforms and
operating systems. Bluepill and Vitriol are capable of installing themselves underneath
a running operating system on the fly, without reboot, while SubVirt modifies the boot
process in order to activate itself.

11. COUNTERMEASURES

Following the detailed discussion on various vulnerabilities and attacks in hardware
virtualized environments, in this section, we give a brief overview on possible coun-
termeasures. We note, however, that the main objective of this article is to survey
the vulnerabilities rather then giving a detailed introduction of the countermeasures.
Therefore, we do not aim at completeness in this section, and we keep the discussion
at a rather high abstraction level.

11.1. Secure Programming

In most of the cases (Sections 5.4, 6.1.1, 6.1.2, 6.1.3, 6.2.1, 6.3, 8.2), malicious users
exploit a software bug in virtualization products that allows them to compromise a
system to a certain extent. To avoid this, vendors need to generally mitigate such
bugs by applying well-accepted secure programming methodologies and/or formally
verifying the compile-, and runtime behaviour of their products.

11.2. Hardening the Hypervisor and VMs

Hardening of the hypervisor and the hosted VMs should also be a focal point of system-
wide security. That is, the latest security patches for traditional applications should be
also installed both on the hypervisor and the hosted VMs. Appropriate configuration
of exposed services and security controls (e.g., Web servers, firewalls) is required, as
black-box attackers often exploit their weaknesses. The main contributions in this area
are summarized elegantly in Szefer et al. [2011] as follows.
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First, by minimizing the size of the code in the hypervisor, one can reduce the attack
surface being exposed; however, this is not a practical workaround in current virtual
systems. One example of this approach is SecVisor [Seshadri et al. 2007] that supports
and secures one single guest VM, while TrustVisor [McCune et al. 2010] allows for
integrity protection of code and data in designated application portions. Second, other
ideas [Suh et al. 2005; Lie et al. 2000; Lee et al. 2005] offer new processor architectures,
although these cannot be deployed into current virtual systems either. Third, to harden
the hypervisor, researchers came up with various solutions [Li et al. 2010; Sailer et al.
2005; Steinberg and Kauer 2010]. For instance, Hypersafe [Wang and Jiang 2010]
protects the hypervisor from control-flow hijacking attacks, while HyperSentry [Azab
et al. 2010] operates in ring -2 (system management mode) that allows for stealthy and
in-context measurement of the runtime integrity of the hypervisor. Finally, exokernels,
such as ExOS [Engler et al. 1995] and Nemesis [Leslie et al. 1996], implement reduced
operating systems that allow more direct access to the hardware.

Note that all the preceding issues are addressed by the NoHype system [Szefer
et al. 2011] which eliminates the attack surface of hypervisors; thus, VMs cannot
exploit its vulnerabilities. It is achieved by (1) the preallocation of processor cores and
memory resources to separate VMs, (2) the exclusive use of I/O virtualized devices,
(3) the support of the system recovery process with a temporary hypervisor and a
modified guest OS, and (4) the elimination of any interaction between the hypervisor
and guest VMs. A similar solution is the SICE [Azab et al. 2011] framework that
does not rely on any host system (hypervisor or host OS) so as to provide secure and
isolated environments. This is achieved by means of a TCB (trusted computing base)
that includes only the hardware, the BIOS, and the SMM (system management mode).

11.3. Restriction of Physical Access

The physical or physical management network access of virtual server hosts should be
restricted as much as possible (see Section 7.3), as it can simultaneously mean access to
VMs, storages, networks, hypervisors, virtual appliances, and so on. Unused physical
interfaces should be disabled in order to tailor the attack surface and limit the caused
damage.

11.4. Policy and Isolation

Control policies of virtual environments should be implemented and maintained to
provide the same level of security that physical environments have. Furthermore, the
isolation of security functions is another core point of system-wide hardening. For
example, firewall functionalities should never be combined with private key storing on
the same virtual host, as it can be a single point of failure that affects the integrity of
the whole virtual environment.

11.5. Separation of Roles

Administrative roles should be separated, as best practices suggest. As large virtual en-
vironments are supervised by multiple administrators with different roles and duties,
their access rights should be restricted to dedicated roles according to VM function, hy-
pervisor, virtual network, hardware, application, storage, and management interfaces.
For example, a storage administrator should not get access to firewalls and monitoring
services, and vice versa. Furthermore, multifactor authentication and dual- or split-
control administrative passwords for various administrators should be used in order
to reduce the risk of a malicious supervisor. Role-based access control (RBAC) should
be maintained for virtual components in order to avoid unwanted access to resources.
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11.6. Separation of VMs

VMs with different security levels should be hosted on different virtual servers. A VM
with lower security requirements typically has weaker security controls which can be
ideal for an attacker to compromise other VMs with higher security requirements being
hosted on the same physical hardware.

11.7. Considering the State of VMs

Section 5 highlighted a few security problems for unprotected inactive VMs. More pre-
cisely, migration path of inactive VMs should point to secured routes that cannot be
compromised by man-in-the-middle attackers. Inactive VMs containing highly sensi-
tive information should be stored and maintained at the same security level as any
other active VMs containing similar pieces of information. Backup and restoration of
active/inactive VMs should also be treated securely. Furthermore, data that are not
required any more should be deleted simultaneously in each copy of a VM.

11.8. Mitigating Design Discrepancies

There are design-level issues where software vendors must take the security-to-
performance trade-off into account. For instance, in case of guest-to-guest attacks
(Section 5.2), virtual environments should be critically safe, especially when multi-
tenancy is supported. Direct guest-to-guest attacks include the passive memory dedu-
plication attack which can be mitigated by setting the pages of target applications
read-only in the page table entries (PTE) of the VM so that the adversary cannot mea-
sure write access latency and cannot predict the launch of an application. However, the
VMM should know the number of same-page read-only pages in order to prepare such
a countermeasure. Another possible workaround is the obfuscation of the code image
loaded into the memory by the victim’s operating system. This concept prevents the
attacker from creating pages with the same content as those of the original application.

Section 7.2 demonstrated a rootkit that initiates a host-to-hypervisor attack to ma-
nipulate the runtime behaviour of the hypervisor. Unfortunately, hypervisors do not
provide runtime protection against such malcodes. Technically speaking, timing analy-
sis is one option for detecting the presence of a certain variant of this malware; however,
there are other enhanced implementations that resist timing analysis. As the saniti-
zation of an infected hypervisor is not trivial, preventive countermeasures have to be
employed, including the installation of most-recent security patches, although it still
does not solve the problem of white-box attacks.

11.9. Securing the Network

Certain network discrepancies, such as sniffing and snooping of migration and stor-
age traffic (as discussed in Sections 5.3, 9.2.2, 9.2.4) can be mitigated by appropriate
secure communication channels, such as SSL or IPsec. Traditional L.2 networks and
stations are implementing defence methods against a wide spectrum of attacks; how-
ever, virtual networks still carry the threat of such attacks, as there can be either
design- or implementation-level flaws in their software components. VLAN hopping
(Section 9.1.1) can be mitigated by disallowing virtual guest tagging, configuring ports
forwarding tagged traffic to be a trunk, and transmitting only certain tagged frames.
Furthermore, unused ports inside VLANs transmitting valuable traffic should be put
to another unused VLAN, disallowing the attacker to plug or enable it and get access to
its communication. CAM/MAC flooding (Section 9.1.2) can be contained by restricting
broadcast domains or restricting the maximum number of MAC addresses that can be
learned on ports (port security). To avoid ARP spoofing (Section 9.1.3), vendors apply
some kind of cross-checking or authentication of ARP responses. If a virtual switch
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does not conform consciously to any defence mechanisms, it is highly exposed to such
attacks. Spanning Tree attacks (Section 9.1.4) can be prevented traditionally by pro-
prietary tools (e.g., bpdu-guard, root-guard, of the vendor), so virtual switches have to
implement such methods by default. To alleviate the risk of DHCP address range star-
vation (Section 9.1.5), switches and virtual switches must be configured to allow only
certain IP/MAC addresses to access the network. MAC address spoofing (Section 9.1.6)
can also be prevented. In the case of VMware ESX, the administrator can disable the
guest OS to change the virtual MAC address. More precisely, the guest OS believes
that the MAC address has changed; however, the virtual network adapter does not get
any packets if its MAC address is not equal to the one originally assigned to it.

To alleviate the risk of most of the attacks targeting storage networks, system ad-
ministrators should separate this traffic and apply secure channels (IPSec, SSL) to
protect the data transmitted here. This can prevent snooping and session hijacking
attacks (Section 9.2.4); however, other active adversaries can still be successful. To
thwart WWN spoofing and zone hopping (Section 9.2.4), port-based hard zoning should
be deployed in FC SANs. CHAP attacks in iSCSI networks can be evaded by bidi-
rectional authentication, while an iSNS man-in-the-middle adversary (Section 9.2.4)
can be contained by protecting against ARP spoofing, as previously discussed. Finally,
anonymous access requests should be rejected in NAS networks, and administrators
should take care of applying CIFS and NF'S sharing simultaneously (Section 9.2.4).

11.10. Adequate Logging and Monitoring

The logging and monitoring of all activities in a deployed virtual environment is highly
recommended. Logs should be directed into separate physical storages that are secured
with appropriate functions. This helps to identify and analyze data breaches or any com-
promises that affect the integrity of communication channels, security controls, or seg-
mentation. Out-of-VM analysis platforms enable both OS-level [Dinaburg et al. 2008]
and process-level [Srinivasan et al. 2011] monitoring of events via system or library call
traces. This information could also serve as a useful input for future forensics analyses.
An exciting workaround to mitigate the damage for virtual machine attacks is repre-
sented by ReVirt [Dunlap et al. 2002] that makes use of virtual machine logs to replay
a system’s execution before, during, and after an attacker compromises it. Further sug-
gestions for countermeasures can be found in PCI Security Standards Council [2011].

12. SUMMARY

In this survey, we provided a thorough overview of security issues in hardware vir-
tualization. We focused on potential vulnerabilities and existing attacks on hardware
virtualization platforms, but we also briefly sketched some possible countermeasures.
We structured the presentation of vulnerabilities and attacks based on their target,
which could be the guest, the host operating system, the hypervisor layer, the manage-
ment interfaces, and the different networks within a virtual infrastructure. In addition,
we presented an adversary model that we believe to be general enough to be used to
classify not only existing but also future vulnerabilities and attacks, and we gave a
short overview on virtualization detection and identification techniques, because those
can be used as a first step of any attack.

One of the lessons that one can learn from this survey is that the number of reported
vulnerabilities and attacks on different virtualization platforms is already quite large,
and it is expected to further increase in the future due to the increasing complexity
of and additional services in those platforms. Given the increasing popularity of using
virtualization technologies, and in particular, the proliferation of cloud computing
services, it is important to be aware of these security issues and to address them in an
appropriate way.
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This requires better understanding and continuous research in this domain. In par-
ticular, we identify the need for developing security tools tailored for discovering vul-
nerabilities, as well as for detecting or preventing attacks in virtualized environments.
As we previously said, some inspiration may be provided by how security issues are
addressed in traditional computing systems, but they must be adapted to the specific
properties of virtualized systems; in addition, some issues are very specific to virtu-
alized environments and hence need new solutions. For instance, the impact of an
attack on a hypervisor could be very serious because it affects multiple guest operating
systems and the services running on top of those. Therefore, vendors of virtualized
platforms should pay special attention to the security of their products, system admin-
istrators should pay special attention to careful operation and maintenance of virtual
infrastructures, and researchers should develop effective tools for detecting and con-
taining such attacks.
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